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Abstract. There exists local search landscapes where the evaluation
function is an eigenfunction of the graph Laplacian that corresponds
to the neighborhood structure of the search space. Problems that dis-
play this structure are called “Elementary Landscapes” and they have a
number of special mathematical properties. The term “Quasi-elementary
landscapes” is introduced to describe landscapes that are “almost” el-
ementary; in quasi-elementary landscapes there exists some efficiently
computed “correction” that captures those parts of the neighborhood
structure that deviate from the normal structure found in elementary
landscapes. The “shift” operator, as well as the “3-opt” operator for the
Traveling Salesman Problem landscapes induce quasi-elementary land-
scapes. A local search neighborhood for the Maximal Clique problem
is also quasi-elementary. Finally, we show that landscapes which are a
superposition of 2 elementary landscapes are also quasi-elementary in
structure.

1 Introduction

Grover [4] originally observed that there exists neighborhoods for Traveling
Salesman Problem (TSP), Graph Coloring, Min-Cut Graph Partitioning, Weight
Partitioning, as well as Not-All-Equal-SAT that can be modeled using a wave
equation borrowed from mathematical physics. Stadler [7] named this class of
problems “elementary landscapes” and showed that if a landscape is elementary,
the objective function is an eigenfunction of the Laplacian matrix that describes
the connectivity of the neighborhood graph representing the search space. Whit-
ley and Sutton developed a “component” based model of elementary landscapes
that makes it easy to identify elementary landscapes [13]. In many cases, the
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components are weights in a cost matrix. In the case of pseudo-Boolean func-
tions, the components can also be the weight coefficients of a polynomial form
of the cost function. Let the set of components be denoted by C; a solution x
will also denote the subset of components that contribute to the evaluation of x
so that the sum of the components that contribute to x is the same as the eval-
uation of x, denoted by the evaluation function f(x). Finally, let C − x denote
the subset of components that do not contribute to the evaluation of solution x.
Note that the sum of the components in C−x is computed by (

∑
w∈C w)−f(x).

Another precondition for a landscape to be elementary is:

f̄ = p3
∑
w∈C

w,

where p3 is the frequency of appearance of any component w ∈ C in a random
solution x.

We will denote a landscape as a triple (X,N, f) where f is the evaluation
function f : X → R, the set of solutions X represents the discrete domain of f
and N(x) is the neighborhood operator that defines adjacency between elements
x ∈ X under some local search neighborhood. N can also be expressed in the
form of an adjacency matrix A. The elements of A are such that Ax,y = 1
if y ∈ N(x) and Ax,y = 0 otherwise. When a neighborhood is regular, the
Laplacian operator is ∆ = A− dI and it acts as a type of difference operator on
the fitness function f such that:

∆f(x) =
∑

y∈N(x)

(f(y)− f(x)) .

A landscape is said elementary if f is an eigenvector of −∆ up to a constant,
formally: −∆f = k(f − b) for a constant b and an eigenvalue k of −∆. As a
direct consequence, we can compute the neighborhood average in an elementary
landscape as follows:

Avg(f(y))
y∈N(x)

= f(x) +
k

d
(f̄ − f(x)), (1)

where d = |N(x)| is the neighborhood size, which we assume the same for all
the solutions. Often, this same result can be expressed another way.

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
w∈C

w − f(x)

)
, (2)

where p1 = α/d is the (sampling) rate at which “components” that contribute
to f(x) are removed from solution x to create a neighboring solution y ∈ N(x),
and p2 = β/d is the rate at which components in the set C − x are sampled to
create a neighboring solution y ∈ N(x). Said in another way, in order to build
all the solutions in the neighborhood each component in x has been removed α



times and each component in C−x have been added β times. By simple algebra,

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
w∈C

w − f(x)

)
= f(x) +

k

d
(f̄ − f(x)), (3)

where k = α+ β, f̄/p3 =
∑

w∈C w and p3 = β/(α+ β) [12–14].
It should also be noted that some landscapes that are not elementary can

nevertheless be expressed as a superposition of a small number of elementary
landscapes. For example, a MAX-3SAT landscape under the Hamming-1 neigh-
borhood is not elementary, but it can be re-expressed as the sum of three func-
tions. Let M(x) denote the MAX-3SAT evaluation function for a Boolean string
x; there exists functions f1, f2 and f3 such that the landscapes of f1, f2 and f3
are elementary, and

M(x) = f1(x) + f2(x) + f3(x).

