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Abstract. Application mapping is an important issue in designing systems based
on many-core networks-on-chip (NoCs). Simulated Annealing (SA) has been of-
ten used for searching for the optimized solution of application mapping problem.
The parameters applied in the SA algorithm jointly control the annealing sched-
ule and have great impact on the runtime and the quality of the final solution
of the SA algorithm. The optimized parameters should be selected in a system-
atic way for each particular mapping problem, instead of using an identical set
of empirical parameters for all problems. In this work, we apply an optimization
method, Nelder-Mead simplex method, to obtain optimized parameters of SA.
The experiment shows that with optimized parameters, we can get an average 237
times speedup of the SA algorithm, compared to the work where the empirical
values are used for setting parameters. For the set of benchmarks, the proposed
parameter-optimized SA algorithm achieves comparable communication energy
consumption using less than 1% of iterations of that used in the reference work.

1 Introduction

In the past decade, the multi- and many-core processors have been rapidly develop-
ing and widely used for processing a massive amount of data in increasingly complex
systems [2]. As the number of cores and their processing capabilities are continuously
increasing, the communicational aspect, instead of the traditional computational aspect,
is becoming the major concern in designing systems-on-chip (SoCs). The underlying
communication architecture in many-core systems plays a great role in improving the
performance and decreasing the energy consumption of the system. To deal with the
emerging communication challenge in many-core system, the NoC has been proposed
as a promising alternative to the conventional bus-based and point-to-point communi-
cation architectures [1].

Figure 1 shows an example of an 8-core SoC on a 2× 4 2D mesh NoC. The NoC is
a communication infrastructure composed of a set of routers connected by inter-router
communication channels. The processing elements (PEs) such as CPU or DSP modules,
FPGAs, embedded memory blocks, are connected to a router via the network interface
(NI). Typically, the term node or tile on a NoC refers to a PE and the corresponding
router. The data generated by the source PE is first transformed into packets coupled
with appropriate control information, and then transmitted to the destination PE by
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traveling multiple routers and channels over the NoC. The routing decision is made on
each router based on a specific routing protocol. By decentralizing the role of the arbi-
tration into each router, the NoC architecture is suitable to deal with the great number of
concurrent communications in modern many-core systems. The bandwidth on the NoC
is also enhanced by sharing network channels among concurrent communications [4].
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Fig. 1: An Example of 2D Mesh NoC

Based on the NoC communication architecture, there are set of problems related
to many-core systems design. One of them is the application mapping. Given an ap-
plication implemented by a set of tasks, and a many-core NoC, the problem of the
application mapping is to decide how to map each task onto a node so that the prede-
fined objectives and constraints can be met. The application mapping has a great impact
on the system performance and energy consumption. The experiment in [7] shows that
one optimized mapping algorithm achieves 51.7% communication energy savings com-
pared to an ad hoc implementation. While exhaustive search is not possible for the NP-
hard mapping problem, stochastic and heuristic searches are generally used for finding
the near-optimal mapping solutions. As surveyed in [9], these stochastic and heuristic
methods include, for example, simulated annealing (SA), tabu search (TS) and greedy
incremental (GI) heuristic.

In these search heuristics, the SA has been often used since it is able to escape from
the local minimum and find the global minimum of the dedicated cost function. The
detail of the SA algorithm will be described in Section 4. To apply the SA algorithm,
a set of parameters and functions needs to be specified, such as initial temperature,
final temperature, cooling ratio, temperature function, accept function, etc. These pa-
rameters and functions determine how closely and how quickly SA can converge to the
global minimum of the objective function. However, the fact is, there is no a straight-
forward way for specifying these parameters. In previous works, these parameters are
set either by using empirical values [7] [13], or decided by the specific characteristics
of a particular problem [11]. Apparently, we cannot make sure that these empirical or
problem-specific values could be generally applicable to all other problems. Without a
systematic way, the parameters of SA are usually randomly selected, and as a result, the
quality of the set of parameters is not guaranteed.

