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Abstract. Multi-objective evolutionary algorithms are increasingly be-
ing investigated to solve many-objective optimization problems. How-
ever, most algorithms recently proposed for many-objective optimization
cannot find Pareto optimal solutions with good properties on conver-
gence, spread, and distribution. Often, the algorithms favor one prop-
erty at the expense of the other. In addition, in some applications it
takes a very long time to evaluate solutions, which prohibits running
the algorithm for a large number of generations. In this work to obtain
good representations of the Pareto optimal set we investigate a large
population MOEA, which employs adaptive ε-box dominance for selec-
tion and neighborhood recombination for variation, using a very short
number of generations to evolve the population. We study the perfor-
mance of the algorithm on some functions of the DTLZ family, showing
the importance of using larger populations to search on many-objective
problems and the effectiveness of employing adaptive ε-box dominance
with neighborhood recombination that take into account the character-
istics of many-objective landscapes.

1 Introduction

Recently, there is a growing interest on applying multi-objective evolutionary
algorithms (MOEAs) to solve many-objective optimization problems, where the
number of objective functions to optimize simultaneously is considered to be
more than three. Historically, most applications of MOEAs have dealt with two
and three objective problems leading to the development of several evolutionary
approaches that work successfully in these low dimensional objective spaces.
However, it is well known that conventional MOEAs [1, 2] scale up poorly with
the number of objectives of the problem. The poor performance of conventional
MOEAs is attributed to an increased complexity inherent to high dimensional
spaces and to the use of inappropriate selection and variation operators that fail
to take into account the characteristics of many-objective landscapes [3–5].
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MOEAs seek to find trade-off solutions with good properties of convergence
to the Pareto front, well spread, and well distributed along the front. These
three properties are especially difficult to achieve in many-objective problems
and most search strategies for many-objective optimization proposed recently
compromise one in favor of the other [6]. In several application domains, such as
multidisciplinary multi-objective design optimization, a large number of Pareto
optimal solutions that give a good representation of the true Pareto front in
terms of convergence, spread, and distribution of solutions are essential to extract
relevant knowledge about the problem in order to provide useful guidelines to
designers during the implementation of preferred solutions. Moreover, in some
applications it takes a very long time to evaluate solutions, which prohibits
running the evolutionary algorithm for a large number of generations. Thus, in
addition to the difficulties imposed by high-dimensional spaces, we are usually
constrained by time.

From this point of view, in this work to obtain good representations of the
Pareto optimal set we investigate a large population MOEA, which employs
adaptive ε-box dominance for selection and neighborhood recombination for
variation, using a very short number of generations to evolve the population.
The motivation to use large populations is twofold. One is that we need many
more solutions to properly approximate the Pareto optimal set of many-objective
problems. The other one is that large populations may support better the evo-
lutionary search on high dimensional spaces. That is, large populations may be
more suitable to deal with the increased complexity inherent to high dimen-
sional spaces. We assume that all solutions in the population can be evaluated
simultaneously and in parallel, i.e. the time to evaluate one generation equals
the time required to evaluate one solution, independently of the number of so-
lutions we use in the population. So, our limitations on time are directly related
to the number of generations rather than to the total number of fitness function
evaluations. The motivation to use adaptive ε-box dominance for selection and
neighborhood recombination for variation is to enhance the design of the algo-
rithm incorporating selection and recombination operators that interpret better
the characteristics of many-objective landscapes.

We study the performance of the algorithm using some test functions of the
DTLZ family [7]. Our experiments reveal the importance of using a large popu-
lation to search in many-objective problems and the effectiveness of employing
ε-Box dominance and neighborhood recombination.

2 Proposed Method

2.1 Concept

Two important characteristics of many-objective optimization problems are that
the number of non-dominated solutions increases exponentially [3, 4] with the
number of objectives of the problem, and that these solutions become spread
over broader regions in variable space [5]. These characteristics of many-objective
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landscapes must be considered when we design the major components of the
algorithm, namely ranking, density estimators, mating, and variation operators.

In this work, selection is improved by incorporating adaptive ε-box domi-
nance during the process of ranking and selecting solutions for the next gener-
ation. The effectiveness of the recombination operator is improved by incorpo-
rating a neighborhood to mate and cross individuals that are close in objective
space. In the following we describe adaptive ε-box dominance and neighborhood
recombination.

