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Abstract. A promising approach to tackle intractable problems is given by a
combination of decomposition methods with dynamic algorithms. One such de
composition concept is tree decomposition. However, several hesarietiob-
taining a tree decomposition exist and, moreover, also the subsequenid
algorithm can be laid out differently. In this paper, we provide an expsrm
tal evaluation of this combined approach when applied to reasoning preble
in propositional answer set programming. More specifically, we apalyz per-
formance of three different heuristics and two different dynamicrétyos, an
existing standard version and a recently proposed algorithm based orearm
volved data structure, but which provides better theoretical runtimer@hdts
suggest that a suitable combination of the tree decomposition heuristi¢heand
dynamic algorithm has to be chosen carefully. In particular, we obdehat the
performance of the dynamic algorithm highly depends on certain featbee
sides treewidth) of the provided tree decomposition. Based on this aliserv
we apply supervised machine learning techniques to automatically selebt-the
namic algorithm depending on the features of the input tree decomposition.

1 Introduction

Many instances of constraint satisfaction problems anérofP-hard problems can
be solved in polynomial time if their treewidth is boundedabgonstant. This suggests
two-phased implementations where first a tree decompnogRHEj of the given problem
is obtained which is then used in the second phase to solgdhéem under consider-
ation by a (usually, dynamic) algorithm traversing the leeomposition. The running
time of the dynamic algorith[?nmainly depends on the width of the provided tree de-
composition. Hence, the overall process performs well staimces of small treewidth
(formal definitions of tree decompositions and treewidth given in Sectiof]2), but
can also be used in general in case the running time for fireitnge decomposition re-
mains low. Thus, instead of complete methods for finding @ decomposition, heuris-
tic methods are often employed. In other words, to gain a gmyétbrmance for this
combined tree-decomposition dynamic-algorithm (TDDAftie following) approach
we require efficient tree decomposition techniques whiithpsbvide results for which
the running time of the dynamic algorithm is feasible.

1 We use — throughout the paper — the term “dynamic algorithm” as a symdory“dynamic
programmingalgorithm” to avoid confusion with the concept of Answer-Srigramming



Tree-decomposition based algorithms have been used imas@amplications in-
cluding probabilistic networks [18] or constraint satitfan problems such as MAX-
SAT [17]. The application area we shall focus on here is psdjsmal Answer-Set Pro-
gramming (ASP, for short) [20,23] which is nhowadays a wekramwledged paradigm
for declarative problem solving with many successful aggilons in the areas of Al
and KRA The problem of deciding ASP consistency (i.e. whether aclpgbgram has
at least one answer set) 18’ -complete in general but has been shown tractable [12]
for programs of bounded treewidth. In this paper, we comsideertain subclass of pro-
grams, namely head-cycle free programs (for more formanitiefns, we again refer to
Sectior 2); for such programs the consistency problem ictNRplete.

Let us illustrate here the functioning of ASP on a typicalrapée. Consider the
problem of 3-colorability of an (undirected) graph and saggthe vertices of a graph
are given via the predicatertex(-) and its edges via the predicatége(-, -). We em-
ploy a disjunctive rule to guess a color for each node in taplgrand then check in the
remaining three rules whether adjacent vertices have thdierent colors:

r(X) Vg(X) VDb(X) «— vertex(X);
1L e—r(X),r(Y),edge(X,Y);
L —g(X),g(Y), edge(X,Y);
L —b(X),b(Y),edge(X,Y);

