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Abstract. HyFlex (Hyper-heuristic Flexible framework) [4] is a soft-
ware framework enabling the development of domain independent search
heuristics (hyper-heuristics), and testing across multiple problem do-
mains. This framework was used as a base for the first Cross-domain
Heuristic Search Challenge, a research competition that attracted signif-
icant international attention. In this paper, we present one of the prob-
lems that was used as a hidden domain in the competition, namely,
the capacitated vehicle routing problem with time windows. The do-
main implements a data structure and objective function for the vehicle
routing problem, as well as many state-of- the-art low-level heuristics
(search operators) of several types. The domain is tested using two adap-
tive variants of a multiple-neighborhood iterated local search algorithm
that operate in a domain independent fashion, and therefore can be con-
sidered as hyper-heuristics. Our results confirm that adding adaptation
mechanisms improve the performance of hyper-heuristics. It is our hope
that this new and challenging problem domain can be used to promote
research within hyper-heuristics, adaptive operator selection, adaptive
multi-meme algorithms, and autonomous control for search algorithms.

1 Introduction

There is an increasing and renewed research interest in developing heuristic
search methods that are more generally applicable [9, 10]. The goal is to reduce
the role of the human expert in the design of effective heuristic methods to
solve hard computational search problems. Researchers in this field, however,
are often constrained on the number of problem domains in which to test their
adaptive, self-configuring algorithms. This can be explained by the inherent time
and effort required to implement a new problem domain, including efficient data
structures and search operators; initialisation routines; the objective function;
and an varied a set of benchmark instances.

The HyFlex framework has been recently proposed to assist researchers in
hyper-heuristics and autonomous search control. HyFlex features a common soft-
ware interface for dealing with different combinatorial optimisation problems,



and provides the algorithm components that are problem specific.In this way, it
simultaneously liberates algorithm designers from needing to know the details
of the problem domains; and it prevents them from incorporating additional
problem specific information in their algorithms. Efforts can instead be focused
on designing high-level strategies to intelligently combine the provided problem-
specific algorithmic components. The framework also served as the basis of an
an international research competition: the first Cross-domain Heuristic Search
Challenge (CHeSC 2011)1 [7], which successfully attracted the interest and par-
ticipation of over 40 researchers at universities and academic institutions across
six continents. This competition differed from other challenges in heuristic search
and optimisation in that the goal was to design a search algorithm that works
well, not only across different instances of the same problem, but also across
different problem domains. It can be considered as the first Decathlon challenge
of search heuristics. For testing purposes, four domain modules were provided
to the participants, each containing around 10 low-level heuristics of the types
discussed below, and 10 instances of medium to hard difficulty. The domains
provided were: permutation flowshop, one dimensional bin packing, Boolean sat-
isfiability (MAX-SAT) and personnel scheduling.

For calculating the final competition scores, two additional (hidden) domains
were implemented and used: the traveling salesman problem, and the capacitated
vehicle routing problem with time windows. This paper describes the design of
the vehicle routing domain. It also tests this domain using two adaptive variants
of a multiple neighborhood iterated local search algorithm. The first variant was
the best performing algorithm in [8], while the second is a modification that
improves the local search stage of the algorithm by incorporating an adaptive
mechanism.

The next section briefly overviews the HyFlex framework, whilst section 3
describes the design of the vehicle routing domain. Section 4 describes the adap-
tive iterated local search hyper-heuristics that have been developed. Section 5
summarises the experiments and results, and section 6 concludes and discusses
our contributions.

2 The HyFlex framework

HyFlex (Hyper-heuristics Flexible framework) [5, 4] is a Java object oriented
framework for the implementation and comparison of different iterative general-
purpose (domain independent) heuristic search algorithms (also called hyper-
heuristics). The framework appeals to modularity and is inspired by the notion
of a domain barrier between the low-level heuristics and the hyper-heuristic [11,
9]. HyFlex provides a software interface between the hyper-heuristic and the
problem domain layers, thus enabling a clearly defined separation, and com-
munication protocol between the domain specific and the domain independent
algorithm components.