This makes it possible to compute averages over the Hamming-1 neighbor-
hood. Using Walsh analysis it is even possible to compute higher order statistical
moments (variance, skew, kurtosis) in polynomial time over arbitrary Hamming
balls in the landscape, even over regions that are exponentially large [9]. The
same method can be applied to all k-bounded pseudo-Boolean functions, includ-
ing NK-Landscapes [6].

Thus, there is a great deal that we can potentially compute about local search
landscapes that is not being utilized by search algorithms. We continue to find
new ways to model new problems using elementary landscape theory, and we con-
tinue to find new ways to compute statistical information even more efficiently.
Quasi-elementary landscapes is another step in this direction. In the current pa-
per we present new results for the 3-opt move operator for the Traveling Salesman
Problem, as well as new more general results for a Max-Clique neighborhood.
We also establish a connection between problems that are a superposition of
elementary landscapes and the concept of quasi-elementary landscapes.

1.1 Quasi-Elementary Landscapes

Whitley [11] introduced the term quasi-elementary landscape to describe a land-
scape and neighborhood structure where a variant of Grover’s wave equation
can be used to compute the neighborhood average by adding a correction to the
usual wave equation. Thus, a landscape is quasi-elementary if:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2
(
f̄/p3 − f(x)

)
+ g(x). (4)

We will refer to g as an auxiliary function. To be quasi-elementary we also require
that the computational complexity of g(x) must be less than the computation
complexity of enumerating and evaluating the neighbors of solution x. Like the
cost function f(x), the auxiliary function g(x) can sample from all of the compo-
nents (e.g., the cost matrix) and can compute a “correction” relative to solution
x to account for the fact that the landscape is not elementary.



In principle, one might allow g(x) to be computed as the sum of multiple
subfunctions. We know, for example, that MAX-3SAT is a superposition of 3
elementary landscapes. In the current paper we will show the average of the
neighborhood for MAX-3SAT can be computed using g(x) = a1f1(x) + a2f2(x)
where functions f1 and f2 are elementary landscapes, but g(x) is not elemen-
tary. It is therefore critical that the complexity of g(x) must be less than the
complexity of enumerating and evaluating the neighbors in N(x) for the concept
of a quasi-elementary landscape to be meaningful.

In some cases, we can provide additional information about the function g(x).
Assume that the set of components can be broken into 3 sets: f(x), f ′(x) and∑

w∈C w − f(x) − f ′(x) where f ′(x) identifies (and sums) a set of components
relative to x where those components that contribute to f ′(x) are sampled at a
different rate relative to the other two subsets of components. Assume that

g(x) = p4f
′(x)− p2f ′(x),

where p4 is the new sampling rate for the components that contribute to f ′(x).
Assume the complexity of computing f ′(x) is no greater than the complexity
of computing f(x). We then obtain the following result establishing a quasi-
elementary landscape.

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(
f̄

p3
− f(x)− f ′(x)

)
. (5)

We use this model to show that the “shift” operator and the “3-opt” operator
for the Traveling Salesman Problem induce a quasi-elementary landscape. We
can also use the model to show that a local search algorithm for the Maximal
Clique problem also induces a quasi-elementary landscape; this same local search
algorithm can also be used to find densely connected subgraphs in larger graphs.

Finally, we can also construct a quasi-elementary landscape that samples the
functions f(x) and f ′(x) and the constant f̄ . Let s1/d = (p1 + p2), s2/d =
(p2 − p4) and s3/d = (p2/p3). We will say that a landscape is quasi-elementary
if:

Avg(f(y))
y∈N(x)

=
(

1− s1
d

)
f(x)− s2

d
f ′(x) +

s3
d
f̄ . (6)

In this form, we can show that all landscapes which are a superposition of
2 elementary landscapes are in fact quasi-elementary landscapes if f ′(x) can
be efficiently computed. In the case of a superposition of two elementary land-
scapes we might reasonably expect the complexity of f ′ to be no greater than
the complexity of f since f ′ is a subfunction that can be use to compute f .
Quasi-elementary landscapes can also result from a superposition of more than
2 elementary landscapes. Assume we have a superposition of elementary land-
scapes where f = f1(x) + f2(x) + f3(x). Let g(x) = f1(x) + f2(x). For some
classes of problems one can prove that g has the same complexity as evaluating
f(x).