Assume a simple input database with fagtstex(a), vertex(b) andedge(a, b). The
above program (together with the input database) yieldasswer sets. In fact, the
above program is head-cycle free. Many NP-complete prablean be succinctly rep-
resented using head-cycle free programs (in particulardisjunction allows for a di-
rect representation of the guess; in our example the guessalbring); se€ [19] (Sec-
tion 3) for a collection of problems which can be represemti#t head-cycle free pro-
grams as opposed to problems which require the full powelSR.Adowever, the above
program contains variables and thus has to be grounded g«alfed grounders turn
such programs into variable-free (i.e., propositionaB®which are then fed into ASP-
solvers. The algorithms discussed in this paper work oraléeifree programs. We
emphasize at this point a valuable side-effect. For our @@above, it turns out that if
the input graph has small treewidth, then the grounded arxifree program has small
treewidth as well (see Sectibh 2 for a continuation of thexgda). This not only holds
for the encoding of the 3-colorability problem, but for masther ASP programs (in
particular, programs without recursive rules). Thus tlesslof propositional programs
with low treewidth is indeed important also in the contex&&P with variables.

A dynamic algorithm for general propositional ASP has alseeen presented
in [15]. Recently, a new algorithm was proposed for the fragtrof head-cycle free
programs|[21]. Their main differences are as follows: tlgoathm from [15] is based
on ideas from dynamic SAT algorithnis [26] and explicitly éakcare of the minimal-
ity checks following the standard definition of answer sétsis it requires double-
exponential time in the width of the provided tree decomipasi The algorithm pro-
posed in[[21] follows a more involved characterizationh [3jieh applies to head-cycle

2 Seehttp://www.cs.uni-potsdam.de/ ~ torsten/asp/ for a collection.
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free programs and thus calls for a more complex data streiahat operations. However,
it runs in single-exponential time wrt. the width of the piaed tree decomposition.
Both algorithms have been integrated into a novel TDDA syster ASP, which we
call dynASFE. For the tree-decomposition phase, dynASP offers thréerdift heuris-
tics, namely Maximum Cardinality Search (MCS)[29], Mirltiind Minimum Degree
(seel[T] for a survey on such heuristics). According td [11&, min-fill heuristic usually
produces tree decompositions of lower width than the otkariktics.

By the above considerations, one would naturally expedtdbaputing a tree de-
composition with the min-fill heuristic (which usually yéd the lowest width) and ap-
plying the dedicated dynamic algorithm from [21] for headle free ASPs (which
is single-exponential wrt. to the width of the tree deconijpms) yields the best two-
phased algorithm for head-cycle free ASPs. Surprisingteresive testing with our
dynASP system has by no means confirmed these expectatiosts:tie TDDA al-
gorithm is not always most efficient when the best heurisiictfee decomposition is
used. Second, the specialized algorithm for head-cyckegdregrams does not always
perform better than the general algorithm, although thestvoase running time of the
latter is double-exponential in the treewidth while themimg time of the former is only
single-exponential.

The goal of this paper is to get a deeper understanding ohtbegplay between tree
decompositions and dynamic algorithms and to arrive at #imapconfiguration of the
two-phased dynamic algorithm. The above mentioned exgeriahresults suggest that
the width of the tree decomposition is not the only signiftqaarameter for efficiency
of our dynamic algorithms. Therefore, we identify other orant features of tree de-
compositions that influence the running time of the dynanrgorithms. Based on these
observations, we propose the application of machine legri@chniques to automati-
cally select the best dynamic algorithm for the given inmstance. We successfully
apply classification techniques for algorithm selectiothis domain. Additionally, we
exploit regression techniques that are used to predictthme of our dynamic algo-
rithms based on input instance features.

Note that the proposed features of tree decompositionsidepéendent of the ap-
plication domain of ASP. We therefore expect that our insighto the influence of
various characteristics of tree decompositions on theopmdnce of TDDAs are gen-
erally applicable to tree-decomposition based algorithnsthat they are by no means
restricted to ASPs. The same holds true for the methodoleggldped here in order to
arrive at an optimal algorithm configuration of such two-gddalgorithms.

