
A Non-Adaptive Stochastic Local Search
Algorithm for the CHeSC 2011 Competition

Franco Mascia and Thomas Stützle

{fmascia,stuetzle}@ulb.ac.be
IRIDIA - Université Libre de Bruxelles

Abstract. In this work, we present our submission for the Cross-domain
Heuristic Search Challenge 2011. We implemented a stochastic local
search algorithm that consists of several algorithm schemata that have
been offline-tuned on four sample problem domains. The schemata are
based on all families of low-level heuristics available in the framework
used in the competition with the exception of crossover heuristics. Our
algorithm goes through an initial phase that filters dominated low-level
heuristics, followed by an algorithm schemata selection implemented in a
race. The winning schemata is run for the remaining computation time.
Our algorithm ranked seventh in the competition results. In this paper,
we present the results obtained after a more careful tuning, and a differ-
ent combination of algorithm schemata included in the final algorithm
design. This improved version would rank fourth in the competition.

1 Introduction

Recent years have seen progressive abstractions in the design of stochastic local
search (SLS) algorithms. From the first heuristics designed to solve instances of
specific hard combinatorial optimisation problems, the community of researchers
moved towards the engineering of more generic algorithm schemata that could
be applied across different problems. Among these SLS methods, also referred
to in the literature as meta-heuristics, there are Tabu Search [7,8], Memetic
Algorithms [18], Iterated Local Search [16], Iterated Greedy [19], and Variable
Neighbourhood Search [17,9].

Hyper-heuristics were introduced in 2001 by Cowling et al. [4], and, as meta-
heuristics, they aim at selecting, combining, or adapting low-level heuristics to
solve optimisation problems. Hyper-heuristics are usually classified in two fami-
lies: the first one is composed of algorithms that select the best low-level heuris-
tics for the problem being optimised; the second family is composed of the algo-
rithms that generate or adapt low-level heuristics for the problem at hand. For
a recent survey on the subject, see [3].

The first Cross-domain Heuristic Search Challenge (CHeSC 2011) is a compe-
tition devised by Burke et al. [1], which aims at encouraging the design of generic
heuristic algorithms that can be successfully applied across different problem do-
mains. In this competition, the distinction between the problem domain and the



hyper-heuristic is very clear-cut; in fact, the contestants were asked to imple-
ment a hyper-heuristic using HyFlex [1], a Java framework that has some design
decisions that emphasise the separation between problem domains and hyper-
heuristics.

The framework makes available a series of low-level heuristics for different
problem domains. These low-level heuristics are categorised in four different
families: (i) mutation heuristics, which perturb the current solution without any
guarantee of improving the solution quality; (ii) local search heuristics, which
are hill-climbers that apply mutation heuristics accepting only non-deteriorating
solutions; (iii) ruin-and-recreate heuristics, which remove solutions components
from the current solution and reconstruct it with problem specific constructive
heuristics; (iv) crossover heuristics, which combine different solutions to obtain
a new solution. The primitives exposed by the framework allow the developers
to know how many heuristics of each specific family are available, to set the
intensity of mutation of mutation heuristics and the depth of search of local
search heuristics, to apply a low-level heuristic to the current solution, to know
the quality of the current solution, to store different solutions in memory, and
to know how many CPU-seconds are available before the end of the allocated
time.

Before the competition, four sample problem domains and ten instances for
every domain had been made available to the contestants to test their implemen-
tations. The problem domains were: boolean satisfiability (MAX-SAT), one di-
mensional bin packing, permutation flow shop scheduling, and personnel schedul-
ing. During the competition, three instances of the ten sample instances of each
problem domain were selected, and other two instances for each problem do-
main were added. Moreover, two hidden problem domains were revealed with
five instances each. The two hidden problem domains were the traveling sales-
man problem and the vehicle routing problem.

