
Determining the Characteristic of Difficult Job

Shop Scheduling Instances for a Heuristic

Solution Method

Helga Ingimundardottir and Thomas Philip Runarsson

School of Engineering and Natural Sciences, University of Iceland
hei2@hi.is and tpr@hi.is

Abstract. Many heuristic methods have been proposed for the job-
shop scheduling problem. Different solution methodologies outperform
other depending on the particular problem instance under consideration.
Therefore, one is interested in knowing how the instances differ in struc-
ture and determine when a particular heuristic solution is likely to fail
and explore in further detail the causes. In order to achieve this, we seek
to characterise features for different difficulties. Preliminary experiments
show there are different significant features that distinguish between easy
and hard JSSP problem, and that they vary throughout the scheduling
process. The insight attained by investigating the relationship between
problem structure and heuristic performance can undoubtedly lead to
better heuristic design that is tailored to the data distribution under
consideration.

1 Introduction

Hand crafting heuristics for NP-hard problems is a time-consuming trial and
error process, requiring inductive reasoning or problem specific insights from
their human designers. Furthermore, within a problems class, such as job-shop
scheduling, it is possible to construct problem instances where one heuristic
would outperform another. Depending on the underlying data distribution, dif-
ferent heuristics perform differently, commonly known as the no free lunch theo-
rem [1]. The success of a heuristic is how it manages to deal with and manipulate
the characteristics of its given problem instance. So in order to understand more
fully how a heuristic will eventually perform, one needs to look into what kind of
problem instances are being introduced to the system. What defines a problem
instance, e.g. what are its key features? And how can they help with designing
better heuristics?

In investigating the relationship between problem structure and heuristic
effectiveness one can research what [2] calls footprints in instance space, which
is an indicator how an algorithm generalises over the instance space. This sort
of investigation has also been referred to as landmarking [3]. It is evident from
experiments performed in [2] that one-algorithm-for-all problem instances is not
ideal. An algorithm may be favoured for its best overall performance, however



it was rarely the best algorithm available over various subspaces of the instance
space. Thus when comparing different algorithms one needs to explore how they
perform w.r.t. the instance space, i.e. their footprint.

In this study, the same problem generator is used to create 1,500 problem
instances, however the experimental study in section 3 shows that MWRM works
well/poorly on a subset of the instances. Since the problem instances are only
defined by processing times and its permutation, the interaction between the
two is important, because it introduces hidden properties in the data structure
making it easy or hard to schedule with for the given algorithm. These underlying
characteristics or features define its data structure. So a sophisticated way of
discretising the instance space is grouping together problem instances that show
the same kind of feature behaviour, in order to infer what is the feature behaviour
between good and bad schedules.

It is interesting to know if the difference in the structure of the schedule is
time dependent, is there a clear time of divergence within the scheduling pro-
cess? Moreover, investigation of how sensitive is the difference between two sets
of features, e.g. can two schedules with similar feature values yield completely
contradictory outcomes, i.e. one poor and one good schedule? Or will they more
or less follow the same path? This essentially answers the question of whether
is is in fact feasible to discriminate between good and bad schedules using the
currently selected features as a measure. If results are contradictory, it is an
indicator the features selected are not robust enough to capture the essence of
the data structure. Additionally, there is also the question of how can one define
‘similar’ schedules, what measures should be used? This paper describes some
preliminary experiments with the aim of investigating the feasibility of finding
distinguishing features corresponding to good and bad schedules in JSSP.

Instead of searching through a large set of algorithms (creating an algorithm
portfolio) and determining which algorithm is the most suitable for a given subset
of the instance space, as is generally the focus in the current literature [2, 4, 5],
our focus is rather on a single algorithm and understanding how it works on
the instance space – in the hopes of being able to extrapolate where it excels in
order to aid its failing aspects.

