
A new Hyperheuristic Algorithm for Cross
Domain Search Problems

Andreas Lehrbaum and Nysret Musliu

Vienna University of Technology, Database and Artificial Intelligence Group
{lehrbaum, musliu}@dbai.tuwien.ac.at

Abstract. This paper describes a new hyperheuristic algorithm that
performs well over a variety of different problem classes. A novel method
for switching between working on a single solution and a pool of solutions
is proposed. This method is combined with an adaptive strategy that
guides the selection of the underlying low-level heuristics throughout the
search. The algorithm was implemented based on the HyFlex framework
and was submitted as a candidate for the Cross-Domain Heuristic Search
Challenge 2011.

1 Introduction

Hyperheuristics (as introduced in [1]), are a way to incorporate existing problem-
class specific simple low-level heuristics into a higher-level search strategy, which
schedules and guides their execution. The main idea is that an ensemble of
heuristics orchestrated by a top-level strategy is able to perform better on aver-
age at solving a wide range of problems, than any of the underlying heuristics
alone. A good survey of existing hyperheuristic techniques is given in [2]. The
HyFlex [3] framework offers an intuitive interface to utilise a set of given low-level
search and mutation heuristics, easing the task of working purely on a high-level
search strategy without any a priori knowledge about the problem instance or
the heuristics available.

In this paper, we propose a hyperheuristic algorithm that consists of two
distinct phases and uses a quality based selection strategy for the local-search
heuristics using feedback from the search progress. The implementation is tai-
lored towards the interface of the HyFlex framework and the specific require-
ments of the CHeSC competition rules1. Development and testing was per-
formed on 4 different problem domains: Boolean Maximum Satisfiability, One-
dimensional Bin Packing, Personnel Scheduling and Permutation Flow Shop.
The provided low-level heuristics were used, implementing standard heuristic
search and mutation operations for each of the domains.

1 http://www.asap.cs.nott.ac.uk/chesc2011/rules.html

2 Algorithm Description

2.1 Overview

Following the classification of Burke et al. [2], our algorithm is an online learn-
ing hyperheuristic, working mainly on heuristic selection. The novelty of the
proposed approach lies in the repeated switching between two search variants,
namely a serial search phase working only on a single solution and a system-
atic parallel search phase working with a set of different solutions at the same
time. We further propose a grading mechanism for the ordering of the low-level
heuristics and a selection strategy for the available mutation heuristics.

After an initialisation phase, in which the preliminary scores of the available
heuristics are determined, the search continues by systematically executing the
local-search heuristics in order of their respective quality scores. The splitting
in a serial and a parallel search phase balances the focus of the search between
exploration of new parts of the search space and the exploitation of the quality of
the currently best working solution. Throughout the search process, the perfor-
mance and runtime characteristics of the low-level heuristics are measured and
the scores responsible for their selection are updated accordingly. In addition to
that, the overall search progress is monitored continuously and mechanisms such
as the temporary blocking of ineffective heuristics or the restart of the algorithm
from the last best solution are applied. A global tabu-list in form of a ringbuffer
which always contains the last 40 visited distinct solutions is used to avoid cycles
and to prune already explored branches of the search tree. If the tabu list already
contains 40 elements, the next solution replaces the oldest entry. The fixed size
of the tabu-list was chosen based on experimental data to balance memory and
runtime requirements with the effectiveness of the tabu mechanism.

2.2 Detailed Description of the Algorithm

Initialisation Phase: The algorithm begins with calculating preliminary
quality-scores of all the local-search heuristics available for the given problem
instance. It does this by initialising the first solution and applying the heuristics
in turn, recording their gain and their required runtime. The heuristics are called
with the highest possible parameter settings for the depth of search and the
intensity of the mutations (where applicable). The initial quality-score for each
heuristic is calculated as gain per runtime. The best solution found so far is
returned as the working solution for the subsequent phase.

Serial Search Phase: The available local-search heuristics LS = {ls1, . . . , lsn}
are applied sequentially, in order of decreasing quality, to the current working
solution swork. After each application of a heuristic, the fitness function f(s)
of the resulting solution is evaluated. If the fitness value is better, the solution
is accepted as the next working solution. If the local search heuristic resulted
in a different solution with the same fitness value then it is accepted as well.
Additionally, a global tabu-list T keeps track of the last 40 distinct solutions
encountered and prohibits the acceptance of a solution that is already on the

tabu-list. In case a new working solution was accepted, the search continues with
the application of the best local search heuristic, otherwise the next best heuris-
tic is chosen from the set LS. The parameters for the depth of the search and
the intensity of the mutation are set to random values before the application of
each heuristic. This serial search phase ends whenever no further improvement
could be found with all the available heuristics therefore resulting in a locally
optimal solution. See algorithm 1 for a pseudocode implementation.