The competition rules imposed a specific setting in which the submitted
SLS algorithms had no possibility of recognising the problem or the instance
being optimised, and no information about a solution could be extracted, except
for the solution quality. Some limitations imposed by the rules are relatively
unrealistic, and hardly encountered in real-world scenarios. For example, one way
to enforce the separation between the hyper-heuristic and the problem domain is
to randomly shuffle the low-level heuristics identifier. We decided to participate
to the competition with an off-line tuned algorithm even though competition
rules do not favour such techniques. Our algorithm is based on the rationale
that with an appropriately chosen fixed algorithm schema, a problem can be
solved competitively even when not adapting the heuristic selection mechanisms
at runtime. Obviously, because heuristic identifiers are randomly shuffled in the
framework, we cannot offline tune the sequence of the heuristics to be applied.
As a work-around to this missing information, we applied a heuristic selection
phase, in which we identify dominated heuristics that are eliminated from further
consideration when running our algorithm schemata. The algorithm remains
in the sense non-adaptive, in that there is no adaptation of the parameters



and no selection of the low level heuristics throughout the search. Moreover,
experiments we performed after the submission showed a rather limited impact
of this initial phase of filtering low level heuristics. To emphasise the aspect
that the heuristics selection is not adapted during the main execution phase
of the algorithm, we call it a Non-Adaptive SLS Algorithm (NA-SLS). In the
end, our NA-SLS ranked seventh in the competition. This paper describes an
improved version of our submission, which shares the same code but uses a more
thorough off-line tuning, and adds some more analysis on the algorithm. The
version presented in this paper would rank fourth among the algorithms that
participated to the competition.

The rest of the paper is organised as follows. Section 2 presents the analysis
on the low-level heuristics; Section 3 describes the algorithmic schemata we im-
plemented as building blocks for NA-SLS; Section 4 presents the results of the
tuning of these schemata on the four sample problem domains; Section 5 de-
scribes the design of NA-SLS; and Section 6 presents the results NA-SLS would
have obtained on competition. Eventually, Section 7 draws the conclusion.

2 Analysis of the Low-Level Heuristics

Before actually running NA-SLS, the available low-level heuristics are tested to
identify whether any of the heuristics are dominated. The criterion of dominance
takes into account the computation time and the solution quality. This first
phase of the analysis of the low-level heuristics is run for at most 7.5% of the
total allocated runtime or for at most 25 runs of each heuristic. During each run
a random solution is constructed and heuristics belonging to the local search,
and to ruin-and-recreate families are applied to it. For each low-level heuristic
A, the median run-time tA and the median solution quality qA are computed.
A heuristic A is dominated by heuristic B if tB < tA and qB < qA. The aim
of this phase, is to enforce that only non-dominated heuristics will be available
for the remaining runtime. Nevertheless, in order to avoid that a single heuristic
that dominates all others is the only one available for the following phases, we
make sure that the two heuristics having the lowest median solution quality
are never discarded. Figure 1 shows an example of the analysis performed on an
instance of the personnel scheduling problem. The plot on the left shows all local
search heuristics with different values of the parameter that set the intensity of
mutation. The plot on the right shows the non-dominated heuristics after the
filtering.

3 Design and Implementation of Algorithmic Schemata

We implemented a series of algorithmic schemata that use all low-level heuristics
(except crossovers) as basic building blocks. Among the large number of imple-
mented schemata there are several algorithms that are well established in the
literature. In the following we list the most relevant, with their variants and the
parameters defined for the tuning:



●
●

●

●

●

●

●

●

●

0 2000 4000 6000

0
10

00
0

30
00

0
50

00
0

all heuristics

solution quality

C
PU

−t
im

e

LS0LS1
LS2

LS3

LS3(dos=0.3)

LS3(dos=0.7)

LS4

LS4(dos=0.3)

LS4(dos=0.7)

●
●

●

●

●

0 2000 4000 6000

0
10

00
0

30
00

0
50

00
0

non dominated heuristics

solution quality

C
PU

−t
im

e

LS0LS1

LS4

LS4(dos=0.3)

LS4(dos=0.7)

Fig. 1. Example for the analysis of the low-level heuristics on an instance of the per-
sonnel scheduling domain. LS4(dos=0.7) corresponds to local search heuristic number
4, with the depth of search parameter set to 0.7. Where not specified, the depth of
search is set to the default 0.1. LS4(dos=0.7), LS3(dos=0.3), LS3, and LS2 are the
dominated heuristics.

– Randomized Iterative Improvement (RII) [10] with probabilistic mutations.
The parameters defined for the tuning are two continuos parameters repre-
senting the probability of selecting a mutation or a ruin-and-recreate heuris-
tic, respectively, and a continuous parameter representing the probability of
accepting worsening solutions.

– Probabilistic Iterative Improvement (PII) [10]; this algorithm is the same as
the previous, but it uses a Metropolis condition for computing the probabil-
ity of accepting worsening solutions and has continuous parameter for the
temperature.