2.2 Adaptive ε-Box Dominance

In the proposed method we use adaptive ε-box dominance to rank solutions and
select a ε-Pareto set [8] of non-dominated solutions for the next generation. In
[8] an archiving strategy that updates a ε-Pareto set with a newly generated
individual was proposed to guarantee convergence and diversity properties of
the solutions found. The principles of the above archiving strategy [8] is applied
to modify non-domination sorting used in NSGA-II [9]. The main steps of ε-box
non-domination sorting are as follow.

Step 1 Similar to [8], ε-box non-domination sorting implicitly divides the ob-
jective space into non-overlapping boxes, where each solution is uniquely
mapped to one box. That is, the box index vector b(i) = (b(i)1 , · · · , b(i)m ) of
the i-th solution in the combined population of parents P and offspring Q
is calculated by

b
(i)
k (x) =

⌊
log10 f

(i)
k (x)

log10(1 + ε)

⌋
(k = 1, 2, · · ·m), (1)

where f
(i)
k is the fitness value in the k-th objective of the i-th solution

i = 1, 2, · · · , |P | + |Q|, m the number of objectives, and ε a parameter that
controls the size of the box.

Step 2 Pareto dominance is calculated using the box indexes b(i) of solution to
get a set of non-dominated ε-boxes.

Step 3 Form a front of solutions by picking one solution from each non-dominated
ε-box. If there is more than one solution in a box, we calculate Pareto dom-
inance among solutions within the box. Thus, in each ε-box there could be
either a dominating solution or several non-dominated solutions, and possi-
bly one or more dominated solutions. To form the front we chose from each
box the dominating solution, or select randomly one of the non-dominating
solutions.

Step 4 Go to Step 2 to form subsequent fronts, excluding solutions already
included in a previous front. Solutions located in a non-dominated ε-box
but not selected as part of a previous front are considered to form the
next front. Thus, compared to conventional non-domination sorting based
on Pareto dominance, the proposed method reduces the ranking of some
non-dominated solutions, namely those located in the same ε-box but not
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Fig. 1. Solution ranking by ε-Box Dominance
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Fig. 2. Neighborhood Recombination

chosen to form the front. Note that in the archiving strategy proposed in
[8], dominated solutions and not-selected non-dominated solutions within a
ε-box are eliminated. Here, we keep those solutions but reduce their ranking.

Fig.1 illustrates front non-domination sorting by Pareto dominance and by
ε-box dominance. In our illustration we assume a two-objective maximization
problem. Note that non-dominated solutions that fall within the same ε-box are
given different rank by ε-box non-domination sorting.

The ε-box non-domination sorting groups solutions in fronts of ε-box non-
dominated solutions, denoted as F εj , where j indicates the front number. Then,
solutions are assigned a primary rank equal to the front number j it belongs to.

In many-objective problems, the number of Pareto non-dominated solutions
|F1| obtained from the combined population of parents P and offspring Q is
expected to surpass the size of the parent population since early generations, i.e.
|F1| > |P |. Since only one solution is selected from each ε-box to form a front,
the number of solutions in the first front after applying ε-box non-domination
sorting is expected to be smaller than the number of Pareto optimal solutions,
|F ε1 | < |F1|, and its exact number depends on the value set to ε > 0 and on
the instantaneous distribution of solutions in objective space. In general, larger
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values of ε imply that the ε-boxes cover larger areas, increasing the likelihood of
having more solutions within each box and therefore less solutions in the finally
formed front F ε1 . However, it is difficult to tell in advance exactly how many
solutions will be in F ε1 for a given value of ε and trying to set this parameter by
hand to achieve a desired value is a difficult and problem depending task.

Instead of setting ε by hand, the proposed method adapts ε at each generation
so that the actual number of solutions in F ε1 is close to the size of the parent
population P [10]. Thus, the adaptive method aims to select a sample of non-
dominated individuals for the next population that are distributed according to
the spacing given by Eq. (1). The appropriate value of ε that renders a number
of solutions close to the desired number is expected to change as the evolution
process proceeds and it is affected by the stochastic nature of the search that
alters the instantaneous distributions of solutions in objective space. Thus, in
addition to adapting ε, the step of adaptation ∆ is also important to properly
follow the dynamics of the evolutionary process on a given problem. For this
reason, the proposed adaptive procedure adapts ε and its step of adaptation ∆
as well.

