
Learning the Neighborhood with the

Linkage Tree Genetic Algorithm

Dirk Thierens12 and Peter A.N. Bosman2

1 Institute of Information and Computing Sciences
Universiteit Utrecht, The Netherlands

2 Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands

Abstract. We discuss the use of online learning of the local search
neighborhood. Specifically, we consider the Linkage Tree Genetic Al-
gorithm (LTGA), a population-based, stochastic local search algorithm
that learns the neighborhood by identifying the problem variables that
have a high mutual information in a population of good solutions. The
LTGA builds each generation a linkage tree using a hierarchical cluster-
ing algorithm. This bottom-up hierarchical clustering is computationally
very efficient and runs in O(n2). Each node in the tree represents a spe-
cific cluster of problem variables. When generating new solutions, these
linked variables specify the neighborhood where the LTGA searches for
better solutions by sampling values for these problem variables from the
current population. To demonstrate the use of learning the neighborhood
we experimentally compare iterated local search (ILS) with the LTGA
on a hard discrete problem, the nearest-neighbor NK-landscape prob-
lem with maximal overlap. Results show that the LTGA is significantly
superior to the ILS, proving that learning the neighborhood during the
search can lead to a considerable gain in search performance.

1 Introduction

Stochastic local search (SLS) is a powerful class of algorithms to solve discrete
optimization problems. Although many variations of SLS can be found in the
literature, all of them assume that the neighborhood to be explored is given be-
fore the search starts. However, the choice of the neighborhood is a critical factor
which can make all the difference between success and failure of the search. The
limitations of a fixed neighborhood are sometimes recognized, and this has led
to the development of algorithms like variable neighborhood search (VNS) [3],
where a nested set of neighborhoods is explored when the search stagnates in its
current neighborhood. However, VNS has still a static, predefined neighborhood
structure. In this paper, we show that it can be beneficial to search in a dynam-
ically changing neighborhood structure. Our aim is to learn what neighborhood
to use during the search. This neighborhood learning is guided by structural
similarities present in a set of good solutions found so far during the search
process. In the next section we briefly review the linkage tree genetic algorithm

that precisely does this. Section 3 specifies our benchmark function, the so called
nearest-neighbor NK-landscape problem with maximal overlap. In Section 4 we
compare the LTGA with iterated local search to see how much can be gained
from dynamically learning the neighborhood to explore.

2 Linkage Tree Genetic Algorithm

The linkage tree genetic algorithm [7, 8, 1] is a population-based, stochastic local
search algorithm that aims to identify which variables should be treated as a
dependent set during the exploration phase. The LTGA represents this depen-
dence information in a hierarchical cluster tree of the problem variables. The
linkage tree of a population of solutions is the hierarchical cluster tree of the
problem variables using an agglomerative hierarchical clustering algorithm. The
problem variables - or cluster of variables - that are most similar are merged first.
Similarity is measured by the mutual information between individual variables,
or by the average linkage clustering between clusters of variables XF iandXF j .
This average linkage clustering is equal to the unweighted pair group method
with a arithmetic mean (UPGMA) and is defined by:

IUPGMA(XF i , XF j) =
1

|XF i ||XF j |

∑

X∈X
F i

∑

Y ∈X
F j

I(X, Y).

This agglomerative hierarchical clustering algorithm is computationally very ef-
ficient. Only the mutual information between pairs of variables needs to be com-
puted which is a O(`2) operation. The bottom-up hierarchical clustering can also
be done in O(`2) computation by using the reciprocal nearest neighbor chain algo-
rithm [2]. For a problem of length ` the linkage tree has ` leaf nodes (the clusters
having a single problem variable) and `−1 internal nodes. Each node divides the
set of problem variables into two mutually exclusive subsets. One subset is the
cluster of variables at that node, while the other subset is the complementary
set of problem variables. The LTGA uses this division of the problem variables
as a set of variables whose values are sampled simultaneously. Sample values are
obtained by taking a random solution of the current population and copying the
corresponding variable values. Each generation the LTGA builds a linkage tree
of the current population. New solutions are generated by greedily exploring the
neighborhood of each solution in the current population. This neighborhood is
defined by the linkage tree. The LTGA traverses the tree in the opposite order of
the merging of the clusters by the hierarchical clustering algorithm. Therefore,
LTGA first samples the variables which are the least dependent on each other.
New solutions are only accepted when they have a better fitness value than the
original solution. When the tree is completely traversed, the solution obtained
is copied to the population of the next generation. This tree traversal process is
done for each solution in the current generation.