– Variable Neighbourhood Descent (VND) [9]; for this algorithm we imple-
mented two versions. The first one uses local search heuristics, and the
second one uses ruin-and-recreate heuristics. In both cases, the heuristics
are applied in the order of decreasing median computation time, which is
computed by running the low-level heuristics several times from an initial
solution. The parameters defined for this schema are a categorical parame-
ter that allows to select among the two variants, and a continuos parameter
representing the probability of accepting worsening solutions as in RII.

– Iterated Local Search (ILS) [16]; few variations of this algorithm have been
implemented. We implemented the ILS described in [2], an ILS that uses the
VND variants described above as subsidiary local search, and a Hierarchical
ILS [11]. Hierarchical ILS uses an ILS as subsidiary local search and applies
a strong perturbation in the outer ILS and a small perturbation in the inner
ILS. We defined a categorical parameter that allows to select among the



variants, a continuous parameter for the probability of accepting a worsening
solution, and an integer parameter for determining the perturbation size,
which corresponds to the number of times a random mutation heuristic is
applied to the current solution. For the Hierarchical ILS we also used the
same parameters for the inner ILS, and a further continuos parameter for
the time allocated to the inner ILS as a fraction of the total run time.

– Simulated Annealing (SA) [12,20]; this algorithm estimates the initial tem-
perature by measuring the average solution quality improvement after ap-
plying a fixed number of steps of first improvement. The initial acceptance
probability and the number of steps for this initial phase are a continuos and
an integer parameter respectively. The algorithm continues with a cooling
schedule that is defined by a constant multiplicative factor (continuos param-
eter) applied regularly after a specified number of steps (integer parameter)
until a final temperature is reached (continuous parameter). When the fi-
nal temperature is reached, the algorithm restarts from the initial estimated
temperature.

– Iterated Greedy (IG) [19]; we implemented IG by means of repeated applica-
tions of a random ruin-and-recreate heuristic with a probability of accepting
worsening solutions, which is specified by a continuous parameter. We also
implemented few variations of this algorithmic schema, which differ for a
probabilistic acceptance criterion, and different selection strategies of low-
level heuristics.

For all schemata we defined two continuos parameters that set the intensity of
mutation for the mutation heuristics and the depth of search for local search
heuristics. The parameters range from 0 to 1, with 1 representing the maximum
intensity of mutation and the maximum depth of search respectively. If the ap-
plication of a specific local search heuristic takes more than 10 CPU-seconds, the
depth of search parameter for that specific heuristic is fixed to the default value
defined in the framework, which is 0.1. For RII, PII, and the ILS variants, we
implemented also a fixed restart policy. We defined a categorical parameter that
could select the restart, and a continuous parameter representing the fraction of
the allocated runtime between restarts.

Besides the algorithms that are well-established in the literature, we imple-
mented a further algorithm we called tuneable SLS algorithm (TSA), which is
a juxtaposition of blocks of low-level heuristics. TSA has been designed with
the aim to see how good could perform an algorithm with less rationale in the
design and a larger parameter space for automatic tuning. Listing 1.1 shows the
pseudo-code of TSA with the parameters defined for the tuning. The algorithm
starts from an initial random solution s, and until the allocated time has not
expired, it goes through a series of phases characterised by the application of
heuristics belonging to a specific family. In the first phase, the algorithm applies
sequentially nrr randomly selected ruin-and-recreate heuristics which, if defined
in the framework, exploit constructive heuristics for the problem at hand. Non
improving solutions are accepted with a probability parr

. In the following phase,
the solution that is constructed by the ruin-and-recreate heuristics is (possibly)



Listing 1.1. Tuneable SLS algorithm pseudo-code.

1 procedure TSA(nrr, parr , nls, pals , pa, pm, prestart, dos, iom, iomrr)
2 s′ ← s← random initial solution
3 set depth of search of local search heuristics to dos
4 set intensity of mutation of mutation heuristics to iom
5 set intensity of mutation of ruin−and−recreate heuristics to iomrr

6 while time has not expired:
7 for nrr times:
8 apply randomly selected heuristic of type ruin−and−recreate
9 accept non−improving solution with probability parr

10 for nls times:
11 apply randomly selected heuristic of type local search
12 accept non−improving solution with probability pals

13 if f(s) < f(s′) or rand(0, 1) < pa:
14 s′ ← s
15 else
16 s← s′

17 with probability pm:
18 apply randomly selected heuristic of type mutation
19 with probability prestart:
20 s← random initial solution

improved by the application of nls randomly selected local search heuristics.
Non-improving solutions in this phase are accepted with probability pals

. After
the first two phases, an improving solution is always accepted and stored in s′,
while worsening solutions are accepted with probability pa. Before going again
through the series of ruin-and-recreate heuristics of the first phase, the current
solution is perturbed by the application of a random mutation heuristic with
probability pm. Finally, with probability prestart the algorithm restarts from a
new random solution.

