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Abstract. We study a two-machine re-entrant flowshop scheduling prob-
lem in which the jobs have strict due dates. In order to be able to satisfy
all customers and avoid any tardiness, scheduler decides which job shall
be outsourced and find the best sequence for in-house jobs. Two objective
functions are considered: minimizing total completion time for in-house
jobs and minimizing outsource cost for others. Since the problem is NP-
hard, an efficient genetic algorithm based on modified self-control domi-
nance concept with adaptive generation size is proposed. Non-dominated
solutions are compared with classical NSGA-II regarding different met-
rics. The results indicate the ability of our proposed algorithm to find a
good approximation of the middle part of the Pareto front.
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1 Introduction

In today’s competitive market, one of the most important survival factor for
a company is the achievement of customer satisfaction which guarantees its
long-run financial performance. Due to the resource constraints and clients’ re-
quirements, manufacturers are not always able to meet customers’ due dates so
tardiness is occurred. Outsourcing is an alternative to avoid loosing clients. In
this paper, we study a bi-objective two-machine re-entrant permutation flowshop
scheduling problem in which completing an order after its due date is not al-
lowable so that order will be outsourced. Recent literature surveys on re-entrant
scheduling problems and outsourcing can be found in [1] and [2] respectively.
The system that we study in this paper is illustrated in Fig. 1. For each job,

its processing time on both machines on both cycles, due date and outsourc-
ing cost are known in advance and the processing route for in-house jobs is
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Fig. 1. Re-entrant flowshop scheme
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Fig. 2. Dominance area regarding m-SCD

(M1,M2,M1,M2). Other assumptions are the same as classical scheduling prob-
lem (i.e. no preemption, no break-down, ...). We are looking for a set of non-
dominated solutions regarding two objective functions: minimizing total comple-
tion time for in-house jobs and minimizing outsourcing cost. Since the simpler
variant of our problem is NP-hard [3], we propose a genetic-based algorithm
inspired from NSGA-II [4] with different dominance concept than Pareto and
adaptive generation size. The proposed dominance concept is the modification
of Self-Control Dominance Area of Solutions (S-CDAS) introduced by Sato et
al. [5].
We show that our algorithm is able to find limited number of non-dominated
solutions compared to NSGA-II but with higher quality.

2 Modified Self Control Dominance Concept

Since many years ago, Pareto-dominance concept has been integrated to differ-
ent meta-heuristics to find a good estimation of set of non-dominated solutions.
Recently, it has been shown that other dominance properties rather than Pareto,
may help algorithms to find better estimation of non-dominated solutions, e.g.,
Lorenz-dominance [6] and Self-Control Dominance Area of Solutions [5]. Self-
Control Dominance Area of Solutions (S-CDAS) introduced for the first time by
Sato et al. [5]. They showed that by integrating S-CDAS into NSGA-II, better
estimation of non-dominated solutions for multi-objective 0-1 knapsack problem
could be found compared to NSGA-II with Pareto dominance. In this paper
we introduce a new dominance concept inspired from S-CDAS which is called
modified SCD (m-SCD). In S-CDAS the objective is to find better estimation
of whole pareto front so the parameters are set in a way to keep the extrema
in each Pareto non-dominated front. On the contrary, in m-SCD we focus our
search on the middle part of the Pareto front. The trade-off characteristic ren-
ders such area of particular interest in practical applications. So we try to find
better estimation of non-dominated solutions located in this area.
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In m-SCD, the concept is to make Pareto-non-dominated solutions different one
from another by inducing more fine-grained ranking in order to be converged
into the middle part of Pareto-front.

Definition: modified Self-Control Dominance (m-SCD)
In a bi-objective minimization problem, solution x dominates solution y based
on m-SCD properties (x ≺m−SCD y) if one of the following statements holds
true:

– x dominates y in Pareto sense (x ≺P y); or

– x and y are Pareto-equivalent and SCD(x) ≺P SCD(y) where SCD(x) =
(f ′1(x), f ′2(x)) in which f ′1(x) and f ′2(x) are derived from non-orthogonal pro-
jection of point x onto xy-plane as described in more details in step 2-2.

In Fig. 2, although x1, x2, x3, x4 are all Pareto non-dominated solutions, x1 and
x4 which are the extrema are dominated by x2 and x3 based on m-SCD concept.
In the following, we describe step by step how we calculate the values of different
parameters shown in Fig. 2 to reach the values of f ′1 and f ′2.

