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Abstract. Permutations occur in a great variety of optimization prob-
lems, such as routing, scheduling and assignment problems. The present
paper introduces the use of learning automata for the online learning of
good quality permutations. Several centralized and decentralized meth-
ods using individual and common rewards are presented. The perfor-
mance, memory requirement and scalability of the presented methods is
analyzed. Results on well known benchmark problems show interesting
properties. It is also demonstrated how these techniques are successfully
applied to multi-project scheduling problems.

1 Introduction

The process of creating a permutation, i.e. arrangement of objects or values
into a particular order, occurs often in combinatorial optimization problems.
The permutations can represent a full or a partial solution of such problems.
Typical examples can be found in routing and scheduling. The traveling salesman
problem (TSP) for instance, aims at finding a tour of minimum distance through
a number of cities. A solution can be represented by a permutation, which defines
the order in which to visit the cities. Many solutions for scheduling problems also
contain some permutation representation. A solution for the permutation flow
shop scheduling problem (PFSP) is such an example. In the PSFP a number
of jobs have to be sequenced in order to be processed on a predefined number
of resources. All these problems have a search space that is exponential in the
number of inputs n (cities, jobs, . . .). Due to the very nature of permutations
there are at least n! different solutions. An objective function, which represents
the quality of the solutions, has to be optimized. If a solution to a problem can
be represented by a permutation, then the objective function states how good
the permutation is.

In fact, we can imagine the following general problem (see Figure 1): given a
permutation π, a function f can give a value for that permutation f(π). Function
f can be the optimization problem under study, and it is assumed that the
function is not known. It is a black box. Since all values can be normalized,
we can assume that f(π) ∈ [0, 1], with a value f(π) = 0 meaning the worst
permutation and f(π) = 1 the best or optimal permutation.

In the present contribution, this general permutation problem is tackled us-
ing simple reinforcement learning devices, called Learning Automata (LA). It is
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Fig. 1. General permutation problem seen as a black box function.

shown how these methods are capable of learning permutations of good qual-
ity (f(π) close to 1) without the use of problem specific information or domain
knowledge. However, it is not the goal to outperform existing optimization meth-
ods for these problems, but only to show the strength of LA for online permu-
tation learning.

The present paper is structured as follows. Section 2 shows related work
on the learning of permutations and the use of learning automata for solving
optimization problems. Section 3 gives a small overview on learning automata.
In Section 4 different categories of permutation functions and their properties
are discussed. Section 5 presents some centralized and decentralized methods
based on learning automata for the online learning of permutations. In Section
6 the presented methods are analyzed on some well known benchmarks, and a
successful application to project scheduling is demonstrated. A conclusion and
final remarks are given in Section 7.

2 Related work

Population based incremental learning (PBIL) [1] is a method for solving opti-
mization problems, which is related to genetic algorithms. It however maintains
a real-valued probability vector for generating solutions. PBIL is very similar to
a cooperative system of finite learning automata where the learning automata
choose their actions independently and update with a common reward. COMET
[2] incorporates probabilistic modeling in conjunction with fast search algorithms
for application to combinatorial optimization problems. The method tries to cap-
ture inter-parameter dependencies by creating a tree-shaped probabilistic net-
work. PermELearn [7] is an online algorithm for learning permutations. The ap-
proach makes use of a doubly stochastic3 weight matrix to represent estimations
of the permutations, together with exponential weights and an iterative pro-
cedure to restore double stochasticity. [15] introduces a method using multiple
learning automata to cooperatively find good quality schedules for the multi-
mode resource-constrained project scheduling problem (MRCPSP). A common
reward, based on the makespan of the scheduling solution is used. [14] present
a method using learning automata combined with a dispersion game for solving

3 A matrix is doubly stochastic if all its elements are nonnegative, all the rows sum
to 1, and all the columns sum to 1.



the decentralized resource-constrained multi project scheduling problem (DR-
CMPSP). To date the method belongs to the state-of-the-art for this problem4.

3 Learning Automata

Learning Automata (LA) [11, 13] are simple reinforcement learning components
for adaptive decision making in unknown environments. An LA operates in a
feedback loop with its environment and receives feedback (reward or punish-
ment) for the actions taken. A single learning automaton maintains a probability
vector p over its actions, which it updates according to a reinforcement scheme.
Several reinforcement schemes with varying convergence properties are available
in the literature. Examples of linear reinforcement schemes are linear reward-
penalty, linear reward-inaction and linear reward-ε-penalty. The philosophy of
these schemes is to increase the probability of selecting an action in the event
of success and to decrease it when the response is a failure. The general update
scheme is given by:

pm(t+ 1) = pm(t) + αreward(1− β(t))(1− pm(t))