A systematic method is necessary to generate the parameters of the SA algorithm for
solving the application mapping problem, even though it has not so far been mentioned
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in literature. In this work, we propose to use the Nelder-Mead simplex method, which
is originally introduced in [8], to automatically generate the optimized parameters of
SA. The generated parameters are applied to the SA algorithm to find the optimized
mapping solution which achieves minimized communication energy consumption on
the NoC. In this work, by using the set of optimized parameters, we target to utilize less
evaluations in SA while achieving comparably good quality of the final solution with
the reference work.

The rest of the paper is organized as follows. Section 2 reviews previous works
which use the SA algorithm for application mapping and outlines our considerations
and contributions in this work. In Section 3, the problem of application mapping is mod-
eled and the objective function is defined. Section 4 describes the general SA algorithm
and Section 5 presents the Nelder-Mead simplex method. The proposed parameter-
optimized SA algorithm is presented in Section 6. The experimental results are demon-
strated in Section 7. Section 8 summarizes this paper.

2 Related Work

In [7], the authors developed an energy-aware mapping algorithm, namely Branch and
Bound, for 2D mesh NoCs. The SA algorithm is implemented as a reference to evaluate
the Branch and Bound algorithm. The comparison shows that SA can find the better
mappings which achieve lower communication energy consumption than the ones found
by the proposed Branch and Bound algorithm. However, the major drawback of SA is
speed. The result in [7] shows that for a video/audio application, SA is 82 times slower
than the Branch and Bound algorithm. The initial temperature was set 100 and the
cooling ratio , 0.9. The final temperature was not set because a different termination
criteria was used.

In [13], the authors tried to speed up SA by optimizing the number of iterations per
temperature level and the core swapping process as well. A both NoC- and application-
aware iteration number is used. In addition, to generate a neighboring solution, two
cores are selected and swapped based on the possibility distribution function, instead of
on an uniformly random possibility. The optimized SA is claimed to be 98% faster at
the price of 13% memory consumption on average. In this work, the initial temperature,
final temperature and cooling ratio are 1, 0.001 and 0.9 respectively.

In [11], the authors used SA to map an application on multiprocessor system-on-
chip (MPSoC). The cooling ratio was set 0.95. Two functions, which are based on the
execution time of each task defined in the task graph, were introduced to derive the
initial and final temperature. It shows that by using parameter obtained by these two
functions, the proposed method saves over half the optimization time and loses only
0.3% in performance.

We can see that for the application mapping problem, the parameters of SA were
selected randomly by authors in these works. In this way, whenever we encounter a
particular application mapping problem, we have to decide which set of parameters we
should use. Since we are not able to determine which one is best suitable for our specific
problem, the decision is difficult to make.

For the parameters used in the SA algorithm, we believe that:
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1. The parameters of SA are problem-specific. One set of parameters would not be
appropriate to other problems. The selection of the set of parameters has to be done
with respect to the particular problem.

2. The parameters of SA have a joint impact on the performance of SA. This means
that these parameters should be selected systematically, instead of being set inde-
pendently.

Based on these two considerations, in this work, we apply the Nelder-Mead sim-
plex method to systematically select the parameters of SA for the application mapping
problem. The original Nelder-Mead simplex method is presented in [8] with purpose of
finding the minimal value of a function of n variables. By using the Nelder-Mead sim-
plex method, both the parameters to be selected and the cost function used in the select-
ing process can be defined with respect to the particular application mapping problem.
This provides flexibility for us to use the SA algorithm for solving application mapping
problems with single or multiple objectives. Moreover, since the set of parameters is
selected by the systematic procedure for the particular problem, instead of being set by
empirical values, the selected set of parameters is problem-specific and their qualities
are guaranteed. To our best knowledge, this is the first work on investigating the system-
atic way of selecting optimized parameters of SA in the application mapping problem
domain.

3 Application Mapping Problem

3.1 Application and NoC Model

The inputs of the mapping problem consist of two parts: one is the application and
another is the many-core NoC. In this work, the application is modeled by a commu-
nication weighted graph (CWG), and the many-core NoC by a computation and com-
munication resource graph (CCRG). For the sake of simplicity, in this paper, we use a
2D mesh NoC with homogeneous cores as the target computation and communication
platform. We note that the method presented in this work is also applicable to other 2D
NoCs with regular or irregular topologies. The X-Y deterministic routing is adopted by
which a flit is first routed to the X direction and then the Y direction over the NoC.