The outline of the paper is as follows, in section 2 priority dispatch rules
for the JSSP problem are discussed, what features are of interest and how data
is generated. Followed by a discussion of how to map the relationship between
problem structure and heuristic efficiency in section ??. A preliminary experi-
mental study is presented in section 3. The paper concludes with a summary of
main findings and points to future work.

2 Job-shop scheduling

The job-shop scheduling task considered here is where n jobs are scheduled
on a set of m machines, subject to the constraint that each job must follow a
predefined machine order and that a machine can handle at most one job at
a time. The objective is to schedule the jobs so as to minimize the maximum



φ Feature description

φ1 processing time for job on machine

φ2 start-time

φ3 end-time

φ4 when machine is next free

φ5 current makespan

φ6 work remaining

φ7 most work remaining

φ8 slack time for this particular machine

φ9 slack time for all machines

φ10 slack time weighted w.r.t. number of operations already assigned

φ11 time job had to wait

φ12 size of slot created by assignment

φ13 total processing time for job

φ14 total processing time for all jobs

φ15 mean processing time for all jobs

φ16 range of processing times over all jobs

Table 1. Feature space F for JSSP. Features 1–13 can vary throughout the scheduling
process w.r.t. tasks that can be dispatched next, however features 14–16 are static.

completion times, also known as the makespan. For a mathematical formulation
of JSSP the reader is recommended [9].

2.1 Single-priority dispatching heuristic

Dispatching rules are of a construction heuristics, where one starts with an empty
schedule and adds on one job at a time. When a machine is free the dispatching
rule inspects the waiting jobs and selects the job with the highest priority. A
survey of more than 100 of such priority rules was given in 1977 by [6]. In this
paper however, only most work remaining (MWRM) dispatching rule will be
investigated.

In order to apply a dispatching rule a number of features of the schedule
being built must be computed. The features of particular interest were obtained
from inspecting the aforementioned single priority-based dispatching rules. The
temporal scheduling features applied in this paper are given in Table 1. These
are not the only possible set of features, they are however built on the work
published in [5,9] and deemed successful in capturing the essence of a JSSP data
structure.

2.2 Data generation

Problem instances were generated stochastically by fixing the number of jobs and
machines and sampling a discrete processing time from the uniform distribution
U(1, 200). The machine order is a random permutation of {1, ...,m}. A total of
1,500 instances were generated for a six job and six machine job-shop problem.

In the experimental study the performance of the MWRM, µMWRM, and
compared with its optimal makespan, µopt. Since the optimal makespan varies
between problem instances the following performance measure is used:

ρ =
µMWRM

µopt

. (1)



step
φi 1 5 10 15 20 30 35
1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

2 · · ·

3 · · · · ·

4 · ·

5 ·

6 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

7 · · · · · · · · · · · · · · · ·

8 · · · · · ·

9 · · · · · · · · · · · ·

10 · · · · · · · · · · ·

11 · · · · · · · · · · · · · · · · ·

12 · · · · · · · · · · · · · · · · · · · · · · ·

13 · · · · · · · · · · · · · · · · · · ·

14
15
16 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 2. Features for easy and hard problems are drawn from the same data distri-
bution (denoted by ·).

step
φi 1 5 10 15 20 30 35
1
2 •• · · · · · •• · · · • · •

3 · • · · · · • · · · • · •

4 · • •· · · · · • · · ••• · ·

5 ···· · · ••· · ·· · · •··•·••• • •••• •

6
7
8 ··· · · ··•• • • · ·· · · · •• • · • · · •

9 ·· · · · · · • · • · · · · ·

10 ·· · · · · · · • · · · ·

11 · · · ·

12 · · ·

13 ·

14
15
16

step
φi 1 5 10 15 20 30 35
1 · ·

2 · • • · · • • • •

3 · • • · • •

4 • · • · • · • • •

5 • • · • • • • • • • • • • •

6 ·

7
8 • • • • • • • • •

9 · • · •

10 · · · • ·

11 ·

12 · ·

13 ·

14
15
16

Table 3. Significant correlation (denoted by ·) for easy (left) and hard (right) problems
and resulting ratio from optimality, ρ defined by (1).