3 Nearest-neighbor NK-landscape with maximal overlap

To show that learning the neighborhood during the search can be very useful,
we compare ILS and LTGA on the nearest-neighbor NK-landscape problem with
maximum overlap [5, 6]. The nearest-neighbor NK-problem is a subclass of the
general NK-landscape problem where the interacting bit variables are restricted
to groups of variables of length k. The fitness contributions of each group of
k-bits are specified in a table of 2k random numbers between 0 and 1. Formally,
the nearest-neighbor NK-problem is specified by its length `, the size of the sub-
problems k, the amount of overlap between the subproblems o, and the number
of subproblems m. The first subproblem is defined at the first k string positions.
The second subproblem is defined at the last o positions of the first subproblem
and the next (k−o) positions. All remaining subproblems are defined in a similar
way. The relationship between the problem parameters is ` = k +(m−1)(k−o).
In this paper, we look at NK-problems with maximal overlap between the groups
of interacting variables, thus o = k − 1. For instance, for ` = 100, k = 5, 0 = 4,
and m = 96 we get the subproblems: (0 1 2 3 4) (1 2 3 4 5) (2 3 4 5 6) . . .

(95 96 97 98 99) (96 97 98 99 100). An interesting property of the nearest-
neighbor NK-problem is that we can compute the global optimal solution using
dynamic programming when we use the structural knowledge of the position of
the subfunctions. However, when used as benchmark function for ILS and LTGA
the position of the bit variables are randomly shuffled and unknown to these al-
gorithms. ILS has no mechanism to figure out what bits are possibly related.
The LTGA however is be able to learn some important interactions and take
advantage of this during the search process.

4 Experiments

The neighborhood explored by ILS is defined by single bit flips of the current
solution. ILS alternates local search with stochastic perturbation of the current
local optimum. When after perturbation and subsequent local search a better
local optimum is found the search will proceed from that new solution. If not,
the newly found solution is rejected and ILS continues from the old local opti-
mum. The perturbation should be large enough such that the local search does
not return to the same local optimum in the next iteration. However the pertur-
bation should not be too large, otherwise the search characteristics will resemble
those of a multi-start local search algorithm. To investigate the impact of the
perturbation size pm of ILS on a large set of NK-problem instances we first run
a series of experiments on 100 randomly generated problems. The top subfigures
from Figure 1 show results for perturbation sizes varying from 2 to 10 (left), and
from 5 to 20 (right). The Y-axis shows the number of runs (out of 100) that suc-
cessfully found the global optimal solution to a randomly generated NK-problem
instance. The X-axis shows the number of function evaluations needed. The plots
are cumulative thus a value (10000, 20) means that 20 of the 100 runs have found
the global optimum in less (or equal) than 10000 function evaluation [4].

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

[5]
[10]
[15]
[20]

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

N=500
N=400
N=300
N=200

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

[2..10]
N=200
N=500

Fig. 1. RLDs of single run on 100 NK-problem instances for ILS with perturbation
sizes varying from 2 to 20 and LTGA with population sizes varying from 200 to 500.

Whereas in Figure 1 single independent runs are performed on 100 different
random NK-problem instance, Figure 2 shows results for 100 independent runs
on 10 specific NK-problem instances. The top left subfigure shows ILS with per-
turbation size randomly chosen between 2 and 10. The top right subfigure shows
results for LTGA with population size 500. The two bottom subfigures show
results for ILS (perturbation size between 2 and 10) and LTGA (population size
300 and 500) for the NK3 and NK2 problem instances, which are respectively
the easiest and second easiest problem to solve.

4.1 Discussion

A number of observations can be made from the experiments:

– The top subfigures of Figure 1 show that the perturbation size for ILS does
not seem to be a very sensitive parameter for the NK-problems considered.
For pm = 2 the success rate is a bit lower than for values between 3 and 10.
Closer inspection of the actual runs shows that this is due to the much higher
percentage of local searches that return to the starting solution after the per-
turbation. Performance of ILS only drops when pm becomes larger than 10.
For pm = 20 none of the 100 runs did find the global solution, showing that
multi-start local search is hopelessly inefficient for these nearest-neighbor
NK landscape problems with maximal overlap.