Definition 1 A CWG is a directed graph < V,E >, where V = {v1, v2, . . . , vM}
represents the set of tasks of an application, corresponding to the set of CWG vertices,
and E = {(vi, vj)|vi, vj ∈ V } denotes the set of communications between tasks,
corresponding to the set of CWG edges. Each edge (vi, vj), denoted by eij has weight
volij representing the total communication amount, in bits, transmitted from task vi to
vj . M denotes the total number of tasks.

Definition 2 A CCRG is a directed graph < TL,CH >, where TL = {tl1, tl2, . . . , tlN}
denotes the set of tiles on the NoC, corresponding to the set of CCRG vertices. N de-
notes the total number of tiles. CH = {(tli, tlj)|tli, tlj ∈ TL} designates the set of
communication channels between tiles. The length of communication channel (tli, tlj),
denoted by |chij | is represented by the number of hops from tile tli to tlj . On a 2D mesh
NoC with X-Y routing, the length of the communication channel between tiles tli and
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tlj is calculated as follows:

|chij | = |xi − xj |+ |yi − yj | (1)

where (xi, yi) and (xj , yj) are the coordinates of the tile tli and tlj on a 2D mesh NoC
respectively.

3.2 Objective Function
Using the preceding application and NoC model, the mapping of CWG to CCRG is
defined by the one-to-one task-tile mapping function map : V → TL:

map(vi) = tli, ∀vi ∈ V, ∃tli ∈ TL (2)

When two tasks vi and vj of an edge eij in CWG are mapped on two tiles on the
CCRG, an amount of volij data will be transferred from the tile tli (map(vi)) to the tile
tlj (map(vj)). Based on the energy model proposed in [7], the communication energy
consumption of eij is

Eij = volij × (|chij | × ESbit
+ (|chij | − 1)× ELbit

) (3)

where ESbit
and ELbit

refer to the energy consumed by the switch and the link for
transmitting one bit of data. And the total energy consumed by the application defined
in CWG is

Eapp =
∑

∀eij∈E

Eij (4)

From Equation 3 and 4, we can see that, given the constants ESbit
and ELbit

, the com-
munication energy consumption of an application is linearly proportional to the product
of the data volume volij and the length of communication channel |chij |. In this work,
since the objective of application mapping is to minimize the Eapp, we need to mini-
mize the sum of the product of volij and |chij | for all communications in an application.
Herein, we define the weighted communication of an application (WCA) as the objec-
tive function to evaluate the quality of each candidate mapping.

Definition 3 The Weighted Communication of an Application (WCA) is the sum of
products of the data volume volij and the length of communication channel |chij | for
all communications in E.

WCA =
∑

∀eij∈E

volij × |chij | (5)

A mapping solution which can produce smaller WCA is considered to be a better solu-
tion because it will in turn yield a lower Eapp.

4 Simulated Annealing
Simulated annealing is a stochastic search method for optimization problem. The pseudo-
code of the general SA algorithm, derived from [5], is shown in Algorithm 1. The
symbols and corresponding definitions used in Algorithm 1 are listed in Table 1. SA



6

simulates the metallurgical process of heating up a solid and then cooling down slowly
until it crystallizes. It starts from an initial, higher temperature and stops at a final, lower
temperature. An initial solution and its cost are given at the initial temperature. There-
after, at each temperature, SA tries L times of attempt mappings. In each attempt, a new
mapping solution is generated from current one using the move function Move(S, T ).
The cost of the new solution is compared with current cost. The algorithm always ac-
cepts a move with lower cost. Contrary to the greedy algorithm, SA accepts a worse
move with higher cost by a changing possibility. This helps to avoid local minimum
and find the global minimum. The accept possibility is decided by acceptance function
Accept(∆C,T ) and decreases along with the temperature. As temperature cools down,
SA gradually becomes greedy and converges to the global minimum.

