
An Intelligent Hyper-heuristic Framework for

CHeSC 2011

M. Mısır1,2, K. Verbeeck1,2, P. De Causmaecker2, and G. Vanden Berghe1,2

1 CODeS, KAHO Sint-Lieven
{mustafa.misir,katja.verbeeck,greet.vandenberghe}@kahosl.be

2 CODeS, Department of Computer Science, K.U.Leuven Campus Kortrijk
patrick.decausmaecker@kuleuven-kortrijk.be

Abstract. The present study proposes a new selection hyper-heuristic
providing several adaptive features to cope with the requirements of
managing different heuristic sets. The approach suggested provides an
intelligent way of selecting heuristics, determines effective heuristic pairs
and adapts the parameters of certain heuristics online. In addition, an
adaptive list-based threshold accepting mechanism has been developed.
It enables deciding whether to accept or not the solutions generated by
the selected heuristics. The resulting approach won the first Cross Do-
main Heuristic Search Challenge against 19 high-level algorithms. The
detailed empirical results concerning the behaviour of the hyper-heuristic
and its sub-mechanisms will be presented at the conference.

1 Introduction

Selection hyper-heuristics are high-level search and optimisation strategies op-
erating on a set of low-level heuristics in a problem-independent manner [1, 2].
In this study, we developed an intelligent selection hyper-heuristic to deal with
different heuristic sets for six problem domains provided by HyFlex [3]. The
development phase consists of determining the generality requirements, design-
ing effective components with online adaptation skills for these requirements,
and combining them using certain decision mechanisms. The empirical results
showed that the proposed approach is capable of delivering high performance
over the tested problems.

2 Methodology

2.1 Adaptive Dynamic Heuristic Set Strategy

The adaptive dynamic heuristic set (ADHS) strategy [4, 5] is responsible for
monitoring the performance of each heuristic to determine elite heuristic subsets
for consecutive iteration blocks, each referring to one particular phase. The un-
derlying motivation is to specify the best performing heuristics that will be used
during a number of phases to make the heuristic selection process easier. A per-
formance metric (pmi) based on simple quality indicators such as improvement



capability and speed, is used to decide upon exclusion of a heuristic. Equa-
tion 1 illustrates how the performance of heuristic i is measured. In this equa-
tion, Cp,best(i) is the number of new best solutions explored. fimp(i) and fwrs(i)

show the total improvement and worsening during the whole run. fp,imp(i) and
fp,wrs(i) indicate the improvement and worsening provided during the current
phase. tremain is the remaining execution time. tspent(i) refers to the total time
spent until that moment and tp,spent(i) demonstrates the execution time spent
during the current phase. For each contributing performance element, a weight
wi is utilised. The values of these weights are set in a decreasing manner. The
weights are sufficiently different to manage them in order of importance.

pmi = w1

[(

Cp,best(i) + 1
)2(

tremain/tp,spent(i)
)]

× b+

w2

(

fp,imp(i)/tp,spent(i)
)

− w3

(

fp,wrs(i)/tp,spent(i)
)

+

w4

(

fimp(i)/tspent(i)
)

− w5

(

fwrs(i)/tspent(i)
)

(1)

b =







1,
∑n

i=0 Cp,best(i) > 0

0, otw.

The corresponding pi values are ranked and a quality index (QI ∈ [1, n]) value
is determined for each heuristic based on this ranking as a normalisation of the
pi values. The best performing heuristic gets the highest QI that is the number of
heuristics (n) currently available. The QI values of the remainder of the heuristics
decrease by 1 for each ranking level and the heuristic with the lowest pi value has
QI = 1. The heuristics with a QI less than the average of QIs are excluded, which
means that it will not be called upon for a number of phases. These excluded
heuristics have also QI = 1. The length of exclusion is called tabu duration d

and it is set to
√
2n. If a heuristic is consecutively excluded, its tabu duration is

incremented by 1. Alternatively, if a heuristic is not excluded after performing
a phase, its tabu duration is set back to the initial value. This incrementation
continues until the corresponding tabu duration reaches its upper bound, which
is set to 2

√
2n. Whenever the tabu duration is equal to its upper bound, ADHS

permanently excludes this heuristic.