2 Preliminaries

Answer Set ProgrammingA (propositional) disjunctive logic program (program, for
short) is a paidl = (A, R), whereA is a set of propositional atoms aftlis a set of
rules of the form:

a1V -V ap <= Q1,5 Gy Qmygd, - 0n 1)

8A preliminary version of this system has been presented [nl [22], see
http://dbai.tuwien.ac.at/proj/dynasp
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where =" is default negatidﬂn >1,n>m>1landa; € Aforalll <i<n.A
ruler € R of the form [1) consists of a hedt(r) = {a1,...,a;} and a bodyB(r) =
Bt(r)uU B~ (r), given byB*(r) = {ai11,---,am} andB~(r) = {ams1,---,an}
AsetM C Ais a called a model of, if BT(r) C M A B~(r) N M = ( implies
that H(r) N M # (). We denote the set of modelsoby Mod(r) and the models of a
programil = (A, R) are given byMod(II) = (1, Mod(r).

The reductl7? of a programil w.r.t. an interpretatiod C A is given by(A, {r! :

r € R,B~(r)NI = 0)}), wherer! is r without the negative body, i.ef (r!) = H(r),
BT (rl) = B*(r), and B~ (r!) = (. Following [10], M C A is ananswer sebf a
program/l = (A, R) if M € Mod(IT) and for noN C M, N € Mod(IT™).

We consider here the class béad-cycle free program@HCFPs) as introduced
in [5]. We first recall the concept @positive) dependency graph’s dependency graph
of a program/I = (A, R) is given byG = (V, E), whereV = AandE = {(p,q) |
r€R,p € BY(r),q € H(r)}. AprogramIl = (A, R) is called head-cycle free if its
dependency graph does not contain a directed cycle goingdhrtwo different atoms
which jointly occur in the head of a rule iR.

Example 1.We provide the fully instantiated (i.e. ground) version af introductory
example from Sectiohl 1, which solves the 3-colorability ttee given input database
vertex(a), vertex(b) andedge(a, b), yielding five rules (taking straight forward simpli-
fications as performed by state-of-the-art grounders iotoant):

rl:r(a) Vgla) Vb(a)—T; r2:1(b) Vg(b) Vb)) —T;
r3: L «r(a),r(b); rd: L —g(a),g(b);
r5: L «b(a),b(d);

Tree Decomposition and TreewidtiA tree decompositionf a graphg = (V, E) is a
pair7T = (T, x), whereT is a tree andy maps each nodeof T' (we uset € T as a
shorthand below) to bag x(t) C V, such that (1) for each € V, thereisa € T,
s.t.v € x(t); (2) for each(v, w) € E, thereis & € T, s.t.{v,w} C x(t); (3) for each
r,s,t € T, s.t.s lies on the path fromr to ¢, x(r) N x(¢) C x(s).

A tree decompositiofiT’, x) is callednormalized(or nice) [16], if (1) eacht € T
has< 2 children; (2) for eaclt € T with two childrenr ands, x(t) = x(r) = x(s);
and (3) for eacht € T with one childs, x(t) andx(s) differ in exactly one element,
i.e.|x(t)Ax(s)| = 1.

Thewidth of a tree decomposition is defined as the cardinality of igdst bag mi-
nus one. Every tree decomposition can be normalized inrlitia without increasing
the width [16]. Thetreewidthof a graphg, denoted bytw(G), is the minimum width
over all tree decompositions gf

For a given graph and integér deciding whether the graph has treewidth at most
k is NP-complete [2]. For computing tree decompositiongedsnt complete [2[7,11,3]
and heuristic methods have been proposed in the literatlgeristic techniques are
mainly based on searching for a good elimination orderingrafpph nodes. Several

4 We omit strong negation as consideredin [5]; our results easily extendgogms with strong
negation.



Fig. 1. The incidence graph of the ground program of Exarhple 1.