− αpenaltyβ(t)pm(t) (1)

if am is the action taken at time t

pj(t+ 1) = pj(t)− αreward(1− β(t))pj(t)

+ αpenaltyβ(t)[(r − 1)−1 − pj(t)] (2)

if aj 6= am

With pi(t) the probability of selecting action i at time step t. The constants
αreward and αpenalty are the reward and penalty parameters. When αreward =
αpenalty, the algorithm is referred to as linear reward-penalty (LR−P ), when
αpenalty = 0, it is referred to as linear reward-inaction (LR−I) and when αpenalty
is small compared to αreward, it is called linear reward-ε-penalty (LR−εP ). β(t)
is the reward received by the reinforcement signal for an action taken at time
step t. r is the number of actions. In the present paper, learning automata with
finite actions and linear reinforcement schemes will be used. More specifically
we will only use the linear reward-inaction update scheme, because it has nice
theoretical convergence results.

4 Permutation Functions

A permutation function, i.e. a function mapping permutations to values, can
take several forms. Most of them are highly non-linear. The most straightforward
function is one that gives a value to each individual position. Take for example

4 Multi project scheduling problem library: http://www.mpsplib.com ; accessed on
September: 23, 2011



an assignment problem where a matrix defines the cost for assigning an agent
to a task. A permutation, where task i at position j is performed by agent j, is
a possible solution representation for this problem.

T0 T1 T2 T3

A0 3 4 1 3
A1 3 2 3 1
A2 3 4 2 2
A3 2 3 4 4

Table 1. Cost matrix for an example assignment problem of size n = 4

The assignment problem with the cost matrix from Table 1 results in a per-
mutation function as shown in Figure 2. The total cost for each permutation is
plotted. The search space has an optimal solution [2, 1, 3, 0] with a total cost of
7. This solution denotes that task 2 is performed by agent 0, task 1 is performed
by agent 1, task 3 is performed by agent 2 and task 0 is performed by agent 3.
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Fig. 2. Permutation function for an example assignment problem.

For many problems using a permutation representation the total cost or value
is determined by the adjacent elements. For example, if element A is directly



followed by element B in the permutation, there is a cost of cAB . These costs can
be symmetric or asymmetric. In this category of permutation functions we can
make a distinction between cyclic and non-cyclic functions. A typical example
where the permutation function is based on adjacency costs and is also cyclic is
a TSP.

To summarize, we distinguish the following default permutation function
categories:

– individual position
– adjacent positions (cyclic and non-cyclic)

Many permutation functions use or combine elements from these default cate-
gories.

Some optimization problems have additional constraints on the permutations.
For example, one can have precedence constraints, imposing that one element
must occur before or after another element. Examples include the sequential or-
dering problem (SOP) which is a TSP with precedence constraints) and project
scheduling problems. Yet another additional constraint can be that several el-
ements must be adjacent to each other and form groups. One can incorporate
these additional constraints by adding a high penalty to the cost value of the
permutation.

5 Learning Permutations

In order to learn permutations of good quality one or more learning components
are put in a feedback loop with the permutation evaluation function f (i.e. the
environment), as is shown in Figure 3. The rest of this section describes a number
of centralized and decentralized approaches for performing this learning task.

- fPermutation π Value f(π)
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Fig. 3. Learning component in a feedback loop with the permutation learning problem



5.1 Naive approach

A naive and centralized approach (Figure 4) to learning permutations using
learning automata would be to assign one action per permutation. This results
in a total of n! actions, which is impractical for larger n both with respect to
calculation time and memory usage.

LA

π1 π2 πn!...

a1 a2 an!

Fig. 4. A naive approach, one LA with one action per permutation.

5.2 Hierarchical approach

A better approach would be to divide the learning task among different learning
automata, more specifically a tree of learning automata, called a hierarchical
learning automaton [12]. An example of such a hierarchical learning automaton
for n = 3 is shown in Figure 5. An LA at depth d ∈ {1, 2, . . . , n} in the tree is
responsible for choosing the element at position d in the permutation. Each LA
at depth d has n + 1 − d actions, excluding all the actions chosen in the LA in
the path from this LA to the root of the tree. The advantage of this hierarchical
approach is that each individual LA has a smaller action space (maximum n).
There is also a drawback. In case of a large exploration, the whole search tree is
visited in the worst case, which results in

∑n
d=1

n!
d! LAs. Since all action selection

probabilities for each LA have to be stored, this can be very memory intensive.