1 http://www.asap.cs.nott.ac.uk/chesc2011/



HyFlex extends the conceptual framework discussed in [11, 9] in that a pop-
ulation of solutions (instead of a single incumbent solution) is maintained in
the problem layer. Also, a richer variety of low-level heuristics is provided. An-
other relevant antecedent to HyFlex is PISA [2], a text-based software interface
for multi-objective evolutionary algorithms, which divides the implementation
of an evolutionary algorithm into an application-specific part and an algorithm-
specific part. HyFlex differs from PISA in that its interface is not text-based but
is instead given by an abstract Java class. Moreover, HyFlex provides a rich va-
riety of combinatorial optimisation problems including real-world instance data.
Each HyFlex problem domain module consists of:

1. A user-configurable memory (a population) of solutions, which can be man-
aged by the hyper-heuristic.

2. A routine to initialise randomised solutions in the population.
3. A set of heuristics to modify solutions classified into four groups:

mutational : makes a (randomised) modification to the current solution.
ruin-recreate : destroys part of the solution and rebuilds it using a con-

structive procedure.
local search : searches in the neighbourhood of the current solution for an

improved solution.
crossover : takes two solutions, combines them and returns a new solution.

4. A varied set of instances that can be easily loaded.
5. A fitness function, which can be called to obtain the objective value of any

member of the population. HyFlex problem domains are always implemented
as minimisation problems, so a lower fitness is always superior. The fitness of
the best solution found so far in the run is stored and can be easily obtained.

6. Two parameters: α and β, (0 <= [α, β] <= 1), which are the ‘intensity’ of
mutation and ‘depth of search’, respectively, that control the behaviour of
some search operators.

Currently, six problem domain modules are implemented (which can be
downloaded from the CHeSC 2011 website [16]). These are the original four
test domains: permutation flow shop, one-dimensional bin packing, maximum
satisfiability (MAX-SAT) and personnel scheduling; and the two additional (hid-
den) domains used for the competition: the traveling salesman problem and the
vehicle routing problem with time windows.

3 The vehicle routing HyFlex domain

The vehicle routing problem was implemented using the HyFlex software frame-
work interface2. Specifically, a java class derived from the HyFLex ProblemDo-
main class was implemented, following the descriptions below.

2 The API documentation can be found at: http://www.asap.cs.nott.ac.uk/

chesc2011/javadoc/help-doc.html



3.1 Problem formulation

The vehicle routing problem can be described as the task of meeting the demand
of all customers, using as few vehicles as possible, and satisfying all constraints,
such as vehicle capacity. Furthermore, the variant of the vehicle routing problem
which is modelled here is the vehicle routing problem with time windows. This
variant includes extra time window constraints, whereby a customer must be
served between two time points for a solution to be valid.

There is a base location, or depot, from where each vehicle must start and end
its route. A route is a series of location visits for a single vehicle. The objective
function for this domain balances the dual objectives of minimising the number
of vehicles needed, and minimising the total distance travelled. It was defined as
follows:

objectivefunction = c× numV ehicles + distance,

where c is a constant that we empirically set to 1000 to give higher importance
to the number of vehicles in a solution.

The problem domain offers a set of operators to initialise and modify solutions
which are commonly found in effective meta-heuristics and a set of benchmarks
instances (due to [22]) that are readily available.

3.2 Solution initialisation

The initialisation method is stochastic, generating solutions based upon the given
seed. Customers are inserted into the solution one at a time, with the customer
to be inserted being chosen by a metric measuring the proximity of a customer
in terms of distance and time to the most recently inserted customer. The metric
also includes a stochastic element to ensure different solutions are generated. If
it is not possible to insert any customer into the current route, a new route is
generated. This process is repeated until all customers have been scheduled.

3.3 Low level heuristics

The module includes 12 low level heuristics h1, . . . , h12 across the four categories
of heuristics, as specified within HyFlex. They are described below, sorted by
category.

Mutational heuristics

h1: Two-opt[3]. Swaps two adjacent customers within a single route.
h2: Or-opt[17]. Moves two adjacent customers to a different place, within a

single route.
h3: Shift[19]. Moves a single customer from one route to another.
h4: Interchange[19]. Swaps two customers from different routes.



