Effects of Speciation on Evolution of Neural
Networks In Highly Dynamic Environments

Peter Kréah

Computer Center, Charles University
Ovocny Trh 5, 116 36 Prague 1, Czech Republic
peter.krcah@ruk.cuni.cz

Abstract. Using genetic algorithms for solving dynamic optimization
problems is an important area of current research. In this work, we in-
vestigate effects of speciation in NeuroEvolution of Augmenting Topolo-
gies (NEAT), a well-known method for evolving neural network topolo-
gies, on problems with dynamic fitness function. NEAT uses speciation
as a method of maintaining diversity in the population and protecting
new solutions against competition. We show that NEAT outperforms
non-speciated genetic algorithm (GA) not only on problems with static
fitness function, but also on problems with gradually moving optimum.
We also demonstrate that NEAT fails to achieve better performance on
problems where the optimum moves rapidly. We propose a novel method
called DynNEAT, which extends NEAT by changing the size of each
species based on its historical performance. We demonstrate that Dyn-
NEAT outperforms both NEAT and non-speciated GA on problems with
rapidly moving optimum, while it achieves performance similar to NEAT
on problems with static or slowly moving optimum.

Keywords: NEAT, speciation, neural networks, dynamic optimization

1 Introduction

Real-world optimization problems often contain various sources of uncertainty.
When evolutionary algorithms are used to solve such problems, this uncertainty
translates into dynamic fitness function, which often poses a challenge for stan-
dard EAs. One common approach to improve efficiency of the search is to use
multiple concurrently evolving populations, each population tracking a different
optimum (a comprehensive survey of methods is given in [2]). In this work, we in-
vestigate behavior of NEAT [4], a well-known method for optimizing both struc-
ture and weights of a neural network, on problems with dynamic fitness function.
We first confirm that speciation is a significant component of NEAT on selected
static and dynamic fitness functions. We then show that NEAT performs poorly
on problems where the optimum of the fitness function changes rapidly between
generations. We propose a new method, called DynNEAT, which extends NEAT
by taking into account multiple previous generations when choosing the size of
the species in the next generation, thus stabilizing the speciation process and
improving performance of the search.

2 Peter Krcah

2 Methods

NeuroEvolution of Augmenting Topologies (NEAT) NEAT is a method
for evolving both structure and connection weights of artificial neural networks [4].

NEAT uses speciation to maintain diversity in the population by protecting
new solutions from direct competition with currently best individuals. Specia-
tion in NEAT works in the following way. In the first generation, each individual
is assigned to a different species and its fitness function is evaluated. Each sub-
sequent generation is constructed by first dividing all slots in the population
among all species present in the previous generation. Species sizes in genera-
tion ¢ + 1 are allocated proportionally to sygar(i + 1), an average fitness of all
individuals belonging to the given species in the previous generation:

, Yol fi
sNpar(i+1) = N,

where f;; is the fitness value of 4t individual of the given species in generation i
and NV; is the number of individuals in generation 7 in the given species. When the
new size of each species is known, each slot is populated by performing crossover
and mutation of individuals selected from the given species in the previous gen-
eration. Newly created individuals are assigned to species not based on their
ancestral species, but by comparing them one at a time to representatives of
each species from the previous generation and assigning them to the first species
whose representative is sufficiently similar (based on a defined threshold). If an
individual is not sufficiently similar to a representative of any existing species, a
new species is created for it. When all individuals are assigned to species, NEAT
continues by evaluating their fitness and repeating the same process for the new
generation. Two other major components of NEAT are historical markings of
neurons and growing neural networks incrementally. Comprehensive description
of NEAT is available in [4].

NeuroEvolution of Augmenting Topologies for Dynamic Fitness Func-
tions (DynNEAT) On highly dynamic problems, speciation scheme used by
NEAT can be disadvantageous. In NEAT, the size of the species is chosen based
solely on the average fitness value of individuals from the previous generation. In
highly dynamic problems, this value will change dramatically from generation to
generation, leading to dramatic changes in the size of the species. Such radical
changes in species size can be detrimental to the progress of the search by re-
moving novel solutions from a species before they can be optimized. To improve
the behavior of speciation on such problems, we propose DynNEAT method.
In DynNEAT, decisions about the size of the species are based not just on the
previous generation, but on ¢ previous generations. Species sizes in generation
i + 1 are allocated proportionally to spynvEAT(i + 1), the maximum average
fitness of last ¢ generations:
. N
SDynNEAT(i + 1) = j=n1,1§t}5r1 Ek]_\]ifjk

Effects of Speciation on Evolution of Neural Networks 3

Such method of sizing the species ensures stability of the species across gener-
ations even when the optimum of a fitness function moves rapidly. Parameter
t controls for how long can DynNEAT maintain the size of a species when the
average fitness of individuals in the species decreases over generations. In this
work, the parameter value was set to 5 in all experiments.