4 Off-line Tuning of the Algorithmic Schemata

After the implementation of the algorithmic schemata, we tuned them on the four
problem domains and the ten instances that were available before the competi-
tion, and selected a small subset that would be part of the NA-SLS algorithm.

For the off-line tuning, we used irace [14], a software package that implements
an iterated racing procedure for the off-line tuning of categorical, integer, and
continuous parameters. Moreover, irace allows to specify conditional parameters
and therefore tune the parameters regarding a specific algorithm schemata, only
when the specific algorithm schemata has been selected by a categorical parame-
ter. These characteristics and a number of successful applications [5,6,13,14,15],
made it the natural choice for tuning the parameters of our SLS algorithm.

The off-line tuning is divided in two phases. In the first phase, we tuned the
parameters of each algorithmic schema on the single problem domains. In the



Problem domain Algorithmic Schema

MAX-SAT TSA, parameter setting MAX-SAT
Bin packing TSA, parameter setting bin packing
Personnel scheduling TSA, parameter setting personnel scheduling
Permutation flow shop Iterated Greedy with probabilistic acceptance criterion

Table 1. Selected algorithmic schemata for the problem domains.

Problem domain
Parameters
nrr parr nls pals pa pm prestart dos iom iomrr

MAX-SAT 1 0.4966 50 0.9265 0.2341 0.0959 0.0008 0.6 0.1063 0.2
Bin packing 4 0.057 4 0.43 0.0001 0.29 0.014 0.46 0.11 0.69
Personnel Scheduling 11 0.54 15 0.72 0.54 0.2 0.67 0.85 0.43 0.21

Table 2. Parameters of the tuned TSA schemata on three problem domains.

second phase, for each problem domain, we selected the best tuned schemata.
The off-line tuning of both phases was performed with irace on cluster nodes with
16GB of RAM and 2 AMD Opteron 6128 CPUs, each with eight cores running
at 2GHz. During the two tuning phases, the number of different configurations
tested amounted to 136,276 for a total of 3 years of CPU-time.

Table 1 shows the best performing algorithms for the single domains. Sur-
prisingly, three differently tuned TSA were selected for three out of four problem
domains, namely MAX-SAT, bin packing and personnel scheduling. The param-
eter settings for the TSAs are shown in Table 2. For the permutation flow shop
scheduling, the best schema is an IG with a probabilistic acceptance criterion.
The tuned parameters lead to an IG that executes at each iteration one or two
random ruin-and-recreate heuristics. If no such heuristics are available for the
problem domain, the algorithm executes one or two mutation heuristics. After
the perturbation, one local search heuristic is executed. Worsening solutions are
accepted with probability exp{−∆f/0.87}.

All algorithms in Table 1 were included in the algorithm we submitted for the
competition. In the implementation described in this paper we decided to extend
the pool of available algorithms by looking at the second ranking algorithm
schemata for the four problem domains.

– For MAX-SAT, the second ranking algorithm was an ILS with VND as
subsidiary local search (ILS+VND); the probability of accepting a worsening
solution was 0.99 and the perturbation size amounted to the application of
2 random mutation heuristics. The intensity of mutation was 0.3 and the
depth of search was 0.41.

– For personnel scheduling, it was also an ILS+VND; the tuned probability of
accepting a worsening solution was 0.23 and the perturbation size amounted
to the application of 6 random mutation heuristics. The intensity of mutation
was 0.08 and the depth of search was 0.25.



– For FlowShop again an ILS+VND ranked second, with a low probability of
accepting worsening solutions, i.e. 0.39, and large perturbations amounting
to 11 applications of random mutation heuristics. The intensity of mutation
was 0.59 and the depth of search was 0.022.

– For bin packing an ILS with acceptance probability equal to 0.037 ranked
second; for this schema the amount of perturbation selected was of 4 random
mutation heuristics. The intensity of mutation was 0.033 and the depth of
search was 0.31.