The method to adapt ε before it is used in Eq. (1) is as follows. First, before
start searching solutions, we set initial values for ε and the step of adaptation ∆,
set ε’s lower bound εmin > 0.0 and ∆’s lower and upper bound, ∆min and ∆max,
such that 0.0 < ∆min < ∆max. Next, at every generation we count the number
of solutions obtained in the first front F ε1 by ε-box non-domination sorting and
compare with the size of the population P . If |F ε1 | < |P | the step of adaptation is
updated to ∆ = ∆/2Cand ε = ε−∆, to make the grid fine grained. Otherwise,
∆ = ∆ × 2 and ε = ε + ∆, to make the grid coarser. If after updating ε or ∆
their values go above or below their established bounds, they are reset to their
corresponding bound. In this work, the initial value set to ε is 0.01, its lower
bound εmin is 10−8, the initial step of adaptation ∆ is 0.01, its upper bound
∆max is 1, and its lower bound ∆min is 0.0001.

2.3 Neighborhood Recombination

As mentioned above, it has been shown that in many-objective problems the
number of non-dominated solutions grows exponentially with the number of ob-
jectives of the problem. A side effect of this is that non-dominated solutions in
problems with a large number of objectives tend to cover a larger portion of
objective and variable space compared to problems with less number of objec-
tives. Thus, in many objective problems, the difference between individuals in
the instantaneous population is expected to be larger. This could affect the ef-
fectiveness of recombination because recombining two very different individuals
could be too disruptive.

In this work, we encourage mating between individuals located close to each
other, aiming to improve the effectiveness of recombination in high dimensional
objective spaces. To accomplish that, the proposed method calculates the dis-
tance between individuals in objective space and keeps a record of the |P | ×Rn
closest neighbors of each individual during the ε-dominance process. However,
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note that when the ranked population of size |P |+ |Q| is truncated to form the
new population of size |P |, some individuals would be deleted from the neigh-
borhood of each individual. During mating for recombination, the first parent
pA is chosen from the parent population P using a binary tournament selection,
while the second parent pB is chosen from the neighborhood of pA using another
binary tournament. Then, recombination is performed between pA and pB . That
is, between pA and one of its neighbors in objective space. If all neighbors of in-
dividual pA were eliminated during truncation, the second parent pB is selected
from the population P similar to pA. Fig.2 illustrates the neighborhood cre-
ation and mating for recombination. In this work, we set the parameter Rn that
defines the size of the neighborhood of each individual to 2%C5%Cand 10% of
the parent population P .

3 Test Problems and Performance Indicators

3.1 Test Problems

In this work, we study the performance of the algorithms in continuous functions
DTLZ2, DTLZ3, and DTLZ4 of the DTLZ test functions family [7]. These func-
tions are scalable in the number of objectives and variables and thus allow for
a many-objective study. In our experiments, we vary the number of objectives
from m = 4 to 6 and set the total number of variables to n = m+9. DTLZ2 has a
non-convex Pareto-optimal surface that lies inside the first quadrant of the unit
hyper-sphere. DTLZ3 and DTLZ4 are variations of DTLZ2. DTLZ3 introduces
a large number of local Pareto-optimal fronts in order to test the convergence
ability of the algorithm. DTLZ4 introduces biases on the density of solutions to
some of the objective-space planes in order to test the ability of the algorithms
to maintain a good distribution of solutions. For a detailed description of these
problems the reader is referred to [7].

3.2 Performance Indicators

In this work we evaluate the Pareto optimal solutions obtained by the algorithms
using the quality indicators described below.
Proximity Indicator(Ip) [11]: Measures the convergence of solutions using
equation 2, where P denotes the population and x a solution in the population.
Smaller values of Ip indicate that the population P is closer to the Pareto front.
That is, smaller values of Ip mean high convergence of solutions.