3 Experiments

To evaluate the performance of NEAT and DynNEAT on dynamic optimization
problems, we perform three different experiments, using increasingly dynamic
versions of the function approzimation problem. Each fitness evaluation consists
of 600 steps, during which a single input value increases linearly from —1 to
+1. The resulting fitness value is computed as 1 — min(u,1), where p is the
mean squared error of the differences between expected and real output value
measured in each step. In all three experiments, non-speciated GA is compared
to NEAT and DynNEAT. As a non-speciated GA, we use a standard GA with
the addition of historical markings used for crossover of neural networks. Each
configuration was tested in 50 runs. Each run was stopped after 200 generations
(after which most runs achieved a plateau). Significance levels were computed
using Student’s t-test. Population size was set to 300, to allow more species to
form concurrently and cover different optima of the changing fitness function.

In the first experiment, with a static fitness function, the target function
fa(z) consists of a linear part, a constant part and a sine-wave part and is
defined in the following way (see solid line in fig. 1):

8r—1if0<z <1
falx) = 1ifl§x<%,
cos(4mn(z — 1)) if 5 <z <1
where © = (k — 1)/599 is the current evaluation step scaled to interval [0, 1].
In the second experiment, with a slowly moving optimum (SMO), the target
function is defined in the following way (see fig. 1):

1 2
Ta(e.y) = 51+ sin) fale),
where x is defined as in f4(x) and y is the generation counter. The target function
oscillates between f4(z) and 0 with a period of 50 generations.

In the third experiment, with rapidly moving optimum (RMO), the target
function is defined in the following way:

1 if (z < 0.5) xor (y is even)
—1 otherwise

fc(l‘, y) = { ;
where z and y are defined as in fg(x,y). For odd generations, fo(z,y) is a step
function with value 1 in first half of the domain and —1 in the second half of the
domain. For even generations the function values are reversed.

4 Peter Krcah

0.5 e
) P N\ £

a7 7
N /

Function Value

0 60 120 180 240 300 360 420 480 540 600
Fitness Evaluation Step

Fig. 1. Expected Output in Experiments with Static (solid line) and Slowly
Moving Optimum (solid, dashed and dotted lines).

4 Results

In the experiment with the static fitness function, both DynNEAT and NEAT
were able to consistently find good solutions (see fig. 2). The average maxi-
mum fitness achieved by NEAT in the 200th generation was 0.980 (0=0.009),
while DynNEAT achieved 0.988 (0=0.0067). Non-speciated GA achieved aver-
age maximum fitness of only 0.741 (¢=0.169), with 30 of 50 runs failing to find
a solution with fitness value above 0.603. Differences between any two methods
are statistically significant (p < 0.01) in each generation since generation 60.

Results of experiments with slowly moving optimum (see fig. 2) reflect the
periodicity of the problem. Since zero target output is trivial to solve compared
to more complex outputs, the difficulty of the problem changes from genera-
tion to generation. Fig. 2 shows that all methods were able to find successful
solutions when fitness function was close to zero, but their performance differed
in generations where fitness function is furthest away from zero. In these gen-
erations, both DynNEAT and NEAT significantly outperformed non-speciated
GA (p < 0.01 since generation 20, except 36-40 and 85-90). Differences between
NEAT and DynNEAT were not statistically significant (p > 0.2).

In the experiment with rapidly moving optimum, DynNEAT was the only
method capable of consistently finding good solutions to both target functions
(see fig. 2). The average maximum fitness achieved by DynNEAT was 0.9547
(0=0.0295), while neither NEAT nor non-speciated GA achieved fitness over 0.8.
NEAT performed only marginally better than GA, with the average maximum
fitness of 0.7794 (0=0.1044) compared to 0.7376 (0=0.1280) in GA (p < 0.01).

