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Abstract. Reactive tabu search (RTS) aims at the automatic adapta-
tion of the tabu list length. The idea is to increase the tabu list length
when the tabu memory indicates that the search is revisiting formerly
traversed solutions. Once too many repetitions are encountered, an es-
cape mechanism constituting a random walk is an essential part of the
method. We propose to replace this random walk by a controlled simu-
lated annealing (SA). Excellent results are presented for various combi-
natorial optimization problems.

1 Introduction

The basic paradigm of tabu search is to use information about the search history
to guide local search approaches to overcome local optimality. In general, this is
done by a dynamic transformation of the local neighborhood. RTS aims at the
automatic adaptation of the tabu list length [1, 2]. A possible specification can
be described as follows: Starting with a tabu list length s of 1, it is increased
to min{max{s + 2, s × 1.2}, bu} every time a solution is repeated, taking into
account an appropriate upper bound bu (to guarantee at least one admissible
move). If there has been no repetition for some iterations, we decrease it to
max{min{s− 2, s/1.2}, 1}. To accomplish detecting repetitions of solutions, we
apply a trajectory based memory using hash codes.

For RTS it is appropriate to include means for diversifying moves whenever
the tabu memory indicates that we are trapped in a certain region of the search
space. As a trigger mechanism one may use, e.g., the combination of at least
three solutions each having been traversed three times. The standard escape
strategy is to perform randomly a number of moves (depending on the average
of the number of iterations between solution repetitions) [1, 2]. As termination
criterion one may consider a given time limit. In this paper we propose to replace
this random walk by a controlled SA.

The next section provides details of the specific hybridization that we pro-
pose. In Section 3 we sketch the set of problems that we have currently looked
at. The paper closes with some conclusions.
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2 The Hybrid Method

SA extends basic local search by allowing moves to worse solutions. Starting
from an initial solution, successively a candidate move is randomly selected; this
move is accepted if it leads to a solution with a better objective function value
than the current solution, otherwise the move is accepted with a probability that
depends on the deterioration ∆ of the objective function value. The acceptance
probability is computed according to the Boltzmann function as e−∆/T , using a
temperature T as control parameter. Various authors describe robust realizations
of this general SA concept. Following [4], the value of T is initially high, which
allows many worse moves to be accepted, and is gradually reduced through
multiplication by a parameter coolingFactor according to a geometric cooling
schedule.

Instead of using random walk as the escape mechanism within RTS, we pro-
pose to apply SA, which performs, depending upon the parameter setting, diver-
sification as well as intensification to some degree. In the computational experi-
ments described in this paper, we examine the effect of adapting the SA param-
eter values in accordance with its primary role as diversification mechanism [4].
We stick to using α = 0.95, whereas frozenLimit is set to 1 in order to terminate
earlier. Instead of initialAcceptanceFraction = 0.4 we also use the value 0.1 which
means less diversification; instead of sizeFactor = 16 we also use the value 1
which speeds up the cooling process; instead of frozenAcceptanceFraction = 0.02
we also use the value 0.1 which eventually means less intensification. (Whenever
a SA run is performed while an overall time limit is reached we finish that run
before terminating the approach.)

3 Computational Results

We have considered various optimization problems to emphasize the impact of
the RTS/SA-hybridization proposed above. In the sequel we provide results for
the Ring Load Balancing Problem (RLB) and mention other problems where
implementations and results are available. All implementations have been per-
formed by using our HOTFRAME software [3] on an average PC.

3.1 Ring Load Balancing Problem

The RLB is an NP-hard telecommunications problem where we are given a ring
of nodes with a set of communication demands between node pairs [5]. Assuming
that the communication demands occur simultaneously, the task is to decide for
each demand whether to route it clockwise or counterclockwise, minimizing the
maximum bandwidth requirement on any of the links between adjacent nodes.
That is, given a set of n nodes and a set of demands between pairs of nodes,
find a direction for each of the demands so that the maximum of the loads on
the links in the network is as small as possible.
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The solution space consists of all possible routing directions for the demands.
We employ a straightforward neighborhood that is defined by switching the
routing direction for one demand (node pair). The quality of such a local search
move is assessed by the implied change of the objective function value. The RLB
has been used as a testbed as optimal solutions are available and we are yet able
to show the impact of our approach. We report results for problem instances of
the RLB proposed in [5].

Table 1 provides a detailed view on the characteristics of the data. In the
first column we describe the different scenarios together with (n,D), the number
of nodes n and number of demands D. The first three blocks are non-centralized
demands while the last block gives centralized demands, i.e., D = n − 1. Each
row refers to an average of ten runs. Correspondingly, column ‘opt’ provides
(in each row) the average of the optimal solution values for these ten runs.
We provide results for the case where diversification is performed by using the
original random walk as an escape mechanism (Esc.=RW) with time limit 1
second. On the right side of the table we consider the case where the escape
mechanism is performed by applying a SA run with the standard parameter
setting as described above. The time limit is the same as before as well as one
with a possible instance-dependent extension based on the given data. While all
approaches provide small deviations from optimality the hybrid approach is able
to considerably improve on its pure counterpart.

3.2 Other Problems

Additional problems where we have applied our ideas include, among others,
the Minimum Weight Vertex Cover Problem and the Minimum Labelling Span-
ning Tree Problem. For all considered problems we show that the hybridization
improves the numerical results of the pure RTS and the SA.

4 Conclusions

In this paper, we have presented a very simple and yet very effective modifica-
tion of the well-known reactive tabu search. As a conclusion we may deduce that
randomness helps in metaheuristics, though a controlled way of incorporating
randomness might be more successful than pure randomness. The number of suc-
cessful implementations of RTS in literature provides an option to revisit those
implementations to crosscheck whether our idea also holds in those applications
that have not been looked at in this paper.
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opt Esc.=RW (1s) Esc.=SA (1s) Esc.=SA (max(1,D/90)s)

ss (5;6) 131.5 131.5 131.5 131.5
(10;12) 231.6 231.6 231.6 231.6
(15;25) 507.5 507.5 507.5 507.5
(20;40) 734.5 734.5 734.5 734.5
(25;60) 1013.4 1013.3 1013.3 1013.3
(30;90) 1435.8 1434.9 1434.2 1434.2

mm (5;8) 173.6 173.6 173.6 173.6
(10;23) 422.5 422.5 422.5 422.5
(15;50) 883.8 882.2 882.2 882.2
(20;95) 1457.5 1457.4 1455.8 1455.8
(25;150) 2253.3 2241.0 2234.3 2234.2
(30;200) 3013.2 3019.1 3006.8 3006.8

ll (5;10) 186.0 186.0 186.0 186.0
(10;45) 728.6 728.3 728.3 728.3
(15;105) 1605.1 1602.2 1599.9 1599.9
(20;190) 2742.3 2736.2 2721.0 2720.6
(25;300) 4243.5 4238.7 4225.2 4221.3
(30;435) 5982.0 5987.7 5968.2 5956.9

ce (5) 155.0 155.0 155.0 155.0
(10) 349.4 349.4 349.4 349.4
(15) 530.7 530.7 530.7 530.7
(20) 721.8 721.8 721.8 721.8
(25) 991.8 991.8 991.8 991.8
(30) 1101.7 1101.7 1101.7 1101.7

Average: 0.12% 0.03% 0.01%
Table 1. Computational results for the RLB.
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