heuristics that run in polynomial time have been proposediriding a good elimina-
tion ordering of nodes. These heuristics select the orgerimodes based on different
criteria, such as the degree of the nodes, the number of éddss added to make
the node simplicial (a node is simplicial if its neighborsnfoa clique) etc. We briefly
mention three of them: (i) Maximum Cardinality Search (M@&] initially selects a
random vertex of the graph to be the first vertex in the elitimaordering (the elim-
ination ordering is constructed from right to left). The he&rtex will be picked such
that it has the highest connectivity with the vertices prasgly selected in the elimina-
tion ordering. The ties are broken randomly. MCS repeatsphacess iteratively until
all vertices are selected. (ii) The min-fill heuristic firstls the vertex which adds the
smallest number of edges when eliminated (the ties are bn@talomly). The selected
vertex is made simplicial and it is eliminated from the graphe next vertex in the
ordering will be any vertex that adds the minimum number afesdwhen eliminated
from the graph. This process is repeated iteratively uméibthole elimination ordering
is constructed. (iii) The minimum degree heuristic pickstfthe vertex with the mini-
mum degree. The selected vertex is made simplicial and @nwwed from the graph.
Further, the vertex that has the minimum number of unsalawtéghbors will be cho-
sen as the next node in the elimination ordering. This ptesepeated iteratively.
MCS, min-fill, and min-degree heuristics run in polynomied¢ and usually produce a
tree decomposition of reasonable width. For other type®aofiktics and metaheuristic
techniques based on the elimination ordering of nodes[Bee [

Tree Decompositions of Logic Program$o build tree decompositions for programs,
we use incidence grapBsThus, for programil = (A, R), such a graph is given by
G = (V,E), whereV = AU R andE is the set of all pairga, r) with an atoma € A
appearing in arule € R. Thus the resulting graphs are bipartite.

For normalized tree decompositions of programs, we thusdisish between six
types of nodedeaf (L), join or branch(B), atom introductior(Al), atom remova(AR),
rule introduction(RI), andrule removal(RR) node. The last four types will be often
augmented with the element(either an atom or a rule) which is removed or added
compared to the bag of the child node.

Figured1 anfl]2 show the incidence graph of Exariple 1 and aspmnding tree
decomposition.

5 See|[26] for justifications why incidence graphs are favorable over dyipes of graphs.



r1,72,1(a)

ri,72,r(a) r1,72,1(a)
ro,r(a) T1,T2
ro,73,1(a) 1,72 1,72
r2,T3 r1,72,8(b) ri,72,b(a)
ro,r3,1(b) r2,g(b) r1,b(a)
r2,8(a),g(b) 71,75, b(a)
g(a), g(b) 1,75
r4,8(a),g(b) 71,75, b(b)

Fig. 2. A normalized tree decomposition of the graph shown in Fiflire 1.

3 Dynamic Algorithms for ASP

Tree-decomposition based dynamic algorithms start ateheriodes and traverse the
tree to the root. Thereby, at each node a set of partial solsiis generated by taking
those solutions into account that have been computed fochté nodes. The most
difficult part in constructing such an algorithm is to idépnthn appropriate data struc-
ture to represent the partial solutions at each node: onrtadand, this data structure
must contain sufficient information so as to compute theasgmtation of the partial
solutions at each node from the corresponding representatithe child node(s). On
the other hand, the size of the data structure must only deperihe size of the bag
(and not on the size of the entire answer set program).

In this section we review two completely different realinas of this data structure,
leading to algorithms which we will call Dyn-ASP1 and Dyn-R&.

Dyn-ASP1.The first algorithm was presented n [15]. It was proposegbfopositional
disjunctive programdl which are not necessarily head-cycle free. Its data streictu
called tree interpretation, follows very closely the cluideazation of answer sets pre-
sented in Sectionl 2. A tree interpretation for tree decoiitipos? is a tuple(t, M, C),
wheret is a node of7, M C x(t) is called assignment, ar@®l C 2X(*) is called cer-
tificate. The idea is that/ represents a partial solution limited to what is visiblehia t
bag x(t). That means it contains parts of a final answer set as welll dscale rules
which are already satisfied. The certificate¢akes care of the minimality criteria for



answer sets. Itis a list of those partial solutions whichsanaller than\/ together with
the rules which are satisfied by them. This means when reat¢h@root node of/,
assignmenfi/ can only represent a real answer set if the associated catifs empty
or contains only entries which do not satisfy all rules.