Algorithm 1 General Simulated Annealing Algorithm
1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S
4 Cbest ← C
5 R← 0
6 for i← 0 to∞ do
7 T ← Temp(i)
8 Snew ←Move(S, T )
9 Cnew ← Cost(Snew)

10 ∆C ← Cnew − C
11 if ∆C < 0 or Accept(∆C, T ) then
12 if Cnew < Cbest then
13 Sbest ← Snew

14 Cbest ← Cnew

15 end if
16 S ← Snew

17 C ← Cnew

18 R← 0
19 else
20 R← R+ 1
21 if Terminate(i, R) = True then
22 break
23 end if
24 end if
25 end for
26 return Sbest and Cbest

5 Nelder-Mead Simplex Method

The Nelder-Mead simplex method is proposed in [8] for the minimization of a function
f(p) with n variables x1, x2, . . . , xn. In this method, a number of n + 1 points (solu-
tions) p0, p1, . . . , pn are originally selected and form the so-called simplex. The set of
points are then used to generate a new and better point which will replace the worst
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point in current simplex and forms a new simplex. Each point of the simplex is a n-
tuple with n variables, i.e., pk =

(
xk
1 , x

k
1 , . . . , x

k
n

)
. The Nelder-Mead simplex method

compares the n + 1 function values f(pi) (0 ≤ i ≤ n) and replaces the point with
largest cost by the newly generated point. In each iteration, the replacement is realized
by three operations: reflection, expansion and contraction. If it fails to do the replace-
ment through these three operations, all points forming the simplex are updated with
new values to generate a new simplex. The general Nelder-Mead simplex method is
described in Algorithm 2.

Algorithm 2 Nelder-Mead Simplex Method for Minimizing f(p)

1 Select the initial n+ 1 points pi (0 ≤ i ≤ n).
2 while (!stop()) do
3 Sort f(pi) (0 ≤ i ≤ n) such that f(p0) ≤ f(p1) ≤ · · · ≤ f(pn−1) ≤ f(pn).

4 Let p =

n−1∑
i=0

pi/n.

5 Generate reflection point pr = p+ α ∗ (p− pn).
6 if f(pr) ≤ f(pn−1)) then
7 Replace pn by pr.
8 Generate expansion point pe = p+ β ∗ (pr − p).
9 if (f(pr) < f(p0)) ∧ (f(pe) < f(pr)) then

10 Replace pn by pe.
11 end if
12 else
13 Let f(p∗) = min(f(pr), f(pn)).
14 Generate contraction point pc = p+ γ ∗ (p∗ − p).
15 if f(pc) ≤ f(p∗) then
16 Replace pn by pc.
17 else
18 Update pj with (pj + p0)/2 for j = 0, 1, . . . , n.
19 end if
20 end if
21 end while
22 Return the point p0.

As shown in Algorithm 2, the principle of the Nelder-Mead simplex method is,
if f(pr) ≤ f(pn−1), then the point pn is replaced by its reflection point pr. There-
after, if f(pr) < f(p0), the reflection point is expanded to the expansion point pe and
the point pn is replaced by pe. The procedure restarts when the expansion is done.
In the case that f(pr) > f(pn−1), the contraction point pc is generated. If f(pc) <
min (f(pr), f(pn)), the point pn is replaced by contraction point pc. Otherwise, all
points in current simplex are updated by pj = (pj + p0)/2(j = 0, 1, . . . , n) and a new
simplex is generated. Thereafter the process restarts.

By continuously replacing the point pn with a point which achieves smaller f(p),
the value of the function f(p) converges to the minimum. The process terminates when
the function stop() becomes true. The state of function stop() can be determined by
whether the value of function f(p) has converged to a final value [8], or whether the
points forming the simplex have already converged to a final point [12]. In this work,
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because we try to find the optimized parameters for the SA algorithm, we adopt the latter
way to define the function stop(). More precisely, in Algorithm 2, stop() becomes true
when |xk

i − xk
j | ≤ εk(i ̸= j), for all i, j and k, where xk

i and xk
j are the kth element

of point pi and pj respectively. Each element of vector ε, called convergence degree of
variable x, is a predefined small positive value which determines the magnitude of the
convergence.

In Algorithm 2, reflection coefficient α, expansion coefficient β and contraction
coefficient γ give the factors by which the new simplex is generated by reflection, ex-
pansion and contraction respectively. These coefficients decide the speed of the con-
vergence and the quality of the final point. In [8] and [12], different values of α, β and
γ were used. In this work, we evaluated both sets of values by applying them in the
Nelder-Mead simplex method for the same set of benchmarks. The result shows that
both sets of parameters achieve comparable performance of the SA algorithm, but the
Nelder-Mead simplex method using the coefficients in [12] can converge to the final
point with 100 times less CPU time than that in [8]. Therefore, we use 1/3, 2.0 and 1.5
in [12] for α, β and γ respectively.