2 Examples of Quasi-Elementary Landscape

We will first look at examples of quasi-elementary landscapes which can be
described using the following equation.

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(
f̄/p3 − f(x)− f ′(x)

)
. (7)

2.1 The Shift Operator for the TSP

Next we will examine the “shift” operator as applied to the Traveling Salesman
Problem. Assume a permutation representation is used. A shift operator works by
deleting one vertex from the permutation, then that vertex is re-inserted at every
other possible position in the permutation. When done at every possible position,
this yields some duplicate neighbors. These duplicates can be eliminated by 1)
shifting the vertex to be deleted to the beginning of the permutation, and 2)
doing insertion to the next n−3 possible positions. Therefore, the neighborhood
size is n(n− 3).

One might assume that the “shift” operator is not a commonly used TSP
operator. However, the “shift” operator can also be modeled as a special 3-opt
move where one of the segments is a single city. If the tour is then broken into a
segment of 1 city, and then broken into two segments of 2 or more cities, reversing
the two longer segments exactly yields a move under the “shift” operator.

Let f ′(x) denote an auxiliary function to f(x). When a vertex is deleted in
solution x the deletion removed 2 edges, and introduces 1 new edge: f ′(x) ignores
the deleted edges, but counts the cost associated with the new edges. Since n
vertices are deleted, f ′(x) is the sum of the n new edges. For example, consider
the tour: 1 2 3 4 5. Then the cost function f(x) = w1,2 +w2,3 +w3,4 +w4,5 +w5,1

while the auxiliary function f ′(x) = w1,3 +w2,4 +w3,5 +w4,1 +w5,2. In the case
of the “shift” operator, the edges in f ′(x) appear with greater frequency in the
neighborhood N(x).

When a vertex is deleted and reinserted, this cuts 3 edges: it cuts the edge
to the left and to the right of the deleted vertex, and it cuts the edge where
the deleted vertex is reinserted. Because every vertex will be deleted and it will
be inserted into all possible (non-duplicate) positions all the edges in x will be
removed at the same frequency. We can group the neighbors into subsets of size
n−3 where the same vertex is deleted from x, but the deleted vertex is reinserted
into all feasible positions. In this subset of n− 3 neighbors, the edge to the right
of the deleted vertex is reinserted once (e.g., if AB represent the two consecutive
vertices in the tour and A is deleted and re-inserted after B, the edge (A,B) is
recovered). This happens 1 time for every edge in solution x across all neighbors.

We can calculate the rate at which edges are removed from x by assuming
the symmetry case as a baseline, then correct for the 1 neighbor where a specific
edge from x is reinserted. This means that the rate with which edges are removed
from x is given by



− 3

n
f(x) +

1

n(n− 3)
f(x) =

−3n+ 10

n(n− 3)
f(x).

The calculation of f̄ is neighborhood independent, therefore:

∑
w∈C

w − f(x) =

(
β + α

β
f̄

)
− f(x) =

(
n− 1

2
f̄

)
− f(x).

We next consider the edges in the set C − x. All of the edges are sampled in
a symmetric fashion, but a subset of edges receive additional samples.

The symmetric case can be described as follows. New edges are created by
inserting the deleted vertex in a new position. Since the insertion occurs in every
position that does not produce a redundant neighbor, this case is symmetric. This
can happen in only 4 ways: vertex P has been deleted and it is inserted before
and after Q; or vertex Q is deleted and it is inserted before and after vertex P .
Thus, the symmetric sampling rate over the entire neighborhood is 4/(n(n−3)).

The non-symmetric case derives from the fact that when a vertex is deleted,
the deletion also creates a new edge. Furthermore, the same edge is created n−3
times for each of the n−3 cases where the same vertex is deleted. However, one of
these n−3 cases is also one of the symmetric cases previously counted. Removing
this one case, there remains n − 4 cases where the same edge is created when
the same vertex is deleted.

The set of edges that are sampled an additional n − 4 times can be found
starting the with current solution x and then deleting each vertex in x to create
a permutation (circuit) of n−1 vertices. As each vertex is deleted, one new edge
is created: thus, there are n new edges that are created. Let f ′(x) be the sum of
the n new edges that are created by deleting each vertex one at a time.

Note that |C −x| = n(n− 3)/2. Each of the n edge that contributes to f ′(x)
appears n − 4 times across the entire neighborhood. Therefore, the symmetric
and non-symmetric sampling from C − x is given by

2

n(n− 3)/2

(
n− 1

2
f̄ − f(x)

)
+

n− 4

n(n− 3)
f ′(x).