It turns out that due to the properties of tree decompostibis indeed enough to
store only the information of the partial solution which i#l sisible in the current bag
of the tree decomposition. Hence, for each node the numbeiffefent assignments
M is limited single exponential in the treewidth. Togethethahe possible exponential
size of the certificate this leads to an algorithm with a woeste running time linear in
the input size and double exponential in the treewidth.

Dyn-ASP2. We recently proposed the second algorithm[in [21]. In cattta Dyn-
ASPL1 itis limited to head-cycle free programs. Its datacitme is motivated by a new
characterization of answer sets for HCFPs:

Theorem 1 ([21]).LetIl = (A, R) be an HCFP. Then)/ C A is an answer set aff
if and only if the following holds:

— M € Mod(IT), and

— there exists a sgt C R such that M C Urep H (r); the derivation graph induced
by M andp is acyclic; and for allr € p: B*(r) C M, B~ (r) N M = (), and
|[H(r)Nn M| =1.

Here the derivation graph induced By andp is given byV = M U p andE is the
transitive closure of the edge 8t = {(b,7) : r € p,b € BY(r) N M} U{(r,a) : 7 €
p,a € Hir)yNn M},

Hence, the data structure used in Dyn-ASP2 is a tugles), whereG is a deriva-
tion graph (extended by a special node due to technical neasmdS is the set of
satisfied rules used to test the first condition in Thedremghirit is enough to limit
G andS to the elements of the current bagt). Therefore the number of possible tu-
ples(G, S) in each node is at most single exponential in the treewidtis [Bads to an
algorithm with a worst case running time linear in the indaésand single exponential
in the treewidth.

4 Evaluation of Tree Decompositions for ASP

In this section we give an extensive evaluation of dynango@hms based on tree de-
compositions for solving benchmark problems in answer sEiramming. In Figurgl3
our solver based on tree decompositions and dynamic digusiis presented, where
Dyn-ASP1 and Dyn-ASP2 refers to the two algorithms desdriBectiori B. Moreover,
note that tree decompositions have to be normalized to baabteto the two dynamic
algorithms. The efficiency of our solver depends on the temmahposition module and
the applied dynamic algorithm. Regarding the tree decoitipnsve evaluated three
heuristics which produce different tree decompositionstifermore, we analyzed the
impact of tree decomposition features on the efficiency efdymamic algorithms. Ob-
serving that neither dynamic algorithm dominates the athaall instances, we propose
an automated selection of a dynamic algorithm during theisglprocess based on the
features of the produced tree decomposition.



MCS » TD1 > Dyn-ASP1
ASP » Min-Degree » TD2
Instance

Min-Fill » TD3 Dyn-ASP2

Fig. 3. Architecture of the TDDA-based ASP solver

Benchmark Description:To identify tree decomposition features that impact the run
time of our Dyn-ASP1 and Dyn-ASP2, different logic programsre generated and
different tree decompositions were computed for theserprog.

Programs were generated in two ways: Firstly, by generatiagpdom SAT instance
usingMKCNFﬁ These CNF formulas were then encoded as a logic programaese ¢
to the dynASP programmkcCNF was called with the following parameters: Number
of clauses ranging from 150 to 300, clause-size ranging f8aim 13 and number of
variables calculated bi0 x number of clauses clause-size.

The second method used for program generation closelyfsltbe one described
in [31]. For rule-length, from a set4 of atoms, a head atom and- 1 body atoms are
randomly selected. Each of the body atoms is negated witlolzapility of 0.5. Here
the rule-length ranges from 3 to 7 and the number of rulesesifigm 20 to 50. The
number of atoms is alway§of the number of rules, which is, accordingto][31], a hard
region for current logic program solvers.

For each of these programs, three different tree deconimosiare computed using
the three heuristics described below. Each of these tremmjamsitions is then normal-
ized, as both algorithms currently only handle “nice” treenpositions.