We decided to include in the pool of available schemata three of the four first
ranking algorithms, i.e., TSA for bin packing, TSA for personnel scheduling
and the Iterated Greedy for permutation flow shop scheduling. We did not in-
clude TSA for MAX-SAT since the performances were pretty close to the second
ranking and less tailored ILS+VND. In three domains out of four, ILS+VND
ranked second, therefore we added two different ILS+VND schemata, namely the
ILS+VND tuned for MAX-SAT and the ILS+VND tuned for personnel schedul-
ing. The rationale behind this choice is to add some well-known meta-heuristics
that even if tuned on specific problem domains could be effective on the two
hidden problem domains.

5 Final SLS Algorithm

NA-SLS is composed of the following three phases.

Phase 1: Analysis of the low-level heuristics.
This phase, which lasts at most 7.5% of the total runtime, is devoted to the
analysis of the low-level heuristics available for the problem being optimised. As
described in Section 2, only non dominated low-level heuristics will be available
for the six selected algorithm schemata in the following phases.

Phase 2: Algorithm selection.
In this phase, a fraction of the remaining time is allocated for selecting the best
performing schema for the problem at hand among the schemata with fixed pa-
rameters described in Section 4. The selection is as in a race, where at each
step the worst candidate schema is eliminated. Starting from the best solution
found during the first phase, the algorithmic schemata are run in an interleaved
manner each for a fraction of CPU-seconds that amounts to 2.5% of the time
remaining after the first phase. After each race, the worst performing schema is
discarded, and a new race is performed on the remaining algorithms. The phase
terminates when only one schema remains. In order to keep this phase as short
as possible, if this phase lasts 25% of the total computation time, the phase is
automatically terminated and the best of the remaining algorithms is kept as
the winner of the race. This is a very simplistic algorithm selection, which could
be seen as a workaround to the competition rules. By using a more sophisticated
schema as in [21], we probably would make a faster and better selection.



Phase 3: Run.
The best-performing algorithm is executed for the remaining allocated time.

6 Experimental Results

The competition organisers made available an updated version of the HyFlex
framework with all instances and all domains used during the competition, i.e.,
the four sample ones and the two hidden ones, travelling salesman problem and
vehicle routing problem. In order to facilitate the comparison with the algorithms
submitted to the competition, the organisers published also all detailed results
obtained by all algorithms on all instances, and the random seed used to select
the five random instances for each problem domain.

During the competition, algorithms have been run 31 times for 600 seconds
on each domain and each instance. The median values have been selected and
the algorithms have been ranked. The ranking system is mutuated from the
Formula-1 point system. The first eight best heuristics receive 10, 8, 6, 5, 4, 3, 2,
and 1 point respectively. In case of ties, the points of the concerned positions are
summed and equally divided by the algorithms having the same median solution
quality.

We run NA-SLS on one node of the cluster for 1176 CPU-seconds which cor-
respond to 600 CPU-seconds on the competition reference machine. The speedup
between the machines has been computed with a benchmark tool supplied by the
organisers of the competition. We verified that the amount of seconds computed
by the benchmark tool was correct by running on the same node of the cluster
our original submission and verifying (with the same random seed used in the
competition) that the results obtained in 1176 CPU-seconds corresponded to the
results obtained in the competition.

Table 3 and Table 4 show the results on the different problem domains. On
three out of four of the sample domains we would score high achieving the first,
the third, and the fourth position. For personnel scheduling, we already knew
before the final competition that our results would not be very competitive;
this is confirmed by the thirteenth position achieved by our algorithm with
only 2.5 points. On the two hidden domains, we scored relatively good on the
travelling salesman problem and for us surprisingly bad on the vehicle routing
problem, where we did not score any point. Future work will be devoted to
understand the reasons behind the poor performances on the vehicle routing
problem. Overall, with a more careful tuning, and a different combination of
schemata, our algorithm would have ranked fourth at the competition.