Ip = median
x∈P





[
m∑

i=1

(fi(x))2

] 1
2

− 1



 (2)

C-metric [12]: Let us denote A and B the sets of non-dominated solutions
found by two algorithms. C(A,B) gives the fraction of solutions in B that are
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dominated at least by one solution in A. More formally,

C(A,B) =
| {b ∈ B|∃a ∈ A : f(a) � f(b)} |

| B | . (3)

C(A,B) = 1.0 indicates that all solutions in B are dominated by solutions
in A, whereas C(A,B) = 0.0 indicates that no solution in B is dominated by
solutions in A. Since usually C(A,B)+C(B,A) 6= 1.0, both C(A,B) and C(B,A)
are required to understand the degree to which solutions of one set dominate
solutions of the other set.
Hypervolume (HV ) [12]: HV calculates the volume of the m-dimensional
region in objective space enclosed by a set of non-dominated solutions and a
dominated reference point r, giving a measure of convergence and diversity of
solutions. In general, larger values of HV indicate better convergence and/or di-
versity of solutions. Thus, MOEAs that find Pareto optimal solutions that lead
to larger values of HV are consider as algorithms with better search ability. We
use Fonseca et al. [13] algorithm to calculate the hypervolume.

4 Simulation Results and Discussion

4.1 Preparation

In this work we use NSGA-II, a well known representative of the class of domi-
nance based MOEAs. In this framework we include Adaptive ε-Box dominance
and Neighborhood Recombination. In the following we call for short AεB and
AεBNR the MOEAs that include Adaptive ε-Box dominance and Adaptive ε-
Box dominance & Neighborhood Recombination, respectively. As genetic oper-
ators we use SBX crossover and Polynomial Mutation, setting their distribution
exponents to ηc = 15 and ηm = 20, respectively. The parameter for the operators
are crossover rate pc = 1.0, crossover rate per variable pv = 0.5, and mutation
rate pm = 1/n, where n is the number of variables. The number of generations
is fixed to T = 100 and the population sizes varies from |P | = 100 to 5000 solu-
tions. Result reported here are average results obtained running the algorithms
30 times.

4.2 Effects of Increasing Population Size

First, we focus our analysis on DTLZ2. Fig.3 shows Ip obtained at the final
generation varying the number of solutions in the population P from 100 to
5000. It could be seen that Ip reduces when a larger population size |P | is used,
regardless of the number of objectives. That is, a larger population size improves
convergence of the algorithm. Especially note that for m = 4, 5 the reduction of
Ip is remarkable and that the values of |P | that lead to a pronounced decline on
Ip are different, depending on the number of objectives. In the case of m = 5
objectives, it can be seen that a larger reduction occurs when the population
size increases from |P | = 1000 to 2000Cthan from 2000 to 3000. In the case of
m = 6 objectives, a sharp reduction on Ip is not observed for a population size
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Fig. 4. Distribution of solutions by NSGA-II using vari-
ous population sizes |P |, DTLZ2 m = 5 objectives

of up to 5000. It would be interesting to verify the effects of population sizes
larger than 5000 on m = 6 objectives.

Next, Fig.4 shows for m = 5 objectives the distribution of solutions in ob-
jective space projected to the f1 − f2 plane. In the DTLZ2 problem, keeping
the population fixed and increasing the number of objectives, it is common to
see that solutions tend to concentrate along the axis. These solutions are known
as dominance-resistance solutions [14], which are favored by selection due to its
inability to discriminate based on dominance while actively promoting diversity,
and may cause the algorithm to diverge from the true Pareto front. From the
figure, it can be seen that when the population increases the population tends
to cluster towards the central regions of objective space, helping to control the
presence of dominance-resistance solutions and their negative effect on conver-
gence.

4.3 Effects of Adaptive ε-Box Dominance

In this section we compare results by conventional NSGA-II, NSGA-II enhanced
with ε-box dominance setting a fixed value of ε = {0.01, 0.1, 0.5, 1}, and the
Adaptive ε-Box dominance algorithm AεB. The Ip by these methods is shown
in Fig.5. Note that ε-Box dominance with fixed ε achieves better or worse Ip
than conventional NSGA-II in m = 4 objectives, depending on the value set
to ε. However, ε-Box dominance improves remarkably Ip in m = 5, 6, showing
a bigger effect for larger population sizes |P |. On the other hand, using AεB
stable and satisfactory performance is achieved, independently of the number
of objectives. Especially, in the case of m = 6 objectives, AεB achieves best
performance, with better effectiveness observed for larger population size.
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Fig. 5. Effect of increasing population size and including ε-Box Dominance (DTLZ2)
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Fig. 6. Effect of increasing population size and including Adaptive ε-Box and Neigh-
borhood Recombination (DTLZ2)

