
Evaluation of a family of reinforcement learning
cross-domain optimization heuristics

Luca Di Gaspero and Tommaso Urli

DIEGM, Universit‡ degli Studi di Udine
via delle Scienze 208 – I-33100, Udine, Italy

luca.digaspero@uniud.it, tommaso.urli@uniud.it

Abstract. In our participation to the Cross-Domain Heuristic Search
Challenge (CHeSC 2011 ) [1] we developed an approach based on Re-
inforcement Learning for the automatic, on-line selection of low-level
heuristics across different problem domains. We tested different memory
models and learning techniques to improve the results of the algorithm.
In this paper we report our design choices and a comparison of the dif-
ferent algorithms we developed.

1 Introduction

CHeSC 2011 aims at fostering the development of methods for the automatic de-
sign of heuristic search methodologies, which are applicable to multiple problem
domains (see [1] for more details). The competition sits on the underlying frame-
work of hyper-heuristics, i.e., automatic methods to generate or select heuristics
for tackling hard combinatorial problems. In order to ease the implementation
of hyper-heuristics and to let the participant compete on a common ground, the
competition organizers released a software framework, called HyFlex [3], to be
used as a basis for their algorithms. HyFlex is a Java API that provides the basic
functionalities for loading problem instances, generating solutions and applying
low-level heuristics. Low-level heuristics are black-boxes, and only information
about their family is known (i.e., ruin-recreate, mutation, cross-over and lo-
cal search steps). The six problem domains considered in the competition are:
MAX-SAT, (1D) Bin Packing, Permutation Flow Shop Scheduling, Personnel
Scheduling, TSP and VRP. We refer the reader to the CHeSC 2011 website [1]
for further details.

2 Reinforcement Learning basics

The algorithmic alternatives that we have considered for CHeSC 2011 are all
based on Reinforcement Learning (RL) [6]. In order to use RL, one needs to
specify at least three components: an environment (whose observable features are
encoded in states), a set of actions which can be pursued by the learning agent
and a reward function which is a numeric feedback about the agent’s actions.



(a) Agent-environment architecture (b) Perceptron

The various choices for these elements, together with the action selection policy
and the learning function, determine a range of different behaviors.

At each iteration, the agent selects which action to take in the current state
according to its policy. The policy is a function for selecting an action based
on its value. Together with the set of learned action values, a policy determines
completely (barring stochastic effects) the agent’s behavior at each decision step.
The execution of an action updates the state of the agent and yields a reward
value. The learning function uses this reward to update one (or mode) action
values. Since the policy is usually fixed, this concretely changes the behavior of
the agent for the future iterations. The state represents the agent’s beliefs about
the environment at a specific time; representing the state in a rich, yet complete,
manner is key to the success of RL.

2.1 Function approximation with MLPs

When the states and actions are discrete and finite, a simple way to store action
values is to keep them in a table (tabular RL). However, when the states or the
actions are continuous or the number of states is just too large, this solution is
no more viable. In these cases, the only option is to consider action values as a
continuous function and to use function approximation techniques to model it.
Multi-Layer Perceptrons (MLP) are a function approximation mechanism which
belongs to the class of supervised Machine Learning algorithms. We are going
to briefly revise MLPs in this section, by starting from the simpler concept of
Perceptron. A (Single-Layer) Perceptron is a processing unit with a number of
weighted inputs (one of which has always a value of 1) and an output. Upon
activation, the Perceptron computes the weighted sum of its inputs and outputs
a function of this sum. The algorithm implemented by the perceptron in Figure
1b can be summarized with the following formula:

h(x) = activation(wTx) (1)

By varying activation one can use perceptrons to approximate different func-
tions, however the complexity of these is very limited. MLPs are layered networks
of Perceptrons in which outputs of nodes in a layer are connected to inputs of
nodes in the following. Since Perceptrons are actually inspired to neurons, these



networks are commonly known as Artificial Neural Networks (ANN). Layers
other than input or output are called hidden. There are no constraints on the
number of hidden layers or nodes, however it has been demonstrated [4] that
a MLP with a single, large-enough, hidden layer can approximate any nonlin-
ear function of the input. Unfortunately, there is no rule of thumb on the right
number of hidden neurons, which must be worked out with parameter tuning.

