
Monte Carlo Methods for Preference Learning

Paolo Viappiani

Department of Computer Science, Aalborg University, Denmark
paolo@cs.aau.dk

Abstract. Utility elicitation is an important component of many ap-
plications, as decision support systems and recommender systems. Such
systems query the users about their preferences and give recommenda-
tions based on the system’s belief about the utility function.
Critical to these applications is the acquisition of prior distribution about
the utility parameters and the possibility of real time Bayesian inference.
In this paper we consider Monte Carlo methods for these problems.

1 Bayesian Utility Elicitation

Utility elicitation is a key component in many decision support applications and
recommender systems, since appropriate decisions or recommendations depend
critically on the preferences of the user on whose behalf decisions are being made.
Since full elicitation of user utility is prohibitively expensive in most cases (w.r.t.
time, cognitive effort, etc.), we must often rely on partial utility information. This
is the case of interactive preference elicitation.

As a user’s utility function will not be known with certainty, following recent
models of Bayesian elicitation [2, 1, 4, 6], the system’s knowledge about the user
preferences is represented as probabilistic beliefs. Interactive elicitation must
selectively decide which queries are most informative relative to the goal of
making good or optimal recommendations and then, following user responses,
update the distribution. An important requirement for utility elicitation is that
inference can be made real-time, the system needs to output a recommendation
or ask a query in no more than a few seconds.

While there are a variety of query types that can be used, comparison queries
are especially natural, asking a user if she prefers one option to another. As the
number of items in a dataset can be extremely large, iterating over all possi-
ble comparison is unfeasible. Recently [6] we showed that, under very general
assumptions, the optimal choice query w.r.t. the expected value of information
(EVOI) coincides with optimal recommendation set, that is, a set maximizing
expected utility of the user selection (a simpler and submodular problem). Based
on this, we can provide algorithms that select near-optimal comparison queries
with worst-case guarantees; we also considered a local search technique that can
select the query to ask in a fraction of a second, even for datasets with several
hundreds of items.

These strategies for query optimization (and similar approximated strate-
gies [4]) rely on the assumptions that prior utility information is available and

that inference is fast enough so that user answers can be used as additional
knowledge for further elicitation. As users are not usually willing to wait more
than a couple of seconds, effective inference methods are therefore crucial.

Bayesian inference is challenging because common prior distributions are
not closed under Bayesian inference for most types of preference queries (in
particular for comparison queries). Therefore approximated inference is required,
and Monte Carlo methods provide a viable solution.

Another crucial problem for utility elicitation is the acquisition of prior in-
formation. The value of Bayesian approaches to utility elicitation is severely
hindered if an incorrect prior is used. In this paper we consider how Monte
Carlo methods can be used in utility-based recommendation systems with the
following two purposes:

1. to update inference about the user’s possible utility function (given the user’s
query responses), and

2. to acquire a prior distribution about utility parameters given preference
statements from previous users (a problem also considered in preference
learning [3]).

The Underlying Decision Problem The system is charged with the task of rec-
ommending an option to a user in some multi-attribute space, for instance,
the space of possible product configurations from some domain (e.g., comput-
ers, cars, apartment rental, etc.). Products are characterized by a finite set of
attributes X = {X1, ...Xn}, each with finite domain Dom(Xi). For instance,
attributes may correspond to the features of various cars, such as color, engine
size, fuel economy, etc., with X defined either by constraints on attribute com-
binations. The user has a utility function u : Dom(X) → R. The precise form
of u is not critical, but we assume that u(x;w) is parametric in w (a vector of
utility weights). We often refer to w as the user’s “utility function” for simplic-
ity, assuming a fixed form for u. For sake of presentation, we assume a linear
model u(x;w) = w · x, so that the weight vector w effectively represents the
importance of the different features (but our framework easily extend to richer
utility models such as generalized additive utilities). Given a choice set S with
x ∈ S, let S⊲x denote that x has the greatest utility among the items in S (for
a given utility function w).