Ruin and recreate heuristics

h5: Time-based radial ruin[20]. Chooses a number of customers to be removed
from the solution, based upon the proximity of their time window to a given
time. Each remaining customer is inserted into the best route possible, based
on a metric of distance and time proximity. If it is not feasible to insert into
any route, a new route is created.

h6: Location-based radial ruin[20]. Chooses a number of customers to be
removed from the solution, based upon the proximity of their location to
a given location. Each remaining customer is inserted into the best route
possible, based on a metric of distance and time proximity. If it is not feasible
to insert into any route, a new route is created.

Local search heuristics

h7: Shift[19]. Moves a customer from one Route, to another providing that the
new position yields an improvement in objective function score.

h8: Interchange[19]. Swaps two customers from different routes, providing that
the new routes yield an improvement in objective function score.

h9: Two-opt∗[18]. Takes the end sections of two routes, and swaps them to
create two new routes.

h10: GENI[13]. A customer is taken from one route, and placed into another
route, between the two customers of that route which are closest to it. Re-
optimisation is then performed on the route.

Crossover heuristics

h11: Combine. A random percentage of routes (between 25% and 75%) are kept
from one of the solutions (chosen randomly.) Then all routes which don’t
contain any conflicts with the routes already chosen are taken from the other
solution. Finally, all unrouted customers are inserted into the solution.

h12: Longest Combine. All routes from both solutions are taken and ordered
by length (here length is defined as the number of customers served in a
route.) The routes are taken from longest to shortest, providing there are
no customer conflicts. Then, all unrouted customers are inserted into the
solution.

3.4 Problem instances

The problem instances provided in this module are taken from two sources. The
first is the Solomon data set of 100 customer problems. The second is the Gehring
and Homberger data set of 1000 customer problems. For both data sets, there
are three types of instances. These are;

R: Random. The customers’ locations are determined in a uniformly random
way.

C: Clustered. The customers’ locations are grouped in a number of clusters.
CR: Clustered Random. The customers’ locations are in a mix of random and

clustered locations.



4 Adaptive iterated local search hyper-heuristics

Iterated local search is a relatively simple but successful algorithm. It operates
by iteratively alternating between applying a move operator to the incumbent
solution and restarting local search from the perturbed solution. This search
principle has been rediscovered multiple times, within different research commu-
nities and with different names [1, 15]. The term iterated local search (ILS) was
proposed in [14]. The algorithms compared in this article can be considered as
ILS with multiple perturbation heuristics and multiple local search heuristics.
They can be considered to be hyper-heuristics as they both coordinate several
low-level heuristics and operate in a domain-independent fashion. Three variants
were considered as described below.

4.1 The baseline ILS hyper-heuristic

The ILS implementation proposed in [6] contains a perturbation stage during
which a neighborhood move is selected uniformly at random (from the available
pool of mutation and ruin-recreate heuristics) and applied to the incumbent so-
lution. This perturbation phase is then followed by an improvement phase, which
works as follows. Each of the local search heuristics is independently applied to
the incumbent solution. Providing at least one of the applications has yielded
an improvement, then the application resulting in the greatest improvement in
objective function is kept. The process is then repeated until no improvement in
objective function value is found. If the resulting new solution is better than the
original solution then it replaces the original solution, otherwise the new solution
is simply discarded. This last stage corresponds to a greedy (only improvements)
acceptance criterion. The pseudo-code of this iterated local search algorithm is
shown below (Algorithm 1), notice that this differs from traditional implemen-
tations of ILS in that multiple heuristics are used in both the improvement and
perturbation stages. We refer to this algorithm as Rnd-ILS

Algorithm 1 Iterated Local Search Hyper-heuristic.
s0 = GenerateInitialSolution
s∗ = ImprovementStage(s0)
repeat