In order to better understand the results, after the competition, we run an
analysis of the impact of the heuristics selection phase. We ran an identical
copy of NA-SLS where we allowed all low-level heuristics to be used. The results
showed that the impact was more limited than expected. In fact, by allowing
dominated heuristics, the final algorithm would still score fourth in the final
ranking with 108.2 points, which is more than 107.7 points achieved by the ver-
sion with the heuristic selection phase. For what concerns the single domains,



MAX-SAT Bin packing Flow shop
Rank Algorithm Score Rank Algorithm Score Rank Algorithm Score
1 NA-SLS 44.2 1 AdapHH 45 1 ML 38
2 AdapHH 29.28 2 ISEA 30 2 AdapHH 36
3 VNS-TW 28.08 3 NA-SLS 23 3 VNS-TW 32
4 HAHA 27.28 4 ACO-HH 19 4 NA-SLS 26
5 KSATS-HH 19.5 5 GenHive 14 5 EPH 21
6 ML 12.30 6 XCJ 12 6 HAEA 10
7 AVEG-Nep 12.1 6 DynILS 12 7 PHUNTER 9
8 PHUNTER 9.3 6 ML 12 7 ACO-HH 9
9 ISEA 4.10 9 KSATS-HH 11 9 GenHive 7
10 MCHH-S 3.75 10 EPH 9 10 ISEA 3.5
11 XCJ 3.60 11 PHUNTER 3 10 HAHA 3.5
12 GISS 0.75 11 VNS-TW 3 12 AVEG-Nep 0
12 SA-ILS 0.75 13 HAEA 2 12 GISS 0
14 ACO-HH 0 14 AVEG-Nep 0 12 SA-ILS 0
14 GenHive 0 14 GISS 0 12 SelfSearch 0
14 SelfSearch 0 14 SA-ILS 0 12 Ant-Q 0
14 Ant-Q 0 14 HAHA 0 12 XCJ 0
14 EPH 0 14 SelfSearch 0 12 DynILS 0
14 DynILS 0 14 Ant-Q 0 12 KSATS-HH 0
14 HAEA 0 14 MCHH-S 0 12 MCHH-S 0

Table 3. Comparison with CHESC 2011 contestants on MAX-SAT, bin packing, and
Flow Shop.



Personnel scheduling TSP VRP
Rank Algorithm Score Rank Algorithm Score Rank Algorithm Score
1 VNS-TW 39.5 1 AdapHH 41.25 1 PHUNTER 33
2 ML 31 2 EPH 36.25 2 HAEA 28
3 HAHA 25 3 PHUNTER 26.25 3 KSATS-HH 23
4 SA-ILS 18.5 4 VNS-TW 17.25 4 ML 22
5 ISEA 14.5 5 DynILS 13 5 AdapHH 16
6 PHUNTER 12.5 5 ML 13 5 HAHA 16
7 GISS 10 7 NA-SLS 12 7 EPH 12
7 EPH 10 8 ISEA 11 8 AVEG-Nep 10
9 AdapHH 9 8 HAEA 11 9 GISS 6
9 KSATS-HH 9 10 ACO-HH 8 9 GenHive 6
11 GenHive 6.5 11 GenHive 3 9 VNS-TW 6
12 SelfSearch 5 11 SelfSearch 3 12 ISEA 5
13 NA-SLS 2.5 13 AVEG-Nep 0 12 XCJ 5
14 HAEA 2 13 GISS 0 14 SA-ILS 4
15 AVEG-Nep 0 13 SA-ILS 0 15 ACO-HH 2
15 ACO-HH 0 13 HAHA 0 16 DynILS 1
15 Ant-Q 0 13 Ant-Q 0 17 NA-SLS 0
15 XCJ 0 13 XCJ 0 17 SelfSearch 0
15 DynILS 0 13 KSATS-HH 0 17 Ant-Q 0
15 MCHH-S 0 13 MCHH-S 0 17 MCHH-S 0

Table 4. Comparison with CHESC 2011 contestants on personnel scheduling, TSP,
and VRP.

the ranking and points would not change on MAX-SAT, bin packing, travelling
salesman, and vehicle routing problem. On flow shop scheduling the algorithm
would actually gain 3 points and still score fourth with 29 points; and for per-
sonnel scheduling it would lose the 2.5 points and rank fourteenth.

In order to analyse the impact of the algorithm selection, we implemented a
version of NA-SLS in which an oracle would always choose the best off-line tuned
candidate schemata for the four problems available during the tuning phase. Also
in this case the algorithm would have scored fourth with 118.25 points. In the
single problem domains, it would have ranked first in MAX-SAT with 45.25
points, third in bin packing with 27 points, fourth in flow shop scheduling with
24 points, and eighth in personnel scheduling with 10 points. This version of the
algorithm has also more time available for the search, since it is not spending
time for the algorithm selection phase. There could be still a small gap to improve
our algorithm schemata selection, but as another benchmark it would be also
interesting to see how it compares with a random selection of the schemata.