4.4 Effects of Neighborhood Recombination

Next, we study the effects of incorporating Neighborhood Recombination in ad-
dition to Adaptive ε-Box dominance. Fig.6 shows results by NSGA-II, AεB, and
AεBNR for comparison. From the figure we can see that increases in population
size |P | and the inclusion of Neighborhood Recombination improves further con-
vergence. Note that the effect of Neighborhood Recombination becomes larger
with the number of objectives. Especially, in m = 6 objectives, comparing with
AεB (Rn = 0), note that the inclusion of Neighborhood Recombination and
increasing population size |P | in AεBNR (Rn > 0) improves convergence re-
markably.

Summarizing, increasing population size |P | improves convergence of MOEAs
in multi-objective problems. In addition, the inclusion of Adaptive ε-Box fur-
ther improves convergence, with larger improvements observed as we increase
the number of objectives. Furthermore, the inclusion of Neighborhood Recom-
bination leads to an additional remarkable improvement in convergence, which
also gets larger as we increase the number of objectives. For example in the case
of m = 6 objectives, a drastic reduction in Ip from 1.84 to 0.026 is observed
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f1

f 2

0 1 2 3

0

1

2

3

(a) NSGA-II

f1

f 2

0 1 2 3

0

1

2

3

(b) AεB

f1

f 2

0 1 2 3

0

1

2

3

(c) AεBNR
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if we compare the performance of conventional NSGA-II using population size
|P | = 100 and AεBNR using a population size |P | = 5000.

4.5 Comparison using the C-metric and Distribution of Solutions

In this section, we compare the search ability of conventional NSGA-II, AεB
(Rn = 0%) and AεBNR (Rn = 10%) using the C-metric performance indicator
and analyze the distribution of solutions rendered by these algorithms.

Fig.7 shows results of a pairwise comparison between algorithms using the C-
metric. First, from Fig.7 (a) it can be seen that a significant fraction of Pareto
optimal solutions (POS) by the enhanced algorithm with AεBNR dominate
POS by conventional NSGA-II; whereas no solution by conventional NSGA-II
dominates solutions by AεBNR. Also note that the fraction of dominated so-
lutions gets larger as we increase the number of objectives. Second, from Fig.7
(b), comparing conventional NSGA-II and the enhanced AεBNR, a similar ten-
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dency as the one describe above can be observed, but with better fractions of
dominated solutions in favor of the enhanced algorithm. Third, from Fig.7 (c),
comparing the enhanced algorithms, note that AεBNR that includes both Adap-
tive ε-Box dominance and Neighborhood Recombination dominates a fraction of
solutions found by the algorithm AεB that only includes Adaptive ε-Box domi-
nance; whereas the opposite is not true. Note that this effect becomes remarkable
when the number of objectives increases. From these results on the C-metric we
conclude that the inclusion of Adaptive ε-Box dominance and Neighborhood Re-
combination leads to remarkable increase on the number of solutions with better
convergence in the POS found by the algorithm.

Next, Fig.8 shows the distribution of solutions in objective space projected
to the f1− f2 plane by these three algorithms, for m = 6 objectives and popula-
tion size |P | = 5000. Note that solutions by conventional NSGA-II are broadly
spread, however they lack convergence to the true Pareto front as shown in Fig.8
(a). When Adaptive ε-Box is introduced, convergence of solutions improves but
their distribution is biased towards the extreme regions of the Pareto front as
seen in Fig.8 (b). This is because Adaptive ε-Box strengthen the trend to favor
solutions towards the axis of the multi-objective space. On the other hand, when
Neighborhood Recombination is added convergence of the population of solutions
improves further, solutions get compactly distributed around the Pareto optimal
region, and the bias towards the axis of objective space becomes almost unno-
ticed as shown in Fig.8 (c). This is because recombination of solutions that are
neighbor in objective space allows a better exploitation of the search, especially
in problems where objective and variable space are not strongly uncorrelated.
However, the different density of solutions in objective space produced by the
uneven granularity of the grid used by Adaptive ε-Box should be investigated
with more detail in the future.