5.3 Probability matrix approach

To deal with the large memory requirements of the hierarchical approach we
developed an approach with a compact representation. Similar to the method
in [7], we use a doubly stochastic matrix P with n rows and n columns. The
column and row sums are always 1. Pij is the probability for element i to be on
position j in the permutation. The approach works as follows:
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Fig. 5. An example of a hierarchical learning automaton for n = 3.

1. generate a uniform doubly stochastic matrix P with:
∀i=1..n∀j=1..nPij = 1

n
2. select a permutation π using P
3. retrieve a reward r = f(π) for the selected permutation
4. update P using reward r
5. repeat from step 2 until some stopping condition is met.

These steps are now described in more detail.
Selecting a permutation from P : Several methods can be used to select

a permutation from a doubly stochastic matrix. A first method is to uniformly
select a row i and then use a probabilistic selection (e.g. roulette wheel selection)
on this row for determining on which position j we have to put element i in the
permutation. After that we reduce the matrix by removing row i and column
j. Then we normalize the remaining rows, and repeat the process until all rows
(and also all columns) have been selected once. We then have a complete permu-
tation. Another permutation selection method is based on entropy. The method
is similar to the explanation above, but the next row is now selected based on
minimum entropy.

argmin
i

H = −
∑
j=1..n

Pij log (Pij)

Updating P with reward r: The probability matrix P is updated with an
LA update scheme for each row i, and the selected action is determined by j.
After updating all rows, the matrix P remains doubly stochastic, which is not
the case in the PermELearn algorithm [7].

5.4 Decentralized approach

The following method is similar to the ‘probability matrix method’, but uses a
more decentralized approach. Each position in the permutation is determined



by an individual agent. An agent employs a learning automaton for choosing its
individual position from the full set of positions. Thus, there are n agents (LA)
with n actions each, resulting in the same memory footprint as the ‘probability
matrix approach’. The agents play a dispersion game [6] for constructing a per-
mutation. In a dispersion game, the number of agents is equal to the number of
actions. In order to form a permutation, all agents need to select a distinct action
so that the assignment of actions to agents is maximally dispersed. For example,
if three agents select the following distinct actions: agent 1 selects position 2,
agent 2 selects position 3 and agent 3 selects position 1, then the permutation
becomes [3, 1, 2].

A Basic Simple Strategy (BSS) was introduced in [6], allowing agents to
select maximally dispersed actions in a logarithmic (in function of the number
of agents) number of rounds, where a naive approach would be exponential. BSS
does not incorporate the agents’ preferences, it uses uniform selection. To take
the agents’ preferences into account, we introduce a probabilistic version of BSS,
which we call Probabilistic Basic Simple Strategy (PBBS). The PBBS works as
follows. Given an outcome o ∈ O (selected actions for all agents), and the set of
all actions A, an agent using the PBBS will:

– select action a with probability 1 in the next round, if the number of agents
selecting action a in outcome o is 1 (noa = 1).

– select an action from the probabilistic distribution over actions a′ ∈ A for
which noa′ 6= 1, otherwise.

The probabilistic distribution over actions is obtained from the agents’ LA. Once
a permutation is constructed by playing the game, a common reward (permu-
tation function) or individual reward can be obtained. These common or indi-
vidual rewards are then given to the agents’ LA, which consequently update
their probabilistic distribution. Experiments have shown that this decentralized
approach has very similar performance characteristics as the ‘probability matrix
approach’.

6 Experiments

As an illustration of the methods’ behaviour, some experiments were performed
on a fictitious permutation function and simple benchmark problems, the TSP
and an assignment problem. Subsequently, application to a more extensive multi-
project scheduling problem is given, which shows the real advantage of the
described methods. The following experiments report on the decentralized ap-
proach unless mentioned otherwise. Similar properties were observed for the
hierarchical and probability matrix approach. All results are averaged over 100
runs and the experiments were performed on an Intel Core i7 2600 3.4Ghz pro-
cessor, using the Java version 6 programming language.



6.1 Peaked permutation function

Consider the following permutation function definition. If the decimal number of
the permutation π is dec (π) according to the factorial number system (Lehmer
code) [9]. Then the value of the permutation is defined as:

f (π) =

(
2dec (π)

n!

)10

if dec (π) ≤ n!

2
(3)

=

(
2 (n!− dec (π))

n!

)10

if dec (π) >
n!

2
(4)

This function has a peak value in the middle of the permutation range. Figure
6 shows this permutation function for n = 9.
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Fig. 6. Peaked permutation function landscape n = 9.

Figure 7 compares the average calculation time (in milliseconds) of the pre-
sented approaches. For each size n = 2..20, 5000 iterations are performed on the
peaked permutation function. A learning rate of 0.005 is used for each approach.
All but the naive approach show good calculation time properties.