The system’s uncertainty about the user preferences is reflected in a distri-
bution, or beliefs, P (w; θ) over the space W of possible utility functions. Here θ
denotes the parameterization of our model, and we often refer to θ as our belief
state. Given P (·; θ), we define the expected utility of an option x to be

EU (x; θ) =

∫
W

u(x;w)P (w; θ)dw =

∫
W

(w · x) P (w; θ) dw (1)

If required to make a recommendation given belief θ, the optimal option x∗(θ)
is that with greatest expected utility

EU ∗(θ) = max
x∈X

EU (x; θ) (2)

with x∗(θ) = argmaxx∈X EU (x; θ). When the user selects an option x in a choice
set S, the belief is updated to P (w; θ|S x). For query selection strategies, we
refer to [6].

Probabilistic Response Model In utility elicitation, the user’s response to a choice
set tells us something about her preferences; but this depends on the user re-
sponse model. For any choice set S with xi ∈ S, let S xi denote the event
of the user selecting xi. A response model R dictates, for any choice set S, the
probability PR(S xi;w) of any selection given utility function w. We consider
three possible response models for choice queries.

In the noiseless response model, the user is always able to identify the pre-
ferred item in a choice query set; thus PR(S x;w) = 1 if w is such that x

has higher utility than any other in the choice set, 0 otherwise. The set of feasi-
ble utility functions is refined by imposing k − 1 linear constraints of the form
w · xi ≥ w · xj , j 6= i, and the new belief state is obtained by restricting θ to
have non-zero mass only on W ∩ S⊲xi and renormalizing. The constant noise
model instead assumes each option x, apart from the most preferred option x∗

w

relative to w, is selected with (small) constant probability

PC(S x;w) = β ; x 6= x∗
w

(3)

with β independent of w. Finally the logistic response model RL is commonly
used in choice modeling, and is variously known as the Luce-Sheppard, Bradley-
Terry, or mixed multinomial logit model. Selection probabilities are given by

PL(S x;w) =
eγ (w·x)

∑
y∈S eγ (w·y)

(4)

where γ is a temperature parameter. For comparison queries (i.e., |S| = 2), PL

is the logistic function of the difference in utility between the two options. It
models the fact that is easier to make a correct choice between two items that
greatly differ in utility, rather than between two items whose utility is very close.

2 Monte Carlo Methods

Inference In an online interaction with the user, the system needs to update the
belief taking into account user responses (for instance, the user select x as the
preferred outcome in the set S), resulting in a new distribution P (w; θ|S x).
Similarly, when learning a preference model from data (preference learning), the
distribution can be updated incrementally in a batch process.

Importance Sampling Our methods uses particles to represent assignments to the
utility parameters w, initially generated according to the given prior. In online
settings, every time the user answers a query we can propagate the particles with
importance sampling. Particle weights are determined by applying the response
model to observed responses:

PR(S x;w) (5)

(the selection probability) where S is the choice set and x the outcome selected.
In other words, the response model is used directly as a likelihood function for
importance sampling.

To overcome the problem of particle degeneration (most particles eventually
have low or no weight), we use slice-sampling [5] to regenerate particles w.r.t.
to the response-updated belief state θ whenever the effective number of samples
drops significantly. The choice of the best mixing between importance sampling
and slice sampling is an open question, as the number of necessary particles. With
50000 particles in standard elicitation problems, importance sampling requires
less than 1 second, but particle regeneration requires around 30 seconds.

Gibbs sampling In the case of noiseless responses it is possible to use Gibbs-
sampling in a quite efficient way. Since responses are noiseless, a statement such
that “x is preferred to y” imposes a linear constraint w ·x ≥ w ·y and the region
of feasible utilities can be represented by a convex region. We call Feasible(W)
the region of feasible w.

Gibbs sampling generate a set of utility vectors, consistent with the user’s
feedback, in the following way. Given an initial feasible weight vector w =
(w1, .., wm), we pick a dimension i (between 1 and m). We identify the lower
bound w⊥

j (fixing all other values according to w) solving a linear program

min
w̄j

w̄j (6)

s.t (w1, .., wj−1, w̄j , wj+1, .., wm) ∈ Feasible(W) (7)

and we similarly find the upper bound w⊤
j (by considering a maximization as

objective). We now sample a value w̄j ∼ U(w⊥
j ,w

⊤
j) uniformly in the interval

between w⊥
j and w⊤

j and update w := (w1, .., wj−1, w̄j , wj+1, .., wm). We repeat
the process alternating the dimension j and storing the retrieved samples w.

Learning Utility Priors from Data We want to acquire a prior distribution for
factored utilities in multi attribute domain, to be used for utility elicitation. We
are given as input a number of preference statements for several users, of the
type S

j
i x

j
i (answers to preference queries from previous users) where S

j
i is

the j-th query choice set shown to user i, and x
j
i his selection.