Using the sample rate from x and C − x yields the combined effect. Note that
the operator is only well-defined when n > 3. Therefore:

Avg(f(y))
y∈N(x)

= f(x)− 3n− 10

n(n− 3)
f(x)+

4

n(n− 3)

(
n− 1

2
f̄ − f(x)

)
+

n− 4

n(n− 3)
f ′(x).

This can be rearranged to yield:

Avg(f(y))
y∈N(x)

= f(x) − 3n− 10

n(n−3)
f(x) +

n

n(n−3)
f ′(x) +

4

n(n−3)

(
n−1

2
f̄ − f(x) − f ′(x)

)
.



While computing f ′(x) with no prior knowledge requires O(n) time, if we
currently know the evaluation of f(x) and f ′(x) and we move to a point y such
that y ∈ N(x), then both f(y) and f ′(y) can be computed as a partial update
to f(x) and f ′(x) respectively, and both partial updates can be computed in
constant time. Thus, the resulting landscape is quasi-elementary.

In special cases (usually when n is small) the quasi-elementary landscape is
actually elementary. For example, when n = 4 we find that

Avg(f(y))
y∈N(x)

= f(x) +
3

2
(f̄ − f(x)).

2.2 The 3-opt Quasi-Elementary Landscape

The next example is a landscape for the classic 3-opt operator. This version of
3-opt does not include the “shift” operator and all segments must be of length
2 or greater. However, we will find that the results presented in this paper can
be combined to characterize a more general 3-opt neighborhood that allows one
of the segments to include the single city (shift operator) case.

Stattenberger et al. [8] give a general formula for counting the number of ways
that a Hamiltonian Circuit can be cut into k segments corresponding to those
used by a Lin-Kernighan k-opt operator. For k = 3 this quantity is n(n− 4)(n−
5)/3!. In principle, one could then reconfigure the tour by reversing one segment,
two segments, or all three segments. However, note that reversing one segment
results in a 2-opt move because the two segments that are not reversed can be
concatenated into one segment. Thus, there are four patterns of reversal where
either two segments are reversed or all three segments are reversed. Therefore:

d = 4n(n− 4)(n− 5)/3! = 2n(n− 4)(n− 5)/3.

In the following we will use f(x) and f ′(x) with the same meaning as in
the case of the “shift” neighborhood. However, the values of d, p1, p2, p3 and
p4 could change. We have already presented the new value of d and along this
section we will present the new values of the pi constants. We are searching for
an expression of the following form:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(∑
w∈C

w − f(x)− f ′(x)

)
.

In a 3-opt move, exactly 3 edges are removed from the current solution. Thus,
p1 = 3/n as in the case of the “shift” neighborhood. Let us now consider the
edges in C − x that are included in a new neighbor.

Let P and Q be two cities that are distance 2 apart in the current solution
x. In order to bring together these 2 cities (and include the edge eP,Q ∈ C−x in
the neighbor) a segment of length 2 must be reversed. There are two ways this
segment of length two can be chosen. It can be chosen to include the first city P ,



which is then moved adjacent to the second city when the segment is reversed,
or it can be chosen to include the second city Q which is moved adjacent to the
first city when the segment is reversed. The location of the third cut does not
matter, and there are n − 5 possible locations for the third cut to occur. Two
segments must be reversed to be a legal 3-opt move: one must be the segment
of length 2, the other must be the segment that does not contain either P or Q.
Three segments cannot be reversed. Thus, there are 2(n − 5) ways to segment
the tour to yield the desired result, and there is only one reversal pattern in each
case that reverses two segments to yield the desired result (see Figure 1). The
sum of the weights of the edges of cities that are distant 2 apart in x is exactly
f ′(x). Thus, f ′(x) must be summed 2(n− 5) times in the whole neighborhood,
yielding p4 = 2(n− 5)/d. Note that the auxiliary function is exactly the same as
the one used for the “shift” operator. If the tour is: 1 2 3 4 5 then the auxiliary
function is f ′(x) = w1,3 + w2,4 + w3,5 + w4,1 + w5,2. This means the results for
the two neighborhoods can be easily combined.
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(b) Cuts after P and Q

Fig. 1. The two ways cuts can be placed to bring cities P and Q together if they are
distance 2 apart.