Applied Tree-Decomposition Algorithmgs we described in Sectign 2 different meth-
ods have been proposed in the literature for constructirtgeef decompositions with
small width. Although complete methods give the exact tiddwthey can be used only
for small graphs, and were not applicable for our problemiglwbontains up to 20000
nodes. Therefore, we selected three heuristic methods (M@Efill, and min-degree)
which give a reasonable width in a very short amount of time .HAve also considered
using and developing new metaheuristic techniques. AGhauch an approach slightly
improves the treewidth produced by the previous three btesi they are far less ef-
ficient compared to the original variants. In our experirsemé have observed that a
slightly improved treewidth does not have a significant iotm the efficiency of the
dynamic algorithm for our problem domain and therefore weidks to use the three
heuristics directly. We initially used an implementatidniteese heuristics available in a
state-of-the-art libraries [8] for tree/hypertree decosifjon. Further, we implemented
new data structures that store additional information aberices, their adjacent edges
and neighbors to find the next node in the ordering fasteh Wise new data structures
the performance of Min-fill and MCS heuristics was improvgddctor 2—3.

8 ftp://dimacs.rutgers.edu/pub/challenge/satisfiabili ty/contributed/UCSC
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4.1 Algorithm Selection

In our experiments we have noted that neither dynamic algardominates the other
in all problem instances. Therefore, we have investigdteddea of automated selec-
tion of the dynamic algorithm based on the features of theaposition. Automated
algorithm selection is an important research topic and bags investigated by many re-
searchers in the literature (c[f.]28] for a survey). Howeteethe best of our knowledge,
algorithm selection has not yet been investigated for temmohpositions.

To achieve our goal we identified important features of treeothpositions and
applied supervised machine learning techniques to sdieatlgorithm that should be
used on the particular tree decomposition. We have provideding sets to the ma-
chine learning algorithms and analyzed the performanceff@rent variants of these
algorithms on the testing set. The detailed performanagtsesf the machine learning
algorithm are presented in the next section.

Structural Properties of Tree Decompositiorisor every tree decomposition, a number
of features are calculated to identify the properties thaiterthem particularly suitable
for one of the algorithms (or conversely, particularly utedpie). The following features
(besides treewidth) were used:

— Percentage of join nodes in the normalized tree decompnosjfict)

— Percentage of join nodes in the non-normalized decompaditibranchpcy

— Percentage of leaf nodes in the non-normalized decompnoditieafpc)

— Average distance between two join nodes in the decompndgjjatist)

— Relative size increase of the decomposition during nomatén fisizeing

— Average bag size of join nodesv{dth)

— Relative size of the tree decomposition (i.e. number of twagkes) compared to the
size (vertices + edges) of the incidence grapltdsizg

We note that our data set also includes features of the graphWwhich the tree
decomposition is constructed. These features include eumbedges of the graph,
number of vertices, minimum degree, maximum degree etalecthe graph features
had a minor impact on the machine learning algorithms, theudision in this paper is
concentrated on tree decomposition features.

Experiments:All experiments were performed on a 64bit Gentoo Linux maehith
an Intel Core2Duo P9500 2.53GHz processor and 4GB of sys#&kh. Ror each gen-
erated head-cycle free logic program, 50 tree decompasitiere computed with each
of the three heuristics available. For each of these 150rdpositions, the two algo-
rithms described in Sectidd 3 were run in order to determih&lvone works best
on the given tree decomposition. Thus, a tuple in the bendhii@aset consists of
the generated program and a tree decomposition, and forteplehit is stored which
algorithm performed better and its corresponding runtime.

Based on this generated dataset, using the WEKA todlkit @ 8jachine learning
approach was used to try to automatically select the besardimalgorithm for an
already computed tree decomposition. Trying to selectésédombination of both tree
decomposition heuristic and dynamic algorithm unforteheseems impractical, as the
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underlying graph structure does not seem to provide enaovghmation for a machine
learning approach and calculating multiple tree decontipos is not feasible, as it is
an expensive process.