6 Parameter-Optimized Simulated Annealing
6.1 Parameters and Functions in SA

As shown in Algorithm 1, to apply SA to the application mapping problem, a number of
parameters and functions have to be specified. In this section, we specify the parameters
and functions used for implementing the SA algorithm in this work.
Cost Function The objective function of application mapping, i.e., the WCA defined
in Equation (5), is used as the cost function Cost(S) in SA.
Annealing Schedule: Temp(i) Function The annealing schedule determines how
the temperature is cooling down. At each step of annealing, a new temperature is gen-
erated by temperature function Temp(i). We choose the geometric annealing schedule
presented in [5] where the Temp(i) is defined as:

Temp(i) = T0 × q⌊
i
L⌋ (6)

The new temperature is decided by the initial temperature T0, the cooling ratio q, the
accumulated number of iterations i and the number of iterations at each temperature L.

Number of Iterations L The number of iterations at each temperature L is identically
set as M(N − 1), where M and N are the number of tasks in CWG and that of tiles in
CCRG respectively.
Acceptance Function: Accept(∆C, T ) While an improving move (∆C < 0) is al-
ways accepted, the function Accept(∆C, T ) determines whether a worse move (∆C >
0) should be accepted or not at the temperature T . The normalized inverse exponential
form is chosen to implement the acceptance function in this work.

Accept(∆C, T ) = True ⇔ random() < p

p =
1

1 + exp
(

∆C
KC0T

) (7)
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With this acceptance function, the possibility of accepting a worse move, p, is less than
50%. On the basis of the original normalized inverse exponential form presented in [5],
we add the normalizing ratio K in the acceptance function which works together with
the initial cost C0 to normalize the cost difference ∆C. This comes from the observation
that using the original normalized inverse exponential form , in cases that the C0 is huge,
an accepting possibility close to 50% will be created even for a very small ∆C at a very
low temperature. This makes SA inefficient at the last set of lower temperatures.

Initial and Final Temperature The acceptance function in (7) defines the relation
between the accepting possibility p, cost difference ∆C and temperature T . Equation
(7) can be solved with respect to T as follows:

T =
∆C

ln( 1p − 1)
(8)

If we define Ps the possibility of accepting the maximal ∆C at initial temperature T0,
and Pf the possibility of accepting the minimal ∆C at final temperature Tf , then the
initial and final temperature can be calculated as follows:

T0 =
∆Cmax

ln( 1
P0

− 1)
, Tf =

∆Cmin

ln( 1
Pf

− 1)
(9)

In the way that the T0 and Tf are set manually using empirical values (the cases in
[7] [13]), only a numerical range is given by T0 and Tf , there are no realistic mean-
ings behind T0 and Tf . On the contrary, in this work, the usage of Ps and Pf is more
meaningful and understandable for designers to choose the T0 and Tf by Equation (9).

Move function:Move(S, T ) We use the random swapping as the move function.
A task in current mapping is randomly selected and then it is swapped with another
randomly selected task.

Termination function:Terminate(i, R) We add one criteria N∆C=0 into the ter-
mination function of coupled temperature and rejection threshold which is presented in
[5], to determine the stopping condition in this work.

Terminate(i, R) = True ⇔ (temp(i) < Tf ∧R ≥ Rmax)

∨(N∆C=0 = Z)
(10)

N∆C=0 stands for the number of consecutive temperatures at which the lowest cost
Cbest has not been changed. Z is the maximal number of N∆C=0 allowed in the SA
algorithm. R is the number of consecutive rejections since last acceptance and Rmax is
the maximal number of rejections allowed in the SA algorithm. With this termination
function, the annealing is stopped either when the temperature reaches to or below the
final temperature and the moves in last Rmax iterations are rejected, or in the last Z
temperatures, no better solutions have been found. In this work, we set Rmax = L and
Z = 0.1NT , when NT stands for the total number of temperatures from T0 to Tf .