We next compute the value of p2. Let P and Q be two cities in x which are
distance l > 2 apart. We pick l ≤ n/2 so we consider the shortest path between
P and Q in the tour. There are four ways cuts can be placed to bring P and Q
together:

– Before P and before Q (n − 6 other cuts possible with only one reversal
pattern). See Figure 2(a).

– After P and after Q (n−6 other cuts possible with only one reversal patter).
See Figure 2(b).

– After P and before Q (n− l− 2 cuts possible with 2 reversal patterns). See
Figure 2(c).



– Before P and after Q (l − 2 cuts possible with 2 reversal patterns). See
Figure 2(d).!" #" !" #"
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(d) Cuts before P and after Q

Fig. 2. The four ways cuts can be placed to bring cities P and Q together in a neigh-
boring solution.

Therefore p2 = (n− 6)/d+ (n− 6)/d+ 2(n− l − 2 + l − 2)/d = 4(n− 5)/d.

Finally, by substitution:



Avg(f(y))
y∈N(x)

= f(x)− 3

n
f(x) +

2(n− 5)

d
f ′(x) +

4(n− 5)

d

(∑
w∈C

w − f(x)− f ′(x)

)

= f(x)− 3

n
f(x) +

2

2n(n− 4)/3
f ′(x) +

4

2n(n− 4)/3

(∑
w∈C

w − f(x)− f ′(x)

)

= f(x)− 3

n
f(x) +

3

n(n− 4)
f ′(x) +

6

n(n− 4)

(∑
w∈C

w − f(x)− f ′(x)

)
. (8)

We must recall here that computing both f(y) and f ′(y) in a neighbor can
be done as a partial update of f(x) and f ′(x), respectively.

While we could combine the results for the “shift” neighborhood and this
3-opt neighborhood result, it is more useful to leave then separated, since it
provides information about which subset of the larger more general 3-opt neigh-
borhood yields better moves on average. It is also notable that “shift” increasing
the relative sampling of f ′(x) while this form of 3-opt decreases the relative sam-
pling of f ′(x).

2.3 The Maximal Clique Problem

Katayama et al. [5] propose a variable neighborhood “k-opt” move operator3

for the maximal clique problem. Katayama et al. report that this operator is
competitive with other heuristic search methods for generating solutions to the
maximal clique problem. While the operator has been applied to the maximal
clique problem, it can also be used to search for subgraphs with maximal density
independent of whether the subgraph is a clique or not.

The operator breaks a graph G with vertices V and edges E into two sub-
graphs, one with a set of vertices denoted by Z, and the other with the remaining
vertices, V − Z. Under the “k-opt” move operator, k vertices in Z are removed
and k vertices from V −Z are added to Z. We will say that an edge ei,j belongs
to Z if vertices vi and vj are in the subgraph Z. All subsets of k vertices that are
not currently in Z are moved into subset Z; thus all edges that do not belong
to Z come into Z.

We must also compute f̄ as a uniform sample over the cost components.
Assume we are attempting to maximize the number of edges in subgraph Z ⊂ V .
Let f(Z) count the number of edges of E in Z. Let r = |Z|, q = |V − Z| and
n = |V |. Using counting arguments, one can prove that the average of f over all
possible assignments of vertices to Z is given by:

f̄ =
r(r − 1)

n(n− 1)

∑
w∈C

w. (9)

3 This is not the k-opt operator used for the Traveling Salesman Problem.



To have an elementary landscape, we need to divide “components” into those
that are in the solution, and those that are not in the solution. And each set
needs to be sampled at a uniform frequency corresponding to p1 or p2. But when
counting (and maximizing) the number of edges in Z and the number of edges
not in Z, we can classify edges into 3 different types that are uniformly sampled.

– Type 1: Edges that belong to Z and contribute to f(Z).
– Type 2: Edges not in Z that connect two vertices not in Z.
– Type 3: Edges not in Z that connect a vertex in Z to a vertex in (V − Z).

Therefore we can compute p1 and p3, but there are two sampling rates instead
of one for the edges normally accounted for p2. As in the previous examples we
will denote the two different sampling rates by p2 and p4.

In the current paper we generalize an early result by Whitley [11].