Algorithm 1: Serial search working on a single solution swork

1: for i = 1→ |LS| do
2: setDepthOfSearch(random(0 . . . 1))
3: setIntensityOfMutation(random(0 . . . 1))
4: stemp ← applyHeuristic(lsi, swork)
5: if f(stemp) < f(swork) or (f(stemp) = f(swork) and swork 6= stemp)

then
6: if stemp /∈ T then
7: swork ← stemp

8: T ← T ∪ swork

9: i← 1
10: end if
11: end if
12: end for
13: return swork

Quality Updates: In fixed time intervals of 5 seconds (or after every call
to a heuristic, in case it takes longer to complete), the qualities of the local-
search heuristics are updated to reflect their performance during the whole search
process. This can result in the re-ordering of the search sequence of the heuristics.
The quality metric is calculated as the number of times the heuristic resulted in
an accepted solution divided by the total runtime of this heuristic so far. The
time interval between updates was determined experimentally for the CHeSC
setting to balance the cost of the updates and the possible gain of reordering.

Generation of Mutated Solutions: The available mutation and ruin-
recreate heuristics are placed in a roulette-wheel reflecting their relative perfor-
mance. Initially all mutation heuristics have the same chance of being selected.
The performance of a mutation heuristic is judged based on the solution quality
of the mutated solution after the subsequent serial search phase has finished.
This method is used in order to assess the likelihood of a given mutation heuris-
tic to result in an improvement during the further course of the search. Given
the current working solution as input, 7 mutated offsprings are generated by
applying a set of mutation heuristics chosen by the roulette-wheel process. The
mutation intensity and search depth parameters are again set to a new ran-
dom value each time before the mutation heuristics are applied. However, the
probability of strong mutations is lowered towards the end of the search.

Algorithm 2: Parallel search working on a set of solutions s1...7
1: for i = 1→ 7 do
2: hi ← 1 // set working heuristic index hi to the best LS heuristic
3: end for
4: repeat
5: candidatesLeft← false
6: for i = 1→ 7 do
7: if hi ≤ |LS| then
8: setDepthOfSearch(random(0 . . . 1))
9: setIntensityOfMutation(random(0 . . . 1))

10: stemp ← applyHeuristic(lshi , si)
11: if f(stemp) < f(sbest) then
12: sbest ← stemp

13: T ← T ∪ stemp

14: return sbest
15: else
16: candidatesLeft← true
17: if f(stemp) < f(si) then
18: si ← stemp

19: T ← T ∪ stemp

20: hi ← 1 // continue with best LS heuristic
21: else
22: hi ← hi + 1 // continue with the next best LS heuristic
23: end if
24: end if
25: end if
26: end for
27: until candidatesLeft = false
28: return selectSolution(s1...7)

Parallel Search Phase: Starting from the set of 7 mutated solutions, the
parallel search phase begins to work on the candidate solutions one after another.
It begins with applying the best local-search heuristic to the first candidate. If
an improvement is found, the new solution is accepted, otherwise it is discarded.
Afterwards the search continues with the next candidate solution and the local-
search heuristic scheduled for this solution. Whenever a global improvement is
found (i.e. the result is better than the currently best found solution so far),
it is immediately accepted as the working solution for the next serial search
phase and the parallel search is aborted. Otherwise the search goes on until all
solutions have reached a local optimum with respect to all available local-search
heuristics. See algorithm 2 for a pseudocode implementation.

Working Solution Selection: Assuming no global improvement was found
during the parallel search phase, a solution is selected from the pool of solutions
containing the locally optimal output from the serial search phase as well as the
parallel search phase. Solutions with a better quality have higher probability of
being selected. If all solutions in the set are contained in the global tabu-list,

a random mutation will be applied to the best solution until the result is not
contained in the buffer anymore.

Excluding Inefficient Heuristics: If a local-search heuristic is found to be
ineffective (determined by a low count of successful applications) it is excluded
for a single iteration from the search process in both the serial and the parallel
phase with a 50% chance.