Initial Mapping A random mapping in which each task is randomly mapped on a tile,
is generated as the initial mapping.
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Summary of Parameters Table 1 summarizes the parameters and functions used in
the SA algorithm in this work. We can see from Table 1, to apply the SA algorithm in
this work, the values of 6 parameters need to be specified: q,K, Ps, Pf , ∆Cmax and
∆Cmin. As long as these parameters are specified, other parameters such as T0 and Tf

can be decided and all functions can work properly. In these 6 parameters, the values
of ∆Cmax and ∆Cmin can be obtained from a set of mapping trials generated from
the original mapping using the move function (see details in Section 7). The other 4
parameters, labeled “Nelder-Mead Simplex Method” in column “Value” in Table 1, are
the most important parameters of SA in this work and they are going to be optimized
by the Nelder-Mead simplex method presented in Section 5.

Table 1: Functions and Parameters for SA
Symbol Definition Value
S Mapping solution (S0: initial solution)
Cost(S) Cost function WCA (Equation (5))

Temp(i) Temperature functioni T0 × q⌊
i
L⌋

i Accumulated number of iterations
q Geometric annealing schedule cooling ratio Nelder-Mead Simplex Method
L Number of iterations at each temperature M(N − 1)

N Number of tiles in CCRG
M Number of tasks in CWG
Accept(∆C, T ) Return accept (True) or reject (False) for a

worse move
random() < 1/(1 +
exp ∆C

KC0T
)

K Normalizing ratio Nelder-Mead Simplex Method
C0 Initial cost Cost(S0)

T0 Initial temperature ∆Cmax/ ln(
1
Ps
− 1)

Tf Final temperature ∆Cmin/ ln(
1
Pf
− 1)

∆Cmax The maximal ∆C at initial temperature T0 Experiment
∆Cmin The maximal ∆C at final temperature Tf Experiment
P0 The possibility of accepting the maximal

∆C at initial temperature T0

Nelder-Mead Simple Method

Pf The possibility of accepting the minimal
∆C at final temperature Tf

Nelder-Mead Simplex Method

Move(S, T ) Return a neighboring mapping of S
Terminate(i, R) Return terminate (True) or continue (False) temp(i) < Tf ∧R ≥ Rmax ∨

N∆C=0 = Z

R Number of rejections
Rmax Allowed maximal number of rejections L

NT The total number of temperatures from T0

to Tf

ln( T0
Tf

)/ ln(q)

Z The allowed maximal number of tempera-
tures with ∆C = 0

0.1NT

6.2 Parameter Optimization

To apply the Nelder-Mead simplex method to get the optimized parameters q,K, Ps and
Pf , we need to define the function f(p) and specify the boundaries and convergence
degree of each parameter from which the parameter is chosen.
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Function f(p) Since using various sets of q,K, Ps and Pf , the SA algorithm will
produce different minimized values of WCA, we can define the output of the SA, i.e.,
the minimized WCA, as the function f(p) of variables q,K, Ps and Pf . With this
definition, it is possible to use the Nelder-Mead simplex method for finding the final
point of variables q,K, Ps and Pf which produces the minimum WCA by SA.

Parameter Boundaries and Convergence Degrees Contrary to the work in [8] where
the variables x is unbounded, the parameters q,K, Ps and Pf in our specific application
mapping problem are bounded. Among them, the parameters Ps and Pf are theoreti-
cally in the range (0.0, 0.50] according to Equation (7). For the SA algorithm, it is
reasonable to set a higher acceptance possibility at the initial temperature and a rel-
atively lower acceptance possibility at the final temperature. In this work, we set the
range of Ps and Pf by [0.20, 0.49] and (0.0, 0.10] respectively. And the convergence
degrees εPs and εPf

are set 0.01 and 0.005 respectively. The cooling ratio q is sup-
posed to be in range (0.0, 1.0). In this work, we set the range [0.80, 0.99] for q. The
convergence degree εq is set 0.005. The value of K is allowed in the range of (0.0, 1.0]
and the convergence degree εK is set 0.05.