Theorem 1. The “k-opt” operator for maximizing the density of edges in a
subgraph Z of graph G induces a quasi-elementary landscape. Let r = |Z|, q =
|V − Z| and n = |V | = r + q. For r > k and q > k the neighborhood average for
the “k-opt” operator is given by:

Avg
Y ∈N(Z)

(f(Y )) = f(Z)− k(r + q + 2q2r + k(q − q2 − r + r2)− (r + q)2)

q(q − 1)r(r − 1)
f(Z)

+
k(qr + k(1− r − q))

rq(q − 1)
f ′(Z) +

k(k − 1)n(n− 1)

r(r − 1)q(q − 1)
f̄ (10)

where the function f ′(Z) is the weighted sum of the edges having one vertex in
Z and the other in V − Z.

Proof. We already know that p3 = r(r−1)
n(n−1) by Eq. (9).

We need to count 3 kinds of edges:

– f(Z) is the weighted sum of edges of E that are included in Z.
– f ′(Z) is the weighted sum of edges with one vertex in Z and one in V − Z.
–
∑

w∈C w is the total weighted sum of edges.

Putting these together we obtain

Avg
Y ∈N(Z)

(f(Y )) = f(Z)−p1f(Z) +p4f
′(Z) +p2

(∑
w∈C

w − f(Z)− f ′(Z)

)
. (11)

We first compute p1, the probability that edge ei,j moves out in Z. If two
vertices are randomly drawn from Z for exchange, there are (r − k)/r ways the
first vertex can stay in Z and (r−k− 1)/(r− 1) that the second vertex can stay
in Z. The probability of an edge that is currently in Z moving out of Z is

p1 = 1− (r − k)(r − k − 1)

r(r − 1)
.



We define p2 to be the probability that an edge “contained” within V − Z
moves to Z. There are k/q ways to select the first vertex, and (k − 1)/(q − 1)
ways that the second vertex can be selected. Thus,

p2 =
k(k − 1)

q(q − 1)
.

Finally, we will compute p4. Consider an edge ei,j such that vi ∈ Z and
vj ∈ V − Z. Then p4 corresponds to the probability that vi stays in Z and vj
moves to Z when any random neighbor is considered.

p4 =
(r − k)

r
· k
q

=
k(r − k)

rq
.

Substituting into (11) we obtain:

Avg
Y ∈N(Z)

(f(Y )) = f(Z)−
(

1− (r − k)(r − k − 1)

r(r − 1)

)
f(Z) +

k(r − k)

rq
f ′(Z)

+
k(k − 1)

q(q − 1)

(
n(n− 1)

r(r − 1)
f̄ − f(Z)− f ′(Z)

)
, (12)

which reduces to (10).
Computing both f(Z) and f ′(Z) can be done by enumerating the vertices in

Z and checking the edges that are incident on vertices in Z. Therefore f ′(Z) can
be computed as a side-effect of computing f(Z). And for Y ∈ N(Z), both f(Y )
and f ′(Y ) can be computed as a partial update to f(Z) and f ′(Z) respectively.
Therefore computing f ′(Z) has complexity less than or equal to computing f(Z)
and the maximal clique problem is a quasi-elementary landscape. ut

These results could be expressed with respect to the neighborhood size. The
total size of the neighborhood is given by

d =

(
r

k

)(
q

k

)
.

When p4 = p2 and k ≥ 2 the landscape becomes elementary. This happens
when r = 3, q = 4 and k = 2 for example. But this is a special case, and this
does not happen in general.

3 Superpositions of two elementary landscapes

Assume we have a landscape that is a superposition of two elementary land-
scapes, such that

f(x) = f1(x) + f2(x).

In this case, the evaluation function is not an elementary landscape, but f1
and f2 are elementary landscapes. A number of problems have been shown to



be a superposition of two elementary landscapes. These include the asymmetric
frequency assignment problem [2, 12] and all pseudo-Boolean functions with 2-
bounded complexity, like MAX-2SAT, Unconstrained Quadratic Optimization
(UQO) [3], the Subset Sum [1] as well as all the NK-Landscapes when K=1 [9].