The phase length (pl) is set to (d × phfactor) iterations. phfactor is a prede-
termined constant and it is set to 500. For instance, if the number of heuris-
tics in the heuristic set is 10, then the tabu duration is set as d = 4 and pl is
2000 iterations. Whenever the heuristic subset is updated, pl is adjusted with
respect to the average time required for performing a move by a non-tabu heuris-
tic. This adjustment was performed based on the number of phases requested
(phrequested = 100) which is a predefined value, as illustrated in Equation 2.
Cmoves(i) shows the number of times heuristic i is called and ttotal indicates the
total execution time. The calculated value is constantly checked to keep it within
its bounds, pl ∈ [d× 50, d× phfactor].



pl =
(

ttotal/phrequested

)

/

n
∑

i=0

(

tspent(i)/Cmoves(i)
)

.isTabu(i) (2)

Extreme heuristic exclusion : Some of the heuristics which did not find new
best solutions during a phase are additionally excluded based on Equation 3 at
the end of each phase. The idea behind this extra exclusion procedure is to fasten
the search process by eliminating slow heuristics compared to the speed of the
other heuristics in the heuristic set. The standard deviation (σ) and the average
(̟) of the exc(i) values together with the number of new best solutions (nb)
found by the heuristics in the heuristic set are used for this additional exclusion
as shown in Equation 4.

exc(i) =
(

tspent(i)/Cmoves(i)
)

/
(

tspent(fastest)/Cmoves(fastest)
)

(3)

σ > 2.0 ; exc(i) > 2̟ ; nb > 1 (4)

Heuristic selection : In order to choose a heuristic from the heuristic subset,
a probability vector is maintained. The selection probabilities of the heuristics
are the normalisation of the calculated values based on Equation 5.

pri =
(

(Cbest(i) + 1)/tspent
)(1+3tf3) (5)

tf = (ttotal − telapsed)/ttotal

2.2 Relay Hybridisation

The hyper-heuristic also investigates a simple relay hybridisation approach to
determine effective pairs of heuristics that are applied consecutively. The details
of this approach are presented in Algorithm 1. Cphase denotes the number of
iterations that have been executed during the current phase. Cbest,s is a counter
regarding the number of new best solutions found by the single heuristic selection
method. Cbest,r is another counter for the number of new best solutions found
by the relay hybridisation. p is a random variable to decide upon using relay
hybridisation. p′ is another random variable for choosing the second heuristic.
listi indicates the list of heuristics to be applied after heuristic i. The size of
the list is set to 10 for each heuristic. The choice of the first heuristic is made
by a learning automaton (LA) that keeps a probability list with the selection
probabilities of the first heuristics [6]. A linear reward-inaction update scheme
is used for updating the probabilities as indicated in Equation 6 and 7. In these
equations, the learning rates are set as λ1 = 0.5 and λ2 = 0. This update scheme
increases the probability of a heuristic that has found new best solutions.

In addition, the tabu approach used for ADHS is applied to disable relay
hybridisation if it could not deliver a new best solution after a phase.



Algorithm 1: Relay hybridisation

Input: listsize = 10; γ ∈ (0.02, 50); p, p′ ∈ [0 : 1]
1 γ = (Cbest,s + 1)/(Cbest,r + 1)
2 if p ≤ (Cphase/pl)

γ then

3 select LLH using a LA and apply to S → S′

4 if size(listi) > 0 and p′ <= 0.25 then

5 select a LLH from listi and apply to S′ → S′′

6 else

7 select a LLH and apply to S′ → S′′

end

end

pi(t+ 1) = pi(t) +λ1 β(t)(1− pi(t))

−λ2(1− β(t))pi(t) (6)

if ai is the action taken at time step t

pj(t+ 1) = pj(t) −λ1 β(t)pj(t)

+λ2(1− β(t))[(r − 1)−1 − pj(t)] (7)

if aj 6= ai

2.3 Heuristic Parameter Adaptation

Certain heuristics have a parameter called “intensity of mutation” represent-
ing the perturbation level. The other heuristics concentrating on improvement
only have a parameter called “depth of search” related to the number of steps
to be applied. A reward-penalty strategy is used to dynamically adapt these
parameters.

2.4 Adaptive Iteration Limited List-based Threshold Accepting

Adaptive iteration limited list-based threshold accepting (AILLA) is a move ac-
ceptance mechanism providing an adaptive diversification strategy in connection
with the quality of the explored new best solutions earlier [4, 7, 5]. Its details are
presented in Algorithm 2.