2.2 Eligibility Traces

Eligibility Traces (ET) are a RL mechanism for temporal credit assignment. The
idea in temporal credit assignment is that each action on the trajectory to a
reward, and not just the last one, must take some credit for that reward. To
accomplish this, one a chance is to keep an es,a value for each visited (s, a) pair.
This value tells how long before the pair was visited and is updated as follows

es,a =

{
1 if state is s and action is a

λes,a otherwise
(2)

where λ is a decay factor in [0, 1). In RL, es,a is called eligibility trace of (s, a)
and is used by the learning function to weight the update to (s, a). Intuitively,
recently visited (s, a) pairs are more likely to be responsible for a reward with
respect to older ones, and should benefit (or suffer more) from the last obtained
reward. In practice, one can implement ETs efficiently by keeping a queue of
the last dlog(threshold)/ log(λ)e visited pairs where threshold is the value of
e under which an update is considered neglectable. Then es,a is computed as
λposition where position is the pair’s position in the queue.

3 Reinforcement Learning for heuristic selection

In order to describe our RL hyper-heuristics we must identify the following
elements: (i) the environment states, (ii) the set of actions, (iii) the reward, (iv)
the policy and (v) the learning function.

Environment: HyFlex is designed to support the construction of cross-domain
hyper-heuristics. For this reason, all the information about a solution (except
its cost) domain is hidden to the user. This makes things difficult because,
in principle, RL states must be Markov (i.e. enough informative to allow
choosing the right action). After attempting some variants, we resorted to
a state representation which tries to capture the concept of reward trend.
In particular, when a reward is obtained, the new state is computed as
si+1 = b(si + reactivity ∗ (ri − si))c, where ri is a normalized cross-domain
reward measure and reactivity defines the attitude of the agent to switch
state.

Actions: We defined a possible action a in a given state as the choice of the
heuristic family to be used, plus an intensity (or depth of search) value in



Table 1: Common hyper-heuristic parameters
parameter name values explanation

agents 3, 4, 5, 6, 8, 10 number of concurrent agents
crossoverWith bestAgent, incumbentOptimum secondary solution for cross-over
reactivity 0.05, 0.1, 0.25, 0.5, 0.9 readiness to change state
learningRate 0.1, 0.2, 0.3 readiness to update action values
epsilon 0.01, 0.05, 0.1 probability to pick random actions

the quantized set of values 0.2, 0.4, 0.6, 0.8, 1.0. Once the family has been de-
termined, a random heuristic belonging to that family is chosen and applied
to the current solution with the specified intensity (or depth of search).

Reward: The reward r is computed as the solution’s ∆cost before and after
action application. Variants which also take into account the time spent
applying an action have been tried, but with poor results.

Policy: The ε-greedy policy (which chooses arg maxa πs,a with probability 1− ε
and a random action otherwise) proved to perform better than a number
of alternatives and is currently our policy of choice. A note on the move
acceptance criterion: in our approach we decided to always trust the policy
hence we always apply the action chosen even if it deteriorates the solution.

Learning function The learning function is based on a very simple update
π(s, a)k+1 = π(s, a)k + learningRate ∗ (rk − π(s, a)k) which always moves
the estimated reward for a (s, a) pair towards the last reward. The discount
factor learningRate is needed to tackle non-stationarity (i.e. updates are
constant, the policy never converges).

4 Experimental analysis

In order to tune the variants’ parameters and to understand their relationships
we carried out an experimental analysis based on the tools commonly employed
in the statistical analysis of algorithms. To collect the required data we ran all
configurations on three different Intel machines equipped with Quad Core pro-
cessors (resp. at 2.40, 2.40 and 3.00 GHz) and running Ubuntu 11.04. Differences
were leveled through a benchmarking tool provided by CHeSC organizers.

We compare three hyper-heuristics inspired to the RL variants in section 2:
tabular reinforcement learning (RLHyperHeuristic), tabular reinforcement learn-
ing with ETs (RLHyperHeuristic-ET) and reinforcement learning with MLP
function approximation (RLHyperHeuristic-MLP). Although each approach has
its own parameters, some of them (Table 1) are common to all hyper-heuristics.

RLHyperHeuristic-MLP requires a number of extra parameters (see Table 2a)
related to MLPs. The parameters hiddenLayers and hiddenNeurons determine
the complexity of the function that the MLP is able to approximate. inputScale
is a parameter to control input normalization. Similarly RLHyperHeuristic-ET
introduces two parameters (see Table 2b): threshold and traceDecay (λ), which
are used to compute the length of the eligibility queue.