Step 1: Consider a set of Pareto non-dominated solutions X = {x1, x2, ...xk}.
We define the parameters as below:

O = (fmin
1 − ε, fmin

2 − ε) (1)

P1 = (fmax
1 − ε, f2(O)) (2)

P2 = (f1(O), fmax
2 − ε) (3)

where fmin
i ( fmax

i ) is the minimum (maximum) value of the i-th objective func-
tion in the set X and ε is a tiny constant.

Step 2: For each solution xj ∈ X (j = 1, 2, ..., k) we repeat the following steps:

Step 2-1: Find the slope of both lines through two pairs of points xj , P1 and
xj , P2 (accordingly use SLOPE1 and SLOPE2 as the values). We have:

SLOPE1 =
f2(xj)− f2(P1)

f1(xj)− f1(P1)
(4)

SLOPE2 =
f2(xj)− f2(P2)

f1(xj)− f1(P2)
(5)

SCD(xj) = (f ′1(xj), f
′
2(xj)) = (f1(P1), f2(P2)) (6)

In other words, x-value of P1 and y-value of P2 are the same as f ′1(xj) and
f ′2(xj).
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Step 2-2: For each solution y ∈ X − {xj}, we calculate f ′1(y) and f ′2(y)
by projecting point y onto the x-axis regarding SLOPE1 and onto the y-axis
regarding SLOPE2.

f ′1(y) = f1(y) +
f2(O)− f2(y)

SLOPE1
(7)

f ′2(y) = f2(y) + SLOPE2(f1(O)− f1(y)) (8)

SCD(y) = (f ′1(y), f ′2(y)) (9)

Step 2-3: Regarding the new values calculated for each member of set X, we
use Pareto-dominance properties to find the solutions that dominate xj .

3 Experimental Results

We conduct experiments on 7 randomly generated problems with 10, 15, 20, 40,
50, 70 and 100 jobs to test the performance of our proposed algorithm. Process-
ing times are generated from the discrete uniform distribution within a range
of [1,100] on both machines. Due dates of the jobs are generated using two pa-
rameters, T (tardiness factor) and R (due date range) as described in [7] with
more details. In this paper we set T=0.3 and R=1.4. The rejection costs are
calculated based on the function exp(5 +

√
a × b), where a is a random integer

number within [1,80] and b is a random number within [0,1].
Our proposed algorithm is based on NSGA-II coupled with m-SCD dominance
with adaptive generation size proposed by Tan et al. [8] in which chromosome
repairing is done by eliminating the job with minimum outsourcing cost sched-
uled before first tardy job. This algorithm is compared to classical NSGA-II with
Pareto dominance and fixed number of generation in which the first tardy job
detected in schedule is eliminated for making the solution feasible. The results
on 7 different instances show that on the average, 31% of solutions found by
NSGA-II are dominated by m-SCD-NSGA-II while 4% of solutions found by m-
SCD-NSGA-II are dominated by NSGA-II. The hypervolume ratio of NSGA-II
to m-SCD-NSGA-II is 0.87 in average which implies that the area dominated by
m-SCD-NSGA-II is larger than NSGA-II dominance area. In addition, the solu-
tions found by m-SCD-NSGA-II are distributed more evenly than those found
by NSGA-II. However, the spread of solutions in NSGA-II is significantly more
than those solutions achieved by our proposed algorithm. This fact is completely
in-line with our parameters definitions in m-SCD. Regarding the computational
time, our proposed algorithm is in average 4 times slower than classical NSGA-
II. The reason is first due to the additional computational effort for calculating
dominance area based on m-SCD and also increasing in number of generation.

4 Conclusion

In this paper we studied a bi-objective two-machine re-etrant scheduling prob-
lem in which due to the strict due dates, outsourcing of the tardy jobs has been
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considered. We proposed a genetic-based algorithm with m-SCD dominance con-
cept and adaptive generation size. We have shown that better estimation of non-
dominated solutions could be achieved by comparing the results with NSGA-II
regarding coverage, hypervolume and spacing metrics however, since in the pro-
posed algorithm middle part of Pareto front was focused, less spread solutions
were found. The results clearly indicate the ability of our proposed algorithm
to find a good estimation of the middle part of the Pareto front. Testing this
algorithm on large set of instances is in progress.
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