The iteration limit (k) is updated as shown in Equation 8. For the list length
(l), the update rule presented in Equation 6 is utilised (lbase = 5, linitial = 10).

k =







((l− 1)× k + iterelapsed)/l, if cw = 0

((l− 1)× k +
∑cw

i=0 k × 0.5i × tf)/l, otherwise
(8)

cw = iterelapsed/k

l = lbase + (linitial − lbase + 1)tf3 (9)



Algorithm 2: AILLA move acceptance
Input: i = 1, K ≥ k ≥ 0, l > 0
for i=0 to l-1 do bestlist(i) = f(Sinitial)

1 if adapt iterations ≥ K then

2 if i < l− 1 then

3 i + +
end

end

4 if f(S′) < f(S) then

5 S ← S′

6 w iterations = 0

7 if f(S′) < f(Sb) then

8 i = 1

9 Sb ← S′

10 w iterations = adapt iterations = 0
11 bestlist.remove(last)
12 bestlist.add(0, f(Sb))

end

13 else if f(S′) = f(S) then

14 S ← S′

15 else

16 w iterations + +
17 adapt iterations + +

18 if w iterations ≥ k and f(S′) ≤ bestlist(i) then

19 S ← S′ and w iterations = 0
end

end

Re-initialisation : The threshold level (bestlist(i)) starts from the lowest value
and increases to the value placed in the l th location of the list. Each time the
threshold level reaches value l, a new initial solution is randomly generated to
find new best solutions in a faster way. Re-initialisation is disabled depending
on the remaining execution time, its cost and the possibility of finding a new
best solution afterwards.

3 Results and Conclusion

This study is about designing an intelligent hyper-heuristic to provide high
quality performance across different optimisation problems. The hyper-heuristic
presented here was submitted to the first international Cross-domain Heuristic
Search Challenge (CHeSC 2011) to show its generality and robustness across
multiple problem domains. It ended up as the competition winner out of 20 sub-
missions. The performance of the competing algorithms were compared for five
instances from six problem domains, i.e. max SAT, 1D bin packing, permutation
flowshop scheduling, personnel scheduling, travelling salesman, vehicle routing.
The last two domains were added to the problem set as hidden domains. The
ranking and scores1 of the corresponding algorithms are shown in Table 1. A
detailed experimental analysis is available in [8].

1 http://www.asap.cs.nott.ac.uk/chesc2011/results.html



Table 1. CHeSC 2011 competition ranking and scores

Algorithm Overall Score

ADAPHH (Our method) 181
VNS-TW 134
ML 131.5
PHUNTER 93.25
EPH 89.75
HAHA 75.75
NAHH 75
ISEA 71
KSATS-HH 66.5
HAEA 53.5
ACO-HH 39
GenHive 36.5
DynILS 27
SA-ILS 24.25
XCJ 22.5
AVEG-Nep 21
GISS 16.75
SelfSearch 7
MCHH-S 4.75
Ant-Q 0

References

1. Ozcan, E., Misir, M., Ochoa, G., Burke, E.: A reinforcement learning - great-
deluge hyper-heuristic for examination timetabling. International Journal of Applied
Metaheuristic Computing 1(1) (2010) 39–59

2. Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. Journal of the Operational Re-
search Society (to appear)

3. Burke, E., Curtois, T., Hyde, M., Ochoa, G., Vazquez-Rodriguez, J.A.: HyFlex:
A benchmark framework for cross-domain heuristic search. ArXiv e-prints,
arXiv:1107.5462 (2011)

4. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-
heuristic implementation in HyFlex: a study on generality. In Fowler, J., Kendall, G.,
McCollum, B., eds.: the 5th Multidisciplinary International Scheduling Conference:
Theory & Applications (MISTA’11), Phoenix/Arizona, USA (2011) 374–393

5. Misir, M., Smet, P., Verbeeck, K., Vanden Berghe, G.: Security personnel routing
and rostering: a hyper-heuristic approach. In Gunalay, Y., Kadipasaoglu, S., eds.:
Proceedings of the 3rd International Conference on Applied Operational Research
(ICAOR’11). Volume 3 of LNMS., Istanbul, Turkey (2011) 193–205

6. Misir, M., Wauters, T., Verbeeck, K., Vanden Berghe, G.: A Hyper-heuristic with
Learning Automata for the Traveling Tournament Problem. In: Metaheuristics:
Intelligent Decision Making, the 8th Metaheuristics International Conference - Post
Conference Volume. Springer (to appear)

7. Misir, M., Vancroonenburg, W., Vanden Berghe, G.: A selection hyper-heuristic
for scheduling deliveries of ready-mixed concrete. In: Proceedings of the 9th Meta-
heuristic International Conference (MIC’11), Udine, Italy (2011)

8. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Design and
analysis of an evolutionary selection hyper-heuristic. Tech. report, KAHO Sint-
Lieven (2011)