Algorithm selection based on classification techniquBssed on the performance of
the two algorithms, each tuple in the dataset was eitheliéab@®yn-ASP1” or “Dyn-
ASP2". Given the differences in runtime as shown in extract$able[1, the overall
runtime can be improved notably if the better-performirgpaithm is run.

Table 1.Exemplary performance differences that can occur in our two algositithen working
on the same tree decomposition.

Heuristic  |Algorithm |TD width||Runtime (sec)
Min-Degree|Dyn-ASP1|11 53.1629
Min-Degree|Dyn-ASP2(11 7.4058
MCS Dyn-ASP1|10 6.2420
MCS Dyn-ASP2|10 268.2940
Min-Fill Dyn-ASP1|10 9.8325
Min-Fill Dyn-ASP2|10 2.6030

By using the well-known CFS subset evaluation approacheémphted in WEKA
(see[[14] for details), thgdist andjpct properties were identified to correlate strongly
with the best algorithm, indicating that they are tree deposition features which have
a high impact on the performance of the dynamic algorithmsemfanked by informa-
tion gain (see Tablgl 2), threltdsizeproperty ranks second, followed bgleafpct td-
branchpctandjwidth indicating that all of these tree decomposition features beme
influence on the dynamic algorithms’ runtimes. These outran also be seen in
Figure[4, which shows the relationship between runtime hadé tree decomposition
properties. Interestingly, a direct influence of ffaist feature on the overall running
could only be found for the MCS heuristics (see Figure]4®pth other heuristics
produced tree decompositions with almost consjaligt value. Conversely, for the
tdleafpctfeature, MCS was the only heuristic not producing direatitsgFigurd 4(d)).

Table 2. Feature ranking based on Information Gain, using 10-fold crossatadiad

Average merit |Average rank|  Attribute
0.436 = 0.002]1 £ 0 jpct
0.422 +0.004]2 £ 0 reltdsize
0.386 + 0.004/3.2 + 0.4 jidist
0.372 £ 0.012{4.2 + 0.87 tdleafpct
0.357 + 0.006|5.2 &+ 0.6 tdbranchpct
0.354 £ 0.01 5.4+0.8 jwidth

In order to test the feasibility of a machine learning apphoia this setting, a num-
ber of machine learning algorithms were run to compare haiformance. Three such

11



classifiers were tested: Random decision trees, k-neagigtbor and a single rule al-
gorithm. The latter serves as a reference point, it alwaggne the class that occurs
most often (in this case “Dyn-ASP2"). For training, the datawas split tenfold and

ten training- and validation runs were done, always trgron nine folds and validat-

ing with the 10th (10-fold cross-validation). Table 3 shdhes classifier performance in
detail. It shows for each classifier, how many tuples of edabsc(the “correct” class)

were incorrectly classified, e.g. for all training-tuples which the Dyn-ASP1 algo-

rithm performed better, the KNN classifier (wrongly) chdse Dyn-ASP2 algorithm in

only 10.8% of the cases.

Table 3. Different classifiers and percentages of incorrectly classified inssanc

Classifier Correct class|Incorrectly classified
Single-rule Dyn-ASP1 23.1%
Single-rule Dyn-ASP2 18.4%
kNN, k=10 Dyn-ASP1 10.8%
kNN, k=10 Dyn-ASP2 18.5%
Random forest|Dyn-ASP1 10.6%
Random forest|Dyn-ASP2 18.4%

Algorithm selection based on regression techniqugse second approach that we ap-
plied for selection of the best dynamic algorithm on theipatar tree decomposition is
based on regression techniques. The main idea is to usemedehrning algorithms to
first predict the runtime of each dynamic algorithm in a garttr instance, and then se-
lect the algorithm that has better predicted runtime. Tolélae model for runtime pre-
diction we provide for each dynamic algorithm a trainingtbett consists of instances
that include features of input tree decomposition (and tipaiti graph). Additionally,
for each example are given the information for the time ndddeconstruct the tree
decomposition and the running time of the particular dymaahgorithm.