s′ = PerturbationStage (s∗)
s∗
′

= ImprovementStage(s′)
if f(s∗

′
) < f(s∗) then

s∗ = s∗
′

end if
until time limit is reached



4.2 The adaptive ILS hyper-heuristics

The adaptive versions of the base-line ILS hyper-heuristic described above, incor-
porate adaptive mechanisms in the perturbation and/or the improvement stages.
The most successful adaptive ILS hyper-heuristic suggested in [8] implements an
online learning mechanisms for selecting the move operators in the perturbation
stage, instead of selecting then uniformly at random at each iteration. Specifi-
cally, it implements an adaptive operator selection mechanisms. As discussed in
[12], an adaptive operator selection scheme consists of two components: a credit
assignmentmechanisms and a selection mechanism. The algorithm proposed in
[8]used extreme value credit assignment, which is based on the principle that
infrequent, yet large, improvements in the objective score are likely to be more
effective than frequent, small improvements [12]. It rewards operators which have
had a recent large positive impact on the objective score, while consistent op-
erators that only yield small improvements receive less credit, and ultimately
have less chance of being chosen. Following the application of an operator to the
problem, the change in objective score is added to a window of size W, which
works on a FIFO mechanism. The credit for any operator is the maximum score
within the window. Window size plays an important part in the mechanism. If
it is too small then the range of information on offer is narrowed, meaning that
useful operators are missed. If it is too large then information is considered from
many iterations ago, when the position in the search space might have meant
that the operator performed differently to how it would at the latest iteration.
However, the window size is the only parameter that needs to be tuned, which is
a desirable property when the goal is to achieve robust and general algorithms.
After testing several values of (W ), we decided upon a value of 25. The credit
assignment mechanism is combined with a selection strategy that uses the accu-
mulated credits to select the operator to apply in the current iteration. Operator
selection strategies in the literature, generally assign a probability to each op-
erator and use a roulette wheel-like process to select the operator according to
them. We use here one of these rules, namely, adaptive pursuit, originally pro-
posed for learning automata and adapted to the context of operator selection in
[23]. With this method, at each time step, the operator with maximal reward
is selected and its selection probability is increased ( follows a winner-take-all
strategy.), while the other operators have their selection probability decreased.
We refer to this adaptive ILS hyper-heuristic as Ad-ILS.

The variant proposed in this article keeps the adaptive selection of operators
in the perturbation stage described above, but modifies the improvement stage
by incorporating a simple adaptive mechanisms that considers the past per-
formance of the local search heuristics. The mechanism works as follows: each
heuristic has a score attributed to it, which is updated after each application
of that heuristic. The score corresponds to the mean improvement in objective
function obtained from that heuristic’s applications (from all applications across
whole search). These scores are then used to order the local search heuristics,
with the best performing heuristics being placed to the front of the list. The
local search heuristics are then applied in sequence following this order. This



new improvement stage is illustrated below (see Algorithm 2). We refer to the
ILS hyper-heuristic with this modified component as AdOr-ILS.

Algorithm 2 Ordered ImprovementStage.
repeat

ls ← OrderLocalSearches(scores)
for i = 0 → numLocalSearchers, in the order ls do

s′ = LocalSearch(s′,i)
scores ← UpdateScores

end for
until no improvement found

5 Experiments and results

For testing the three algorithm variants described above, Rnd-ILS, Ad-ILS and
AdOr-ILS, 10 instances were chosen, representing a range of instance types from
both the Solomon and Gehring-Homberger data sets (see Table 1). These 10
instances are those currently available in the version of the HyFlex software used
for the competition (which can be downloaded from the CHeSC 2011 website
[16]).

Twenty runs were performed for each instance and algorithm. Following the
experimental set up used in the CHeSC competition, the running time was set
to 10 CPU minutes. The machine running the tests has a 2.27GHz Intel(R)
Core(TM) i3 CPU and 4GB RAM.

Table 1. Capacitated vehicle routing problem instances, taken from [21]

Instance name no. vehicles vehicle capacity

0 Solomon/RC/RC207 25 1000
1 Solomon/R/R101 25 200
2 Solomon/RC/RC103 25 200
3 Solomon/R/R201 25 1000
4 Solomon/R/R106 25 200
5 Homberger/C/C1-10-1 250 200
6 Homberger/RC/RC2-10-1 250 1000
7 Homberger/R/R1-10-1 250 200
8 Homberger/C/C1-10-8 250 200
9 Homberger/RC/RC1-10-5 250 200

Table 2 shows the average and standard deviation of the best objective func-
tion value at the end of the run, from the ten runs per instance. The adaptive ILS
hyper-heuristic that incorporates both adaptive operator selection and adaptive



ordering of the local searchers (AdOr-ILS)outperforms the other two variants in
9 out otf the 10 instances. Only for one of of the smallest and less constrained
instances (instance 1), it is the base-line ILS hyper-heuristic the one produc-
ing the best performance. It seems that the added complexity of the adaptive
mechanisms does not help in this case. The experiments also suggest that for
the smaller Solomon instances (instances 0 to 4), the difference in performance
among the competing algorithms is less noticeable.