Restarting the Search: Whenever the search continues for a certain amount
of time (10% of the available runtime), producing only solutions which are worse
than a preset threshold (130% of the so far best solution), the search continues
with the generation of mutated solutions from the currently best solution. This
prevents the search process from slowly generating ever worse solutions and
wandering too far away from the best candidate found so far.

3 Results

Tables 1 and 2 show the final results of the 20 participating teams (with our
algorithm named HAHA), as published by the organizers of the CHeSC compe-
tition2. The values represent the median resulting function value per instance of
31 subsequent runs with different random seeds and 600 seconds CPU runtime.
All problem instances were minimisation tasks and selected by the organisers of
the competition. The rank column denotes the final overall rank according to
the official scoring system and the best value in each column is marked bold.

Rank Algorithm MS1 MS2 MS3 MS4 MS5 BP1 BP2 BP3 BP4 BP5 PS1 PS2 PS3 PS4 PS5

1 AdapHH 3 5 2 3 8 0.01607 0.00360 0.00356 0.10828 0.00354 24 9667 3289 1765 325
2 VNS-TW 3 3 2 3 10 0.03696 0.00715 0.01671 0.10878 0.02776 19 9628 3223 1590 320
3 ML 5 10 3 9 8 0.04214 0.00753 0.01456 0.10852 0.02182 18 9812 3228 1605 315
4 PHUNTER 5 11 4 9 8 0.04787 0.00360 0.02012 0.10908 0.03948 25 10136 3255 1595 320
5 EPH 7 11 6 14 13 0.05042 0.00360 0.01127 0.10866 0.02238 22 10074 3232 1615 345
6 HAHA 3 4 2 5 8 0.08829 0.00726 0.01450 0.11023 0.02790 21 9666 3236 1558 335
7 NAHH 8 10 4 9 7 0.05504 0.00347 0.00473 0.10878 0.00554 27 9827 3246 1644 345
8 ISEA 5 11 4 9 11 0.03422 0.00328 0.00365 0.10862 0.00640 20 9966 3308 1660 315
9 KSATS 4 7 2 4 9 0.01923 0.00780 0.01149 0.10892 0.02199 22 9681 3241 1640 355
10 HAEA 6 12 5 12 11 0.04522 0.00363 0.01379 0.10873 0.02400 25 9795 3266 1699 345
11 ACO-HH 11 35 9 17 13 0.04771 0.00320 0.00388 0.10986 0.01486 26 11212 3346 1760 355
12 GenHive 16 44 31 19 14 0.02994 0.00708 0.01037 0.10859 0.02286 21 12708 3274 1727 330
13 DynILS 23 56 37 31 19 0.04027 0.00767 0.01016 0.10872 0.01285 33 9893 3324 1870 465
14 SA-ILS 13 23 12 15 9 0.07873 0.01153 0.01458 0.11039 0.02958 20 9750 3228 1625 340
15 XCJ 6 8 5 9 10 0.02201 0.01145 0.01569 0.10856 0.02850 30 33390 3277 1658 380
16 AVEGNep 8 10 5 9 7 0.08737 0.00773 0.01807 0.11139 0.03750 26 10230 3283 1765 360
17 GISS 16 21 13 17 9 0.06917 0.00837 0.03218 0.11259 0.05922 25 9625 3294 1785 370
18 SelfS 13 36 14 14 10 0.06642 0.00736 0.01441 0.10968 0.02391 26 9803 3249 1635 350
19 MCHH-S 8 14 8 8 9 0.06225 0.00729 0.01459 0.10976 0.02861 32 13297 3344 1785 370
20 Ant-Q 23 52 38 27 14 0.04909 0.01650 0.02102 0.10990 0.03765 33 73535 3348 1970 425

Table 1: Median results for the Max-SAT (MS1...5), Bin Packing (BP1...5) and Per-
sonnel Scheduling (PS1...5) problem instances

4 Conclusion

Our algorithm was ranked 6th (out of 20 teams) in the final CHeSC competition.
The good results at the completely different domains of Max-SAT and Person-

2 http://www.asap.cs.nott.ac.uk/chesc2011/results.html

Rank Algorithm FS1 FS2 FS3 FS4 FS5 TSP1 TSP2 TSP3 TSP4 TSP5 VRP1 VRP2 VRP3 VRP4 VRP5