5 Discussion and Future Work

The experiment with the static fitness confirmed that the lack of speciation
results in a significant drop in the performance of non-speciated GA. Moreover,
the same effect occurs with a slowly moving optimum (SMO), which shows that
advantages of speciation can also be utilized in dynamic problems. However,
the experiment with rapidly moving optimum (RMO) demonstrates that when

Effects of Speciation on Evolution of Neural Networks 5

.]
@ i
S
[.
x
% i
=
> i
>
< -
0 20 40 60 80 100 120 140 160 180 200
Generation
T T T T T T T T T
o« 1 1
@a . - \
“‘g’ 0.9 ! / R
ic "
<~ 038 [i
s 07 / -
o ' Non-speciated GA
Zz 06\ p NEAT —=—
¥ DynNEAT —=—
05 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Generation
. =
@ i
=
[.
3
4 .
2@ 04T/ Non-speciated GA ——
z 02§ NEAT —&— -
IIDynNEIAT —=—

0 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Generation

Fig. 2. Comparison of Average Maximum Fitness on a Fitness Function with
Static, Slowly Moving and Rapidly Moving Optimum (from top to bottom).

the fitness is highly dynamic, NEAT fails to provide significant benefit over
non-speciated GA (see fig. 2). The drop in performance can be explained by
examining the dynamics of the speciation process. In order for the speciation
to be effective, species must be long-lived to give their members enough time
for adaptation. In RMO experiment, NEAT required 7.16 times more species
than in SMO experiment (580 vs. 80.9), with an average lifespan shorter by
a factor of 6.85 (3.64 vs. 24.94). DynNEAT, on the other hand, achieves high
average lifespan of species even in RMO experiment (10.13 generations vs. 3.64
in NEAT) and smaller average number of species (202 vs. 580 in NEAT). This
is further demonstrated by the distribution of species lifespans shown in fig. 3.

We applied DynNEAT to a problem where fitness alternates between two
simple states. Such problem was chosen to clearly demonstrate the differences in
speciation dynamic between NEAT and DynNEAT. In future works we would

6 Peter Krcah

100000
10000 |}

NEAT (slow moving optimum) ------- _
NEAT (rapidly moving optimum) ——— +
DynNEAT (rapidly moving optimum) -------

)

©

@

o

L K\ 1
e 1000 E
2 RN]
3 100 J
& LS el N sesazzeti]
5 10 - {om e 3
o 1 L 1 1

z

0 50 100 150 200

Species Lifespan (generations)

Fig. 3. Distribution of Species Based on Their Lifespan. All species from all
50 runs are included in the distribution for each method. Lifespan of a species is the
number of generations in which at least one individual belonged to that species.

like to extend these results to study the influence of parameter ¢ (which was
fixed in this work) and compare DynNEAT to other dynamic optimizers using
benchmark functions (e.g. MPB [1]). Another direction for future research is to
extend these results to methods derived from NEAT, such as HyperNEAT [3].

6 Conclusions

In this work, we investigate the effects of speciation on three increasingly more
dynamic problems using NEAT method. We have shown that the dynamics of
speciation in NEAT is disrupted when the problem becomes highly dynamic,
significantly impacting NEAT performance. To address this problem, we pro-
posed DynNEAT, an extension of NEAT capable of maintaining species even in
a highly dynamic environment. We have shown that DynNEAT significantly out-
performs NEAT on a highly dynamic problem and achieves similar performance
on problems with static or slow-changing optimum. Analysis of the speciation
has confirmed that DynNEAT achieves its performance by stabilizing speciation,
which allows long-lived species to form even in cases when fitness of individuals
dramatically changes between generations.

References

1. J. Branke. Memory enhanced evolutionary algorithms for changing optimization
problems. In Congress on FEvolutionary Computation, CEC’99, pages 1875—1882.
IEEE, 1999.

2. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evolutionary Computation, pages 303-317, 2005.

3. K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based encoding for
evolving large-scale neural networks. Artificial Life, 15(2):185-212, 2009.

4. K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolv-
ing neural network topologies. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, San Francisco, CA, 2002. Morgan Kaufmann.