Table 2: Specific parameters for RLHyperHeuristic variants
(a) RLHyperHeuristic-MLP

parameter name values

hiddenLayers 1, 2
hiddenNeurons 20, 30, 40
inputScale 1, 3

(b) RLHyperHeuristic-ET

parameter name values

threshold 0.01
traceDecay 0.5, 0.9

Since the evaluation has to be performed across different domains and on
instances with different scales of cost functions we decided to consider as the
response variable of our statistical tests the normalized cost function value. That
is, the cost value y is transformed by means of the following transformation,
which aggregates the results on the same problem instance π:

e(y, π) =
y(π)− y∗(π)

y∗(π)− y∗(π)
(3)

where y∗(π) and y∗(π) denote the best known value and the worst known value
of cost on instance π. This information has been computed by integrating the
data gathered by our experiments with the information made public by CHeSC
organizers. In all the following analyses we employ the R system [5].

Parameter influence. The first analysis aims at clarifying the influence of param-
eters on the outcome of the algorithms, in order to fix some of the parameters
to reasonable values and to perform further tuning of the relevant ones. For this
purpose we perform an analysis of variance on a comprehensive dataset includ-
ing all configurations run throughout all the problem domains. Each variant has
been run on each instance for 5 repetitions. We perform separate analysis for
each variant and we set the significance level of the tests to 0.95.

RLHyperHeuristic: The most relevant parameters are the selection of the
cross-over solution and the number of agents, but there seems to be no
detectable interaction among them. As for this variant, ε is also significant.

RLHyperHeuristic-ET: The relevant parameter is the traceDecay, apart of
the selection of the agent for the crossover that was relevant also in the
previous variant. The number of agents doesn’t seem to be relevant.

RLHyperHeuristic-MLP: Apart crossOver, the inputScale and hiddenNeu-
rons are relevant in explaining the different performances of the algorithm.
We do not found any significant second-order interaction among parameters.

Parameter tuning. For tuning the parameters identified in the previous analysis
we employed the F -Race technique [2]. As for the selection of the best candidates,
we took the ones that had the lowest median value of the normalized cost function
across all instances and all domains. The setting of the parameters for the three
different variants of the algorithm are reported in Table 3.



Table 3: CW = crossoverWith, LR = learningRate, R = reactivity, TH = treshold,
TD = traceDecay, IS = inputScale, HL = hiddenLayers and HN = hiddenNeurons

variant agents CW ε LR R TH TD IS HL HN

RL 5 incumbentOptimum 0.05 0.2 0.5
RL-ET 4 incumbentOptimum 0.1 0.1 0.1 0.01 0.5
RL-MLP 4 incumbentOptimum 0.05 0.1 0.5 1 1 20

Comparison with the other participants. We have compared our variants with
the other participants in the CHeSC competition by using the median value
of the normalized cost function for ranking. Overall the variant using function
approximation improves over our original algorithm (13th place, against 16th),
while the one which uses eligibility traces doesn’t. A proper tuning of the al-
gorithm we sent to CHeSC has determined a relevant improvement but overall
we are still far from the first positions. This is likely to be caused by the state
representation, which seems to be insufficiently informative.

5 Conclusions and Future Work

This work is part of our investigation about the use of Machine Learning tech-
niques for driving combinatorial optimization algorithms. In our opinion the
results are interesting given the fact that there is no move acceptance criteria
and the whole control is in the hands of a learning algorithm. However the in-
trinsic limitations imposed by the competition are too tight to allow a proper
RL integration. For this reason, we are currently investigating these approaches
outside the HyFlex framework.

References

[1] ASAP Research Group, Nottingham: CHeSC: the cross-domain heuristic search
challenge (2011)

[2] Birattari, M., Stutzle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: GECCO 2002: Proceedings of the Genetic and Evo-
lutionary Computation Conference. vol. 2, pp. 11–18 (2002)

[3] Burke, E., Curtois, T., Hyde, M., Ochoa, G., Vazquez-Rodriguez, J.: HyFlex:
A Benchmark Framework for Cross-domain Heuristic Search. Arxiv preprint
arXiv:1107.5462 pp. 1–27 (2011), http://arxiv.org/abs/1107.5462

[4] Hornik Maxwell, K., White, H.: Multilayer feedforward networks are universal ap-
proximators. Neural networks 2(5), 359–366 (1989)

[5] R Development Core Team: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria (2011),
http://www.R-project.org, ISBN 3-900051-07-0

[6] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press (1998)