As before, we assume a given response model R for the users, that dictates
for any choice set S, the probability of selection PR(S xi;w). Our algorithm
iterates over all the users and perform importance sampling using the joint
likelihood of all preference statements. In the following, a particle is a vector
of weights uniquely identifying a utility function (n is the number of particles,
m the dimensionality of the utility parameters).

Algorithm:

1. Sample n particles uniformly from U [0, 1]m and call D0 this initial particle set
2. For each user i:

– Importance Sampling step: re-sample n particles from D0, with weights ac-
cording to:

∏
j
PR(S

j
i x

j
i ;w)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f

ga
m

m
a

(c
on

st
an

t n
oi

se
 p

ar
am

et
er

)

Fig. 1. The estimation of γ as a function of f (constant noise model).

– Call Di the resulting user-specific distribution of particles

3. Merge the particles obtained with all the users: D⊤ =
⋃

Di

4. Cluster D⊤ according to a mixture Gaussian model (for instance expectation-
maximization EM)

The last step (4) is optional and gives us a compact representation of the
prior. Another possibility is to repeat several times the steps 2-4, sampling from
the output of the previous iterations.

3 Learning the Response Model

We are currently experimenting these approaches in a real dataset1 of preference
rankings. Users have been asked to rank two (different) sets of items (sushis).
Since often the second set include items that the same user has ranked before,
we can learn something about the “noise” of the user’s choice model used for
ranking.

The input are in the form of rankings (x1,x2, ..,xk), ordered outcomes from
most to least preferred. The first problem is to generalize the response model
from choice sets to rankings. One first approach is to consider the joint likelihood
of all pairwise comparisons induced by the ranking (assumed to be independent)

∏

i,j:j>i

PR({xi,xj} xi;w) (8)

The problem with this model is that in fact such comparisons are not inde-
pendent (due to the transitivity of the ranking). An alternative approach is to
assume that the user, when ranking items, first selects the “top” item (that is

1 http://www.kamishima.net/sushi/

placed first in the ranking), then selects the second item (among the remaining
ones), and so on. ∏

i=1,...,k

PR(S
k
i xi;w) (9)

(Sk
i is the subset considering elements in S from the i-th to the k-th element).

Constant noise model The problem is to estimate γ, the constant error ratio,
from the available rankings in the dataset. We assume a shared γ (common
to all users). For each user, we consider the fraction of times two items have
been place in a consistent order in both the first and the second ranking (we
do not observe the “ground truth”, the correct order). We call f the fraction of
“agreements” (averaged among users). Given f , we note that setting γ = 1− f

would underestimate the error rater: assuming the user make selections based
on the constant error model given γ, the expected number of agreements is
f = 2γ2 − 2γ + 1 (either the items are correctly ordered in both rankings, or
they are incorrectly ordered in both). By solving this equation with respect to f

(considering the solution between 0 and 0.5) we estimate γ = 0.5 ·(1−
√
2 f − 1);

see Figure 1.

Logistic response model We can learn the parameter γ of the logistic response
model from data. Again, a natural assumption is to consider the value of γ shared
from all users. In this case, we can learn priors for different values of γ and select
the value that maximizes the overall likelihood of the preference statements. An
alternative is to augment utility particles with an hypothesis about the γ and
re-sample based on the likelihood of responses given both w and γ.

References

1. Craig Boutilier. A POMDP formulation of preference elicitation problems. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-
02), pages 239–246, Edmonton, 2002.

2. Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions
using adaptive utility elicitation. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI-00), pages 363–369, Austin, TX, 2000.

3. Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, and Sang-Hyeun Park.
Preference-based policy iteration: Leveraging preference learning for reinforcement
learning. In ECML/PKDD (1), pages 312–327, 2011.

4. Shengbo Guo and Scott Sanner. Real-time multiattribute bayesian preference elic-
itation with pairwise comparison queries. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (AISTATS-10), Sardinia, Italy,
2010.

5. Radford M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–70, 2003.
6. Paolo Viappiani and Craig Boutilier. Optimal bayesian recommendation sets and

myopically optimal choice query sets. In Advances in Neural Information Processing
Systems 23 (NIPS), Vancouver, 2010.