At the beginning of the Nelder-Mead simplex method, 5 initial points are generated
by choosing 4 elements, i.e, q,K, Ps and Pf , from their allowable range. During the
process of the Nelder-Mead simplex method, whenever an element of a point exceeds
its boundary, the bound value is used for the element. The function stop() becomes true
and the process is terminated when these 5 points converge to one point.

6.3 Parameter-Optimized Simulated Annealing Algorithm

Algorithm 3 Parameter-Optimized Simulate Annealing
1 Define the boundaries and convergence degree ε for parameters q,K, Ps and Pf .
2 Obtain the final point of the Nelder-Mead simplex method, popt = simplex().
3 Set qopt = popt.q,Kopt = popt.K.
4 Set Psopt = popt.Ps, Pfopt = popt.Pf .
5 Find the best solution by applying the final point to SA,

Sbest = sa(qopt,Kopt, Psopt , Pfopt).
6 Return Sbest.

Applying the Nelder-Mead simplex method, we develop the parameter-optimized
simulated annealing algorithm for application mapping problems on many-core NoCs.
The proposed algorithm is described in Algorithm 3 where the function sa() and simplex()
apply the Algorithm 1 and 2 respectively. After defining the boundaries and conver-
gence degree for four target parameters, i.e., q,K, Ps and Pf , the optimized set of
parameters are obtained by the Nelder-Mead simplex method. The optimal mapping
solution with minimized WCA is then found by running the SA algorithm with the
optimized set of parameters.

Note that, with various implementations of the SA algorithm, the parameters needed
to be selected are different. Since the variables and objective functions applied in the
Nelder-Mead method can be arbitrary, the Algorithm 3 is applicable for obtaining dif-
ferent sets of optimized parameters corresponding to different implementations. This
makes the method proposed in this work viable for selecting optimized parameters of
the SA algorithm which deals with diverse problems.
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7 Experiment

To evaluate the efficiency of the proposed parameter-optimized simulated annealing
(POSA) algorithm, we experiment POSA with a set of benchmarks and compare with
the implementation of the SA algorithm in [7].

7.1 Setup

The implementation of the SA algorithm in [7] is available in the NoCmap project [3].
In the NoCmap, the geometric annealing schedule is used and the q is set 0.9. T0 is
fixed to 100 and the final temperature Tf is unbounded. The objective of the NoCmap
is to minimized the total communication energy consumption and the energy model
presented in [7] is adopted in the simulator. In this work, we also use the NoCmap
simulator to obtain the communication energy consumption of the mappings generated
by the POSA algorithm.

Four benchmark applications are selected for the comparison, including a video
object plane decoder (VOPD) and a MPEG4 from SUNMAP [10], a multimedia sys-
tems application (MMS) [6] and a H.264 decoder (H264) [14]. The CWGs of these
applications are derived from original descriptions in these works. The benchmarks and
corresponding NoCs used in this work are summarized in Table 2.

The optimized mapping of each benchmark is found both by the NoCmap and the
POSA algorithm. The communication energy of both mappings are produced by the
NoCmap simulator. For POSA, the average ∆Cmax and ∆Cmin are obtained from 5∗L
move trials starting from the original random mapping, which are used to calculate the
T0 and Tf with given parameters P0, Pf , C0 and K. Both algorithms were executed on
a Desktop PC having a 3.0 GHz Intel Core2 Duo CPU and 8.0 GB of memory.

7.2 Results

Table 2: Optimized Parameters of SA for Benchmarks
Benchmark Cores NoC q P0 Pf K

VOPD 16 4x4 0.91 0.44 0.05 0.72

MPEG4 12 3x4 0.95 0.34 0.05 0.36

MMS 25 5x5 0.94 0.36 0.05 0.62

H264 16 4x4 0.89 0.42 0.05 0.49

Optimized Parameters Applying the POSA algorithm, the optimized mapping so-
lution with minimized WCA of each application is achieved. At the same time, the
optimized parameters of the SA algorithm are obtained. Table 2 shows the optimized
parameters of SA for mapping the four benchmarks. As mentioned in Section 2, the pa-
rameters of SA are problem-specific. Table 2 illustrates that, instead of using an iden-
tical set of parameters, to find an optimized mapping, different parameters should be
used in SA for mapping different applications.