This means that

Avg(f(y))
y∈N(x)

= Avg{f1(y)}
y∈N(x)

+ Avg{f2(y)}
y∈N(x)

= f1(x) +
k1
d

(
f̄1 − f1(x)

)
+ f2(x) +

k2
d

(
f̄2 − f2(x)

)
. (13)

Given that we know f(x) = f1(x) + f2(x) and f2(x) = f(x)− f1(x) we obtain:

Avg(f(y))
y∈N(x)

= f(x) +
k1
d

(
f̄1 − f1(x)

)
+
k2
d

(
f̄2 − f2(x)

)
,

Avg(f(y))
y∈N(x)

= f(x)− k1
d
f1(x)− k2

d
(f(x)− f1(x)) +

{
k1
d
f̄1 +

k2
d
f̄2

}
,

where k1

d f̄1 + k2

d f̄2 is a constant. Note that we can chose to eliminate either f1
or f2 and normally would select the simpler of the two functions to include in
the computation. This means that every problem which is a superposition of
two elementary landscapes is also a quasi-elementary landscape as long as the
computational complexity of either f1 or f2 is less than the cost of enumerating
the neighborhood. Generally, we would expect the computational cost of f1 or
f2 to be less than the cost of computing the full evaluation function, f = f1 +f2.

We have previously shown in this paper that the “shift” operator and the
“3-opt” operators for the TSP, as well as the Katayama’s “k-opt” operator for
Max-Clique can be captured by an equation of the following form:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(
f̄

p3
− f(x)− f ′(x)

)
. (14)

In all of these problems the auxiliary function f ′(x) is the linear sum of
a subset of components drawn from the set C − x. This means that in these
problems there are exactly 3 distinct sampling rates over components in the set
C. Having this knowledge also makes it easier to search for a superposition of
elementary landscapes, because it limits the number of equivalence classes that
must be constructed when attempting to construct a superposition of elementary
landscapes.

4 MAX-3SAT: a superpositions of three elementary
landscapes

Now assume that we have a superposition of three elementary landscapes: f(x) =
f1(x) + f2(x) + f3(x). Then the average can be computed as:



Avg(f(y))
y∈N(x)

= Avg{f1(y)}
y∈N(x)

+ Avg{f2(y)}
y∈N(x)

+ Avg{f3(y)}
y∈N(x)

= f1(x) +
k1
d

(
f̄1 − f1(x)

)
+ f2(x) +

k2
d

(
f̄2 − f2(x)

)
+ f3(x) +

k3
d

(
f̄3 − f3(x)

)
. (15)

But for MAX-3SAT, we can include f̄ in f1 so that f̄2 = f̄3 = 0 and

Avg(f(y))
y∈N(x)

= f(x) +
k1
d

(
f̄1 − f1(x)

)
− k2

d
(f(x)− f1(x)− f3(x))− k3

d
f3(x).

One can express f, f1, f2 and f3 as Walsh functions. Assume f1 captures the
linear interactions, f2 pairwise, and f3 the order-3 interactions [10]. There is
only one 3-way interaction per clause. And there are only n linear terms, the
number of variables of the instance. We remove f2 because it is larger and less
unpredictable. If there are n bits and m clauses, then the number of components
needed to compute the average (with f2 out of the picture) is exactly n+m+ 1
since there are m f3 coefficients, n linear f1 coefficients and f̄ = f̄1. Exactly the
same results apply to NK-Landscapes when K=2.

However, evaluations can also be done by partial evaluation. Let yb be a
neighbor of solution x generated by flipping bit b. It is then easy to prove that
the cost of the partial evaluation is constant on average for f(y), f1(y) and f3(y)
given f(x), f1(x) and f3(x). If yb is a neighbor of x, only one Walsh coefficient
(wp) changes in f1. Thus, f1(yp) = f1(x)− 2(ψp(x)wp). And on average, only a
constant number of order-3 Walsh coefficients changes sign in f3; the coefficients
exactly map to those clauses that contain bit b. In expectation, a bit appears in
a clause with probability 3/n and across all clauses a bit appears 3m/n = O(1)
times. Thus, evaluating f3 also has a partial update that is almost identical to
the partial update for evaluating f .

Hence, Avg(f(y))y∈N(x) can also be computed in O(1) time on average, and
the MAX-3SAT landscape is quasi-elementary. This generalizes to all MAX-
kSAT problems, as well as NK-Landscapes.

5 Conclusions

In this paper we present three examples of quasi-elementary landscapes: TSP
with the “shift” and 3-opt neighborhoods and Maximal Clique with Katayama’s
k-opt neighborhood. We also show that functions which are a superposition of
elementary landscapes can also be quasi-elementary landscapes. A direct ap-
plication of the concept of quasi-elementary landscapes is the generalization of
the Grover’s wave equation to landscapes which are not elementary. In future
work we plan to continue to explore the relationship between the elementary
landscape decomposition of the problems and the quasi-elementary property.
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