1 AdapHH 6240 26814 6326 11359 26643 48194 20822145 6810 66879 53099 60900 13347 148516 20656 148689
2 VNS-TW 6251 26803 6328 11376 26602 48194 21042675 6819 67378 54028 76147 13367 148206 21642 149132
3 ML 6245 26800 6323 11384 26610 48194 21093828 6820 66893 54368 80671 13329 145333 20654 148975
4 PHUNTER 6253 26858 6350 11388 26677 48194 21246427 6813 67136 52934 64717 12290 146944 20650 148658
5 EPH 6250 26816 6347 11397 26640 48194 21064606 6811 66756 52925 74715 13335 162188 20650 155224
6 HAHA 6269 26850 6353 11419 26663 48414 21291914 6917 69324 56039 65498 13317 155941 20654 148655
7 NAHH 6245 26885 6323 11383 26671 48194 20971771 6841 67418 53097 65398 13358 157242 20654 152081
8 ISEA 6262 26844 6366 11419 26663 48194 20868203 6832 67282 54129 70471 13339 149149 20657 150474
9 KSATS 6292 26860 6366 11466 26683 48578 21557455 6947 72027 58738 64495 13296 156577 20655 147124
10 HAEA 6261 26826 6353 11408 26651 48194 20925949 6824 67488 54144 60608 13342 146951 20655 147283
11 ACO-HH 6249 26904 6353 11393 26724 48200 21137472 6851 67202 53428 73348 14371 149672 21663 151610
12 GenHive 6279 26835 6366 11434 26648 48271 21083157 6868 67236 56022 67475 13353 167297 20718 147960
13 DynILS 6269 26875 6365 11419 26670 48194 20987358 6823 67308 54100 69798 14359 149869 21654 150060
14 SA-ILS 6336 26886 6390 11514 26703 49046 21281226 6994 70614 57607 64185 13390 162642 20667 152271
15 XCJ 6271 26910 6366 11481 26710 48412 21162559 6884 68005 54967 63654 13354 152321 20658 153110
16 AVEGNep 6322 26952 6379 11507 26743 48639 21520601 6969 70194 57998 77884 12397 184710 20655 166742
17 GISS 6329 26979 6385 11516 26758 49010 21651052 7001 72630 59804 61580 13352 162266 20657 149590
18 SelfS 6287 26859 6369 11443 26678 49043 21040810 6984 69646 56647 73894 14386 203667 20687 153590
19 MCHH-S 6336 26937 6397 11527 26716 49412 21504030 6997 70685 57836 72005 13534 207891 20850 160303
20 Ant-Q 6358 26971 6407 11545 26792 49613 21277953 7016 69987 55314 76678 14382 193827 21656 160684

Table 2: Median results for the Flow Shop (FS1...5), Travelling Salesman (TSP1...5)
and Vehicle Routing (VRP1...5) problem instances

nel Scheduling indicate a rather good general problem solving capability. The
algorithm has however some shortcomings in domains where different fast local
search heuristics all result in small improvements most of the time (like the tested
Bin Packing instances). It seems that the rather strong bias for the local-search
heuristic with the best quality score can be both a strength and a weakness,
indicating that a more adaptive process could be advantageous. More extensive
study is needed to assess the further potential of this algorithmic approach.

Acknowledgments: The research herein is partially conducted within the com-
petence network Softnet Austria II (www.soft-net.at,COMETK-Projekt) and
funded by the Austrian Federal Ministry of Economy, Family and Youth (bmwfj),
the province of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH.
(SFG), and the city of Vienna in terms of the center for innovation and tech-
nology (ZIT). Additionally, this work was partially supported by the Austrian
Science Fund (FWF): P20704-N18.

References

1. P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to scheduling
a sales summit,” Practice and Theory of Automated Timetabling III, pp. 176–190,
2001.

2. E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu, “A survey
of hyper-heuristics,” Computer Science Technical Report No. NOTTCS-TR-SUB-
0906241418-2747, School of Computer Science and Information Technology, Uni-
versity of Nottingham, 2009.

3. E. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, and J. Antonio,
“HyFlex: A Flexible Framework for the Design and Analysis of Hyper-heuristics,”
in Multidisciplinary International Scheduling Conference (MISTA 2009), Dublin,
Ireland, 2009, p. 790.