3 Experimental study

In order to differentiate between problems, a threshold of a ρ < 1.1 and ρ > 1.3
was used to classify easy and hard problems. Of the 1500 instances created, 271
and 161 problems were classified easy and hard , respectively.

Table 2 reports where data distributions are the same (denoted by ·). From
the table one can see that distribution for φ1, φ6, φ12 and φ16) are (more or
less) the same throughout the scheduling process. However there is a clear time
of divergence for distribution of slacks; step 6 for φ8 and step 12 for φ9 and φ10.

In order to find defining characteristics for easy and hard problems, a (lin-
ear) correlation was computed between features (on a step-by-step basis) to the
resulting ratio from optimality. Significant features are reported in Table 3 for
easy and hard problems, (denoted by ·). As one can see from the tables, the
significant features for the different difficulties are varying. Some are commonly
significant features across the tables (denoted by •).

4 Discussion and Conclusion

From the experimental study it is apparent that features have different correla-
tion with the resulting schedule depending in what stage it is in the scheduling



process, implying that their influence varies throughout the scheduling process.
And features constant throughout the scheduling process are not correlated with
the end-result. There are some common features for both difficulties considered
which define JSSP on a whole. However the significant features are quite differ-
ent across the two difficulties, implying there is a clear difference in their data
structure. The amount of significant features were considerably more for easy
problems, indicating their key elements had been found. However, the features
distinguishing hard problems were scarce. Most likely due to their more complex
data structure their key features are of a more composite nature.

The feature attributes need to be based on statistical or theoretical grounds.
Thus scrutiny in understanding the nature of problem instances is of paramount
importance in feature engineering for learning. Which yields feedback into what
features are important to devout more attention to, i.e. features that result in a
failing algorithm. In general, this sort of investigation can undoubtedly be used in
better algorithm design which is more equipped to deal with varying problem in-
stances and tailor to individual problem instance’s needs, i.e. a footprint-oriented
algorithm.

Although this methodology was only implemented on a simple single-priority
dispatching rule heuristic, the methodology is easily adaptable for more complex
algorithms. The main objective of this work is to illustrate the interaction of a
specific algorithm on a given problem structure and its properties.

References

1. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1) (1997) 67–82

2. Corne, D., Reynolds, A.: Optimisation and generalisation: footprints in instance
space. Parallel Problem Solving from Nature, PPSN XI (2011) 22–31

3. Pfahringer, B., Bensusan, H.: Meta-learning by landmarking various learning algo-
rithms. on Machine Learning (2000)

4. Smith-miles, K., Lopes, L.: Generalising Algorithm Performance in Instance Space:
A timetabling case study. In Coello Coello, C.A., ed.: Learning and Intelligent
Optimization, 5th International Conference, LION 5. Lecture Notes in Computer
Science (2010)

5. Smith-Miles, K., James, R., Giffin, J.: A knowledge discovery approach to under-
standing relationships between scheduling problem structure and heuristic perfor-
mance. Learning and Intelligent (2009) 89–103

6. Panwalkar, S., Iskander, W.: A Survey of Scheduling Rules. Operations Research
25(1) (1977) 45–61

7. Gu, Z., Rothberg, E., Bixby, R.: Gurobi Optimizer Version 4.5.2. software (2011)
8. Rice, J.R.: The algorithm selection problem. Advances in Computers 15 (1976)

65–118
9. Ingimundardottir, H., Runarsson, T.P.: Supervised Learning Linear Priority Dis-

patch Rules for Job-Shop Scheduling. In Coello Coello, C.A., ed.: Learning and
Intelligent Optimization, 5th International Conference, LION 5. Lecture Notes in
Computer Science (2010)