7 Conclusions

In this paper we presented in detail a further development of our submission for
the CHeSC 2011 challenge. Our algorithm is composed by different schemata we



All problem domains

Rank Algorithm Score

1 AdapHH 176.53
2 ML 128.3
3 VNS-TW 125.83
4 NA-SLS 107.7
5 PHUNTER 93.05
6 EPH 88.25
7 HAHA 71.78
8 ISEA 68.1
9 KSATS-HH 62.5
10 HAEA 53
11 ACO-HH 38
12 GenHive 36.5
13 DynILS 26
14 SA-ILS 23.25
15 AVEG-Nep 22.1
16 XCJ 20.6
17 GISS 16.75
18 SelfSearch 8
19 MCHH-S 3.75
20 Ant-Q 0

Table 5. Comparison with CHESC 2011 contestants on all problem domains.

tuned on four sample problem domains supplied by the competition organisers.
After tuning each algorithmic schema on each problem domain, we selected a
pool of five schemata that would be part of the final algorithm and that would
be selected at runtime with a simplistic algorithm selection mechanism. The
experimental results shows that our algorithm would have ranked fourth at the
competition.

There are several ad-hoc choices that were done without much analysis, for
example the algorithm selection schema sounded a reasonable strategy to try,
but it could be replaced with more sophisticated schemes that would probably
allow for a faster and better selection. Heuristics and parameter adaptation
schemes considering the results of the other algorithms could be another step to
apply. Eventually, it would also be interesting to test a different version of the
competition, in which the low level heuristics are not reshuffled and therefore
their choice or the sequence of their execution could be directly tuned.

References

1. Burke, E., Curtois, T., Hyde, M., Ochoa, G., Vazquez-Rodriguez, J.A.: HyFlex:
A Benchmark Framework for Cross-domain Heuristic Search. ArXiv e-prints
1107.5462 (Jul 2011)



2. Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.A., Gendreau, M.: Iterated local search vs. hyper-heuristics: Towards
general-purpose search algorithms. In: IEEE Congress on Evolutionary Computa-
tion. pp. 1–8. IEEE Press, Piscataway, NJ (Jul 2010)

3. Chakhlevitch, K., Cowling, P.: Hyper-heuristics: Recent developments. In: Cotta,
C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics, Studies
in Computational Intelligence, vol. 136, pp. 3–29. Springer (2008)

4. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling
a sales summit. In: Burke, E., Erben, W. (eds.) PATAT III, LNCS, vol. 2079, pp.
176–190. Springer Berlin / Heidelberg (2001)

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Automatic configuration of
state-of-the-art multi-objective optimizers using the TP+PLS framework. In:
Krasnogor, N., et al. (eds.) GECCO 2011, pp. 2019–2026. ACM press, New York,
NY (2011)

6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. Computers & Operations Research
38(8), 1219–1236 (2011)

7. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research 13(5), 533–549 (1986)

8. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Com-
puting 44, 279–303 (April 1990)

9. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applica-
tions. European Journal Of Operational Research 130(3), 449–467 (2001)

10. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Elsevier, Amsterdam, The Netherlands (2004)

11. Hussin, M.S., Stützle, T.: Hierarchical iterated local search for the quadratic as-
signment problem. In: Blesa, M.J., Blum, C., Gaspero, L.D., Roli, A., Sampels,
M., Schaerf, A. (eds.) HM 2009, LNCS, vol. 5818, pp. 115–129. Springer Verlag,
Heidelberg, Germany (2009)

12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

13. Liao, T., Montes de Oca, M.A., Aydin, D., Stützle, T., Dorigo, M.: An incremental
ant colony algorithm with local search for continuous optimization. In: Krasnogor,
N., et al. (eds.) GECCO 2011, pp. 125–132. ACM press, New York, NY (2011)

14. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011), http://iridia.ulb.
ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

15. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation (2012),
accepted

16. Lourenço, H.R., Martin, O., Stüttzle, T.: Iterated local search: Framework and ap-
plications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, In-
ternational Series in Operations Research & Management Science, vol. 146, chap. 9,
pp. 363–397. Springer, New York, NJ, 2 edn. (2010)

17. Mladenovic, N., Hansen, P.: Variable neighbourhood search. Computers and Op-
erations Research 24(11), 71–86 (1997)

18. Moscato, P.: