
Five Phase and Genetic Hive Hyper-heuristics
for the Cross-Domain Search

Tomasz Cichowicz, Maciej Drozdowski, Michał Frankiewicz, Grzegorz Pawlak,
Filip Rytwiński, and Jacek Wasilewski

Institute of Computing Science, Poznan University of Technology, Poland
{Tomasz.Cichowicz,Michal.Frankiewicz,Filip.Rytwinski,

Jacek.Wasilewski}@student.put.poznan.pl
{Maciej.Drozdowski,Grzegorz.Pawlak}@cs.put.poznan.pl

Abstract. In this paper we present two hyper-heuristics: Five Phase
Approach (5Ph) and Genetic Hive (GH), developed for the Cross-Domain
Heuristic Search Challenge held in 2011. Performance of both methods
is studied. Experience gained in construction of the hyper-heuristics is
presented. Conclusions and recommendations for the future advancement
of hyper-heuristic methodologies are discussed.

Keywords: hyper-heuristics, cross-domain heuristic search, HyFlex.

1 Introduction

Hyper-heuristics (HH) are supposed to bring a new quality to solving hard com-
binatorial problems. Instead of directly searching the space of various combi-
natorial optimization problems, hyper-heuristics explore the space of low level
heuristics (LLHs). The LLHs perform moves in the space of solutions of a ground
combinatorial optimization problem similarly to the classic local search meth-
ods. Thus, LLHs serve as an interface between the problem domain and the
guiding algorithm of a hyper-heuristic. This approach has a potential advantage
of automating construction and tuning of algorithms. That allows solution of
a broad range of combinatorial problems (domains). Still, this general concept
to be fruitful needs considering of at least two issues: Which LLHs concepts
are general enough to be implemented in every domain, and how can they be
controlled?

The first issue has been tackled in the HyFlex framework [1]. HyFlex is a
Java library implementing four LLH types on six domains. The LLH types are:
local search heuristics, mutational heuristics, ruin-recreate heuristics, crossover
heuristics. The domains were: maximum satisfiability (Max-SAT), bin packing,
flowshop (FS), personnel scheduling (PS), and later also traveling salesman prob-
lem (TSP), vehicle routing problem (VRP) [4]. HyFlex maintains a population of
solutions initialized by randomized constructive heuristics. The objective func-
tions are uniformly minimized in all domains. Some of the LLHs have additional
parameters controlling, i.e. depth of search, intensity of mutation.



2 T.Cichowicz at al.

In this paper we report on two hyper-heuristics developed by a CS-PUT team
of students and researchers of the Institute of Computing Science, Poznan Uni-
versity of Technology. Two methods were independently developed: Five Phase
(5Ph) and Genetic Hive (GH).

2 Five Phase Approach

The idea was to build an algorithm which iteratively goes through three main
phases: intensification, stagnation, and diversification. Moreover, to avoid getting
stuck in some bad solution, the algorithm should work on a number of solutions
in parallel applying also the mutation and crossingover phases (see Figure 1).

Solution Streams Initialization. This step was applied once for each thread
to scatter the search paths into different areas of the solutions space. Random
LLHs were applied for five seconds on every thread.

LLH classification. The classification algorithm ran an LLH in its thread
(solution stream) a predetermined number of times to collect the statistics. A
linear regression was used to calculate the slope ai of the linear approximation
of the objective function in the repetition count, for each LLH i. The duration
∆i of the classification period for LLH i was also recorded. The score of LLH i
was stati = −ai/∆i. The LLH with stati > 0 was labeled as an improver, with
stati < −0.2 LLH was classified as masher.

Intensification. A random LLH from the triplet(triple cluster of LLHs instead
of just singleton LLHs) was applied in the solution. Probability of selecting the
LLH was proportional to its score. The scores were calculated on the basis of
statistics collected while running the thread. For each LLH i recent improvement
of the objective function value φi (φi > 0 means improvement), and execution
time δi were recorded. The score of LLH i was scorei = scorei ∗ eφi/δi , where
initial scorei = 1 - not selected firstly, might have been dominated and eliminated
due to quickly growing score of just one LLH. To counter such effect, the LLHs
that were not applied so far, had their score increased by 5% with each execution
of any LLH in the thread. The selection of LLH and its run to stagnation was
repeated NoIt = dgs/3+3e times, where gs is the number of global stagnations.

Stagnation. In the stagnation state, the improvement in the objective func-
tion stalled. It had been defined as a situation in which the solution did not
improve in a number of consecutive iterations of LLH. Global stagnation phase
occurred when, after 3 global iterations, the best objective function value was
not changed.

Diversification. In this phase masher LLHs were chosen randomly and applied
for a predetermined time period. It was proposed to use short clusters - triplet-
of LLHs on the solutions instead of just singleton LLHs. The architecture of 5Ph
is depicted in Figure 1.

Triplet Mutation. After the intensification phase LLH triples were mutated.
For each thread the algorithm of LLH mutation proceeded in two steps: 1. Ran-
domly selecting a triplet from some other thread. Probability of drawing a triplet



5Ph and GHH for Cross-Domain Search 3

Diversification 
 

Mutate tripples 

Stagnation or time-out 

Initial solution 

Intensification 

… 

Virtual streams / threads 

Switch to the next 
stream and start the 
intensification phase on 
next stream before 
going to diversification 

Initialize streams 

Multiple iterations 

Global 
stagnation? 

No 

CrossingOver 

Yes 

Diversification 
 

Mutate tripples 

Stagnation or time-out 

Intensification 

Fig. 1. Architecture of 5Ph algorithm

was proportional to the mean value of the triplets LLH scores; 2. Replacing the
worst LLH in the current thread with the best LLH from the drawn one.

Solution Crossingover. If the state of global stagnation was reached, 5Ph
applied a random LLH of the crossover class on the solutions from the threads.
The two solutions to the crossover were selected randomly - the first solution
with the probability proportional to the quality of the solution and the second
with the probability inversely proportional to the solution quality. At the end of
this phase, the global stagnation counter gs was reset to 0, and 5Ph restarted in
the intensification phase.

3 Genetic Hive Algorithm

This algorithm consisted in parallel search of the solution space using evolving
sequences of low level heuristics. It was inspired by the Bees Algorithm presented
in [2] and genetic algorithms mentioned in [3] imitating the behavior of bees
searching for food.

In the algorithm, bees correspond with the LLH sequences. They will be la-
beled as agents. Searching for locations correspond with searching for current
problem solutions. The agents (bees) in the hive remain passive, while the agents
outside attempt to improve the current solutions. Thus, this algorithm is a com-
bination of evolutionary approach and simulation of agent colony searching for
resources. Let us denote by H the set of all agents, by L the set of active agents
(outside the hive), and by B ⊆ L the set of agents continuing their search in
their locations.



4 T.Cichowicz at al.

GHHH-Search()

1 InitSearch()
2 while timeSpent < timeLimit
3 do
4 for every agent a ∈ L
5 do Evaluate-Agent(a)
6 � Select agents with the best scores that stay in search locations
7 B ← bSize best agents from set L
8 � Select additional agents that stay in hive to simulate partial extinction
9 S ← sSize random agents from set H \B

10 � Evolve new agents and update hive with them
11 O ← Evolve(B ,oSize)
12 H ← B ∪S ∪O
13 � Assign random agents from hive to free search locations
14 L← B ∪((lSize − bSize) random agents from set H −B);
15 timeSpent ← currentTime − startTime
16 End.

where: hSize - population size - the total number of agents, lSize - number
of search locations, bSize - number of agents staying in their search locations,
sSize - number of additional agents that don’t evolve, oSize - number of agents
replaced by the offspring, size of the agent - number of LLHs in agent definition,
probability of mutation.

4 Computational experiments

The aforementioned GH and 5Ph hyper-heuristics, as well as some other hyper-
heuristics created by the team were subject to a number of tests comparing
their performance. The results of that comparisons are summarized in Table 1.
The first two are ad hoc methods. RND LLH - for each of 10 parallel solutions

Table 1. Pairwise comparison of CS-Put HHs

Hyper Heuristics 1 2 3 4 5 6 7 8 9 10 11 12 13
1 RND LLH x
2 Each LLH 22/17 x
3 4Ph-LS 36/2 35/5 x
4 4Ph-RND LLH 25/14 21/17 6/32 x
5 5Ph-LS 3pl 37/3 35/5 19/17 36/3 x
6 5Ph-RND LLH 3pl 25/15 28/12 6/33 18/15 4/34 x
7 5Ph-154 37/2 35/5 17/20 33/4 20/17 37/2 x
8 5Ph-155 32/7 31/8 17/20 31/8 16/18 31/8 16/22 x
9 5Ph-160-40 35/5 27/10 19/18 28/12 18/21 25/15 17/22 19/20 x
10 5Ph-160-46 30/10 27/12 19/20 24/15 18/21 24/14 16/20 15/24 14/24 x
11 5Ph-160-63 32/6 35/5 17/21 29/11 20/19 30/10 15/23 18/20 20/19 22/17 x
12 GenHiv-35 32/8 28/10 14/24 30/9 17/21 28/12 16/22 17/20 17/22 19/21 14/23 x
13 GenHiv-65 36/4 27/13 19/19 29/9 19/18 26/13 18/21 21/18 21/17 21/16 19/21 20/19 x
14 GenHiv-68 35/5 29/11 21/17 30/10 24/15 30/10 19/19 26/14 22/18 24/15 23/15 26/11 23/15



5Ph and GHH for Cross-Domain Search 5

randomly choose LLH and apply it to a solution. Each LLH - means executing
each LLH and choosing the best solution. Further suffixes denote: LS means
using local search, LLHs in the intensification phase 3pl means that the triplets of
LLHs were introduced. The particular method can be executed with the different
parameters settings. The values presented in the table are the numbers of wins
against each other. The total number of evaluated instances was 40. For some
entries, the total number of wins is smaller than 40. It means that there were
ties and that both methods gave the same solution. In Table 2, the two final HH

Table 2. Comparison results for 5Ph and GH - No. of wins out of 10 instances

SAT FS PS BP SAT FS PS BP
5Ph GH

Minimum
1 1 1 2 2 8 9 6

Median
8 0 4 7 2 10 4 3

Average
10 10 9 10 0 0 0 0

of CS-PUT team are compared on all the HyFlex instances. Minima, medians
and averages of the objective function are presented. A value presents number of
wins for particular method and instance out of 10 evaluated instances. From the
results gathered in the Table 2 one can conclude that GH method is generally
better, according to the competition rules, than 5Ph. On contrary, 5Ph is better
in averages and there is a tie in medians. Hence, distributions of the results are
different. This demonstrates that a single performance index may be insufficient
to show the complexity of the results.

5 Conclusions

Controlling the search process is a complex problem. One of the difficulties was
to decide when to stop applying the current LLH. If the current LLH exhausts
its potential for improving the current solution the search arrives in the state
of ”stagnation”. However, simple statistical methods of detecting stagnation, we
applied, were insufficient to quickly discover that the search had already stalled.
Similar difficulty is guiding the diversification process to move the solution away
from the local minimum. On one hand, it is necessary to leave quickly the current
part of the solution space, on the other hand, the good parts of the current
solution should be preserved to avoid rebuilding the solution from the scratch.
We attempted to improve the performance of 5Ph by diversifying the population
of the solutions supplied to the crossover: some of the solutions were the local
minima, some were random, and some were the worst solutions visited so far.



6 T.Cichowicz at al.

Still, the results were not satisfactory and in the tunning the number of crossovers
gradually decreased to 1. It seems that convergence of crossover was too slow
for the rules of the competition.

A HH, applying certain types of LLH, iteratively performed well in one do-
main, but was unsuccessful in other domains. This suggests that the sequence of
the LLH types should be broken, and the type of LLH currently applied should
be varied. To avoid being trapped in a bad solution path, we introduced “par-
allel” search threads in 5Ph. In the course of tunning, the number of threads
decreased from over 100 to 3-7. It can be noted that the chance of avoiding being
stacked up by parallelism is not bigger than by the use of other diversification
tools. Thus, massive parallelism does not provide real advantage in HH search.

Performance of LLHs is domain-, instance-, and solution-dependent. This
has consequences in reasoning about LLHs and HHs: Classifying LLHs by their
average behavior makes no sense, and such classifications cannot be applied to
guide HHs. Since, a HH does not ”know” what instance in what domain is solved
and the LLHs can perform so unpredictably, each instance becomes a unitary
combinatorial optimization problem. Consequently, unless the domain is fixed
and the instances are similar, HHs cannot be preconditioned for efficient solving
of any instance in any domain. All the information fed to the AI of HH must be
collected while solving the actual instance.

The performance of hyper-heuristic search has at least two criteria: time
and quality of solutions. However, the issue of time was more involved. The
HH should be perceived as combination of three elements: architecture, control
parameters, and guiding algorithm. The architecture dictates the mode of LLH
usage. The architecture can be, i.e., Tabu Search, Memetic Algorithm, 5Ph,
GH, etc. In the classic meta-heuristics, the control parameters are set in the
tuning process. Consequently, HH with sophisticated architecture and a lot of
control parameters (as in 5Ph) need more time and more data to tune to the
solved instances. This leads to a conclusion that for better understanding of HH
search, it would be more advantageous to start with a rudimentary HH.
Acknowledgments. Research partially supported by Polish National Sci-

ence Center (No. 519 643340)

References

1. Burke, E., Curtois, T., Hyde, M., Ochoa, G., Vazquez-Rodriguez, J.A.: HyFlex: A
Benchmark Framework for Cross-domain Heuristic Search. ArXiv e-prints (2011),
http://adsabs.harvard.edu/abs/2011arXiv1107.5462B,

2. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S and Zaidi M.: The Bees
Algorithm. Manufacturing Engineering Centre, Cardiff University, UK, (2005)

3. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent Developments. In: C. Cotta
et al. (Eds.): Adaptive and Multilevel Metaheuristics, SCI, vol. 136, pp. 3–29.
Springer, Heidelberg (2008)

4. Hyde, M., Ochoa, G., Parkes, A.: Cross-domain Heuristic Search Challenge. (2011)
http://www.asap.cs.nott.ac.uk/chesc2011/

5. Hyde, M., Ochoa, G.: ASAP Default Hyper-heuristics. (2011) http://www.asap.
cs.nott.ac.uk/chesc2011/defaulthh.html