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

NK_0
NK_1
NK_2
NK_3
NK_4
NK_5
NK_6
NK_7
NK_8
NK_9

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

NK_0
NK_1
NK_2
NK_3
NK_4
NK_5
NK_6
NK_7
NK_8
NK_9

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

NK_3, P=300
NK_3, P=500

NK_3, ILS
100*(1-2**(-x/350000))

 0

 20

 40

 60

 80

 100

 10000 100000 1e+06

S
uc

ce
ss

fu
l r

un
s

(o
ut

 o
f 1

00
)

Function evaluations

NK_2, P=300
NK_2, P=500

NK_2, ILS
100*(1-2**(-x/1000000))

Fig. 2. RLDs of 100 runs on 10 NK-problem instances for ILS with random perturba-
tion sizes between 2 and 10, and LTGA with population size 500.

– In the bottom right subfigure of Figure 1 we have also plotted the results for
ILS with a perturbation size randomly chosen from the interval [2..10]. Each
time ILS perturbs a local optimum, pm is randomly selected. This way a
robust parameter setting is obtained that returns good overall performance.

– LTGA finds the global optima very reliably when the population size N =
500. Population sizes 300 and 400 result in a success rate well above 90%,
while for N = 200 the success rate becomes 83%. Of course a smaller popula-
tion size means that we need less function evaluations to reach a certain level
of performance. For N = 200 we could ideally cut the search after 200000
evaluations and then restart the search. This would result in a combined
success rate of 1 − (1 − 0.83)2 = 97% after 400000 function evaluations. In-
terestingly, this is about the same performance and efficiency result as with
a population size N = 500, so here there is no gain in restarting the LTGA
using a smaller population.

– The top subfigures of 2 show the success rate (out of 100 runs) of ILS
(pm = random[2..10]) and LTGA (N = 500) for 10 different NK-landscape
problems. Clearly, the LTGA is not only more performant and more effi-
cient, it is also more consistent. There is much less variance in the required
function evaluations to reach a certain performance level.

– ILS’s result varies significantly with the specific instances of the NK-landscape
problem. The bottom subfigures of 2 compare the results on the two easiest
instances for ILS with the LTGA. We have also drawn a tangent cumulative

exponential distribution function to ILS’s success rate. In both cases the
success rate of ILS is not dropping lower than the cumulative exponential -
rather on the contrary - showing that here also nothing can be gained from
restarting ILS after a certain number of function evaluations.

5 Conclusions

We have shown that learning a neighborhood structure during the search process
can be very beneficial in terms of performance, efficiency, and consistency. To do
so, we have compared iterated local search (ILS) using optimally tuned pertur-
bation sizes with the linkage tree genetic algorithm (LTGA) on a set of nearest-
neighbor NK-landscape problems with maximal overlap. The LTGA builds each
generation a linkage tree using a hierarchical clustering algorithm. Each node in
the tree represents a specific groups of problem variables that are linked together.
When generating new solutions, these linked variables specify the neighborhood
where the LTGA searches for better solutions by sampling values for these prob-
lem variables from the current population. In future work, we plan to investigate
the use of neighborhood learning for other problem types.

References

1. P. A. N. Bosman and D. Thierens. The roles of local search, model building and
optimal mixing in evolutionary algorithms from a BBO perspective. In N. Krasnogor
and P. L. Lanzi, editors, GECCO (Companion), pages 663–670. ACM, 2011.

2. I. Gronau and S. Moran. Optimal implementations of UPGMA and other common
clustering algorithms. Inf. Process. Lett., 104(6):205–210, 2007.

3. P. Hansen, N. Mladenovic, and J. A. Moreno-Pérez. Variable neighbourhood search:
methods and applications. Annals OR, 175(1):367–407, 2010.

4. H. H. Hoos and T. Stützle. Evaluating Las Vegas algorithms: pitfalls and remedies.
In Proc. of the 14th UAI, pages 238–245. Morgan Kaufmann, 1998.

5. M. Pelikan, K. Sastry, M. V. Butz, and D. E. Goldberg. Performance of evolutionary
algorithms on random decomposable problems. In T. P. Runarsson et al., editors,
PPSN, volume 4193 of LNCS, pages 788–797. Springer, 2006.

6. M. Pelikan, K. Sastry, D. E. Goldberg, M. V. Butz, and M. Hauschild. Performance
of evolutionary algorithms on NK landscapes with nearest neighbor interactions and
tunable overlap. In G. Raidl, editor, GECCO, pages 851–858. ACM, 2009.

7. D. Thierens. The linkage tree genetic algorithm. In R. Schaefer et al., editors,
Parallel Problem Solving from Nature, pages 264–273, Berlin, 2010. Springer.

8. D. Thierens and P. A. N. Bosman. Optimal mixing evolutionary algorithms. In
N. Krasnogor and P. L. Lanzi, editors, GECCO, pages 617–624. ACM, 2011.