Table 2. Vehicle routing results for the 10 instances in Table 1. The entries account
for the average and standard deviation of objective function values (out of 20 runs).

instance AdOr-ILS Ad-ILS Rnd-ILS

0 5281.71334.614 5406.48404.159 5292.43337.186

1 21291.89482.56 21212.60509.28 21054.87500.73

2 13605.03451.64 13932.67616.29 13827.54516.39

3 6564.42554.77 7055.26748.15 6760.62597.41

4 14280.79319.54 14549.22449.1 14600.09471.7

5 155305.466154.24 163041.7611226.39 180301.072921.14

6 77302.723384.83 79175.633431.57 82316.662326.49

7 163177.742100.09 164341.161550.06 169729.311721.3

8 158941.932460.71 163332.724314.93 172007.422055.46

9 149447.681500.9 150276.891644.28 153648.661079.4

The boxplots shown in Figure 1 illustrate the magnitude and distribution of
the best objective values for 4 of the harder Homberger instances (instances 5,
7, 8, and 9). Each plot summarises the result of 20 runs from each algorithm. It
can be clearly observed that the best performing hyper-heuristic is AdOr-ILS,
followed by Ad-ILS. The base-line non-adaptive ILS hyper-heuristic is the less
competitive in these challenging instances.

To test statistical significance between the performances of Ad-ILS and the
new variant, AdOr-ILS, the two sided Wilcoxon Signed Rank test has been used.
The test is performed at the 95% confidence level, where a p value of less than
0.05 indicates a rejection of the null hypothesis - this being that there is no
difference between the results. The following table shows the p values for each
instance. From the table, we can see that in seven out of the ten instances, there
is a statistical difference between the results.

Table 3. p-values resulting from comparisons of Ad-ILS and AdOr-ILS. Values of less
than 0.05 (shown in bold) indicate statistical significance.

Instance 0 1 2 3 4 5 6 7 8 9

p-value 0.017 0.455 0.023 0.021 0.005 0.04 0.086 0.048 0.005 0.126
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Fig. 1. Distribution of objective function values for the harder Homberger instances
(instances 5, 7, 8 and 9 from Table 1).

6 Conclusions

This paper summarises the design of the capacitated vehicle routing domain
for the HyFlex hyper-heuristic framework. The domain makes use of a large
number of low-level heuristics, many of which are considered to be among the
state-of the-art in current vehicle routing research. Considering this, the domain
provides the opportunity to develop domain independent high-level algorithms
or hyper-heuristics for the vehicle routing problem without the need to develop
the low-level heuristics and underlying data structures. The domain was used as
a hidden domain for the CHeSC competition and has been made freely available.
It is our aim that it will be utilised within the hyper-heuristic, adaptive operator
selection, adaptive multi-meme algorithms, and autonomous control for search
algorithms research themes in intelligent optimisation.

The vehicle routing domain was used to test adaptive hyper-heuristics that
can be considered as multiple-neighborhood iterated local search algorithms.
This algorithmic scheme has proved to have good generalisation abilities. The



inclusion of adaptive mechanisms both at the perturbation stage and at the
improvement stage of the ILS framework led to an improved performance on the
challenging vehicle routing instances.

Future work will extend the the vehicle routing domain by including new
low-level heuristics, and additional problem instances. New hyper-heuristics can
be implemented using HyFlex. For example, we are currently exploring the use
of a population and the crossover heuristics, which were not employed by our ILS
hyper-heuristics. We are also exploring mechanisms for adapting the heuristic
parameters provided in the framework, namely, intensity-of-mutation and depth-
of-search, which have an important impact in the hyper-heuristic performance.

Finally, HyFlex can be extended to include new domains, additional instances
and operators in existing domains, and multi-objective and dynamic problems.
The current software interface can also be extended to incorporate additional
feedback information from the domains to guide the adaptive search controllers.
It is our vision that the HyFlex framework will continue to facilitate and increase
international interest in developing domain independent and adaptive heuristic
search methodologies, that can find wider application in practice.
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