4.6 Comparison using HV

TheHV measures both convergence and diversity (spread) of solutions. However,
we can emphasize one over the other depending on the reference point r used to
calculate HV . When the reference point is close to the Pareto front, convergence
of solutions is emphasized. On the other hand, when the reference point is far
away from the Pareto from, the diversity of solutions is emphasized.

Fig.9 shows the HV for DTLZ2 with m = 6 objectives, varying population
size |P | from 100 to 5000, and varying the reference point to r=1.25C1.5C3.5.
From this figure, note that when the reference point is set to r = 3.5, which
emphasizes the estimation of diversity of solutions, similar values of HV are
observed by the improved algorithms for all population sizes. This is because
spread of solutions by the improved algorithms is similar. The HV by NSGA-II
appears very low for small populations, but approaches the HV achieved by
the improved algorithm for very large population sizes. These values reflect the
fact that a considerable number of solutions by NSGA-II with small populations
are past the reference point, and thus do not contribute to the hypervolume
calculation. In the cases of r = 1.5 and r = 1.25, where convergence of solutions
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Fig. 9. HV on DTLZ2 m = 6 objectives

is emphasized, differences on HV between the improved algorithms and NSGA-
II can be clearly seen even for very large populations. These results on the
hypervolume are in accordance with our analysis discussed on previous sections.

4.7 Results on DTLZ3 and DTLZ4 Functions

In previous sections we focused our analysis on the DTLZ2 function. Here, we
include and analyze results on DTLZ3 and DTLZ4 functions. Results for DTLZ3
are show in Fig.10, whereas results for DTLZ4 are shown in Fig.11. Results for
DTLZ2 using similar configurations are shown in Fig.6.

From Fig.11 it can be seen that results on DTLZ4 are similar to those ob-
served on DTLZ2, but note that in DTLZ4 convergence improvement due to
bigger population sizes becomes more significant. This is because DTLZ4 is a
problem that favors diversity of solutions, where an algorithm that selects solu-
tions based on crowding distance[1] is expected to improve convergence of solu-
tions specially in extreme regions of the Pareto front. On the other hand, from
Fig.10 note that in DTLZ3 although convergence improves by using AεBNR,
compared to the Ip values achieved on DTLZ2 and DTLZ4 it can be seen that
convergence is still insufficient.

To study with more detail the insufficient convergence in DTLZ3, Fig.12
show Ip by the three algorithms on m = 4, 5, 6 objectives, setting the population
size |P | to 100 and 1000 individuals, and extending the number of generations
from 100 to T = 500. From the figure note that independently of the number
of objectives, increasing the number of generations is effective to improve con-
vergence of AεB and AεBNR. Similarly, better results are observed using a
population size of 1000 individuals than a population size of 100. However, note
that the reduction speed of Ip and its achieved value differ greatly according
to the number of objectives. That is, the algorithms find it more difficult to re-
duce Ip conform the number of objectives increases. In the future, it is necessary
to investigate ways to achieve good convergence within a minimum number of
generations in this kind of problem.
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Fig. 10. Effects on DTLZ3
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Fig. 11. Effects on DTLZ4
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Fig. 12. Ip convergence on DTLZ3 increasing the number of generations to T = 500

5 Conclusions

In this work, we have studied the optimization of m = 4, 5, 6 many-objective
problems under a fixed, restricted, small number of generations. First, we inves-
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tigated the effect of population size on a conventional NSGA-II, verifying that
convergence of solutions improves when we increase the population size. Next,
we investigated the effects of including ε-Box dominance and Adaptive ε-Box
dominance into NSGA-II, verifying that Adaptive ε-Box dominance improves
convergence of solutions without the need to set the parameter ε by hand. More-
over, we investigated the effects of Adaptive ε-Box Dominance and Neighborhood
Recombination, verifying that convergence of solutions improves substantially,
especially when bigger populations are used and the number of the objectives of
the problem becomes larger.

In the future, we would like to study the effects of using larger populations,
explore parallelization, and develop MOEAs that can effectively evolve solutions
independently of the characteristics of problem under a restricted number of
generations.
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