We experimented with several machine learning algorithomsdgression available
in WEKA, and compared their performance regarding the seleaccuracy of the
fastest dynamic algorithm for the given input instance.d¢arh machine learning algo-
rithm we provided a training set consisting of 6090 examplée testing set contained
3045 examples.

The algorithm k-NN (k=5) gave best results among these macleiarning algo-
rithms regarding runtime prediction for both dynamic altjons. To illustrate the per-
formance of k-NN algorithm regarding the runtime predictive present the actual
runtime and the predicted runtime for both dynamic alganithin Figurd . Results for
the first 30 examples in the testing set are given.

Regarding the algorithm selection based on the runtimeigtied, we present in
Table[4 the best current results that we could obtain withrveechine learning algo-
rithms k-NN (K-nearest neighbors, séé [1]) and M5P (Prumeplassion tree, sele [24]
and [30]). As we can see the accuracy of selecting the rigist€bt) dynamic algo-
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rithm for a particular instance is good. In particular, thM algorithm selects the best
algorithm for the 88% of the test instances.

13 5 7 8 11 13 15 17 19 2 28 %5 A A 1&F 5 7 8 1 13 15 17 19 2 B 2B T 2B
Dyn-ASP1 Dyn-ASP2

Fig. 5. Actual and predicted time with KNN for first 30 test examples

Table 4. Two regression algorithms and their accuracy regarding the selectlmettef dynamic
algorithm.

Algorithm|Dynamic algorithm selection accuracy
M5P 80.2%
kNN, k=588.1%

5 Discussion

In our experiments, we have identified several importarg tlecomposition features.
As these features can have a high impact on the performarecsudsequent dynamic
algorithm, heuristics should try to create “good” deconifmss also with respect to
these features and not only with respect to the width. It lemime apparent that a
higher width can be compensated by such a decompositiarinegr benchmarks, the
MCS heuristic always produced the worst width, but actuskyeds up our dynamic al-
gorithms. Moreover, these features have turned out to bleswighble for classification
and regression methods.

The good results that were obtained by our machine learmipgpach clearly sug-
gest that two-phased algorithms like our dynASP systemifgigntly profit from an
automatic selection of the dynamic algorithm in the secdmasp — based on the tree
decomposition features identified here. Given the effeotss of the single-rule clas-
sifier, by simply implementing this rule (which is equivaléa a simple if-statement),
the dynamic algorithm can be effectively selected oncerfe=decomposition has been
computed. By utilizing a k-nearest neighbor or random degisee approach, on av-
erage more than 85% of the decisions made are correct,yigldither improvements.
Machine learning approaches (like portfolio solvers) dreaaly in use for ASP (see
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e.g. [4.9]), however these are specific to ASP, whereas qupaph, using tree decom-
position features for decisions, can generally be usedfaiDA approaches.

6 Conclusion

In this paper we have studied the interplay between threddties for the computa-
tion of tree decompositions and two different dynamic altpons for head-cycle free
programs, an important subclass of disjunctive logic protg. We have identified fea-
tures beside the width of tree decompositions that influgheerunning time of our
dynamic algorithms. Based on these observations, we hayp®ged and evaluated al-
gorithm selection via different machine learning techeisur his will help to improve
our prototypical TDDA system dynASP.

For future work, we plan to study the possibilities to notyoperform algorithm
selection for the dynamic algorithm but also for the heigigi compute the tree de-
composition. Furthermore, our results suggest that haurnsethods for tree decom-
positions should not only focus on minimizing the width bhbsld also take some
other features as objectives into account. Finally, we extheat our observations are
independent of the domain of answer set programming. Wefibrer plan to evaluate
tree-decomposition based algorithms for further probl&os various other areais|[6].
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