Iterations and Runtime Table 3 shows the iterations (Is) of NoCmap and POSA
algorithm for finding the final mapping solution of each application. The column T0
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and Tf are the initial and final temperature respectively. Tt refers to the temperature at
which SA terminates. Is is the number of iterations that the SA algorithm has run until
it terminates. pct is the percentage of the iterations of POSA to that of NoCmap. We
can see that, since optimized parameters are applied, a much lower initial temperature
is set in POSA. As a result, POSA uses significantly smaller number of iterations which
is on average less than 1% of that used in NoCmap, to get the final mapping.

Table 3: Iterations of SA for Benchmarks

Benchmark
T0 Tf Tt Is

NoCmap POSA NoCmap POSA NoCmap POSA NoCmap POSA pct
VOPD 100 2.69 - 1.35e-4 2.28e-6 9.88e-5 4.30e6 2.74e4 0.64%

MPEG4 100 1.90 - 1.26e-4 5.80e-7 8.38e-5 2.61e6 2.77e4 1.06%
MMS 100 1.36 - 1.26e-5 5.80e-7 1.25e-5 1.14e7 1.18e5 1.04%
H.264 100 3.11 - 1.94e-4 0.15 1.43e-4 1.61e6 1.94e4 1.02%

Table 4 shows the runtimes of SA in NoCmap and POSA (in seconds) and the
speedup achieved by POSA. POSA is, on average, 1.41 times faster than that in NoCmap.
Note that, the runtime of POSA includes the time consumed by the Nelder-Mead sim-
plex method in which the SA is run more than hundred times. In terms of the runtime
of a single run of SA, a significant speedup is achieved by POSA due to less evaluating
iterations. In Table 4, POSA

′
and Speedup2 represent the runtime of a single run of

SA applying the set of optimized parameters, and the speedup over that in the NoCmap
respectively. We can see that in POSA, the SA with optimized parameters is on average
237 times faster than that in NoCmap. This indicates how important the selection of
parameters is regarding to the runtime of the SA algorithm.

Table 4: Runtimes and Speedup for Benchmarks
Benchmark NoCmap POSA Speedup1 POSA´ Speedup2

VOPD 31.69 15.50 2.04 0.087 364
MPEG4 15.74 9.67 1.63 0.059 267
MMS 171.74 181.75 0.94 1.17 147
H.264 12.34 11.90 1.04 0.072 171

Average - - 1.41 - 237

WCA and Energy Consumption In this work, minimizing communication energy
consumption on NoC is the objective of applying SA to solve the application mapping
problem. Figure 2 shows the WCA achieved by NoCmap and POSA for each applica-
tion respectively. The results of both algorithms vary slightly. The maximum of WCA
variance is less than 4% in the case of application H.264.

As anticipated from the results of the minimized WCA, the communication energy
consumptions achieved by NoCmap and POSA are almost same. Figure 3 shows that the
maximal difference exists again in the case of application H.264, which is less than 2%.
The comparable energy consumption verify the efficiency of the proposed POSA algo-
rithm. Although a significantly smaller number of iterations is processed, POSA still
can find the optimized mapping solution which is similar to the one found in NoCmap
where a huge searching space is explored.
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Fig. 3: Evaluation of Energy Consumption

8 Conclusions

The set of parameters applied in the SA algorithm has great impact on the runtime
and the quality of the final solution. A method to systematically select the parameters
of the SA algorithm for the application mapping problem is proposed in this work.
The Nelder-Mead simplex method, which is used to get the minimization of a function
of n variables, is applied to find the optimized parameters of the SA algorithm. With
the set of optimized parameters, less evaluations are performed and the SA algorithm is
accelerated. In addition, this work also points out that the parameters of SA are problem-
specific. Instead of using an identical set of empirical parameters, the proposed POSA
algorithm provides a way to flexibly select various number of parameters with respect
to different cost functions for different kinds of mapping problems.

The experiment shows that the proposed POSA algorithm is time- and energy-
efficient. The POSA algorithm only uses on average less than 1% iterations of that used
in NoCmap algorithm to converge to the final optimized solution. An average speedup
of 1.4 times is achieved by POSA over NoCmap. With the optimized parameters, the
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SA instance in the POSA is 237 times faster than that in the NoCmap, while the optimal
mapping is still found.
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