Figure 8 shows the maximum function value over a number of iterations
(50,100,500) for different learning rates when applying the decentralized ap-
proach with common reward (i.e. the permutation function value). The results
show that for a particular range of learning rates better permutations are learned,
compared to random sampling (i.e. learning rate equal to 0). When more itera-
tions are given for learning, the difference between random sampling and learning
becomes smaller. Bad performance can be observed when the learning rates are
too high, and thus premature convergence occurs.
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6.2 TSP

We tested the decentralized approach with common reward on a number of TSP
instances from TSPLIB5. The distance was scaled to a value between 0 and 1,
such that a value of 1 corresponds to an optimal distance and 0 corresponds to
an upper bound on the distance. Figure 9 shows the maximum function value
over a number of iterations (1000, 5000, 10000, 50000) for different learning rates
on a size n = 17 instance with name ‘gr17’. For a particular range of learning
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Fig. 9. Max. objective function value for different number of iterations on a TSP
instance (gr17) of size n = 17.

rates better solution values can be observed, compared to random sampling. If
more iterations are given, then the best solutions occur for lower learning rates.
Again, too high learning rates lead to worse solutions.

6.3 Assignment problem

Assignment problems belong to the category of permutation functions where the
total cost of the permutation is equal to the sum of the individual costs. Therefore
both individual and global rewards can be given to the agents. Figure 10 shows a

5 TSPLIB website: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ ; last
check of address September: 23, 2011



comparison of the maximum objective function value for individual and common
rewards on a random assignment problem of size n = 9 with the cost matrix of
Table 2. For each learning rate a run of 1000 iterations is performed where the
maximal objective function value is measured. The objective function is scaled
between 0 and 1 such that 1 corresponds to the optimal solution. The results
show that individual rewards produce better solutions than common rewards.
For a particular range of learning rates the method performs better than random
sampling, and the optimal solution can be found by using individual rewards .

T0 T1 T2 T3 T4 T5 T6 T7 T8

A0 7 8 5 3 9 3 9 4 7
A1 3 6 9 3 2 9 6 5 7
A2 6 3 5 1 3 6 9 2 7
A3 8 1 9 3 3 6 3 6 3
A4 7 3 5 7 3 8 9 3 2
A5 4 2 8 2 7 5 4 6 4
A6 7 8 8 9 4 8 9 8 8
A7 7 4 7 8 9 8 1 3 5
A9 9 3 9 7 6 1 5 2 8

Table 2. Cost matrix for a random assignment problem of size n = 9

6.4 Multi-project scheduling

The decentralized method introduced in the present paper, was used for solving
the decentralized resource-constrained multi project scheduling problem (DR-
CMPSP) [14]. The DRCMPSP was introduced in [4, 5] and extended in [8].
It is a generalization of the Resource Constrained Project Scheduling Problem
(RCPSP) [3, 10] and can be stated as follows. A set of n projects have to be
scheduled simultaneously using autonomous and self-interested decision makers.
Each individual project contains a set of jobs or activities, precedence relations
between the jobs, and resource requirements for executing each job. These re-
source requirements constitute local renewable resources, and global renewable
resources shared among all projects. A global objective value must be minimized,
examples include but are not limited to: the average project delay(APD), the to-
tal makespan (TMS), and the deviation of the project delay (DPD). The project
delay of a project is its makespan minus the critical path duration. The remain-
der of the current section will concentrate on the APD objective. A constructive
schedule generation scheme was applied to solve the DRCMPSP, requiring the
project order and the job order for each project as input. The project order is
a permutation of projects, while the job order is a permutation with precedence
constraints. The decentralized method with the dispersion game was used to
find good quality project orders, leading to schedules with a low APD objec-
tive value. Each project was represented by one project order decision maker.
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Fig. 10. Comparison of max. objective function value for individual and common re-
ward on a assignment problem of size n = 9.

Instances from the Multi project scheduling problem library6 have been experi-
mented on. To date, the method belongs to the state-of-the-art for this problem,
showing 104 best solutions out of 140, with respect to the average project delay
objective.

7 Conclusion

In this paper we have presented several centralized and decentralized meth-
ods using learning automata for the online learning of good quality permuta-
tions. Different permutation functions have been discussed. The capabilities of
the methods have been analyzed and demonstrated on well known benchmark
problems, and we demonstrated how to successfully apply these methods to a
multi-project scheduling problem. The methods are very general because they
do not use any problem specific information or domain knowledge, which makes
them well suited for application within general optimization methods, like hyper-
heuristics. In the future we can apply these methods to other optimization prob-
lems and make them core elements of new intelligent optimization methods.

6 Multi project scheduling problem library: http://www.mpsplib.com ; retrieved
September: 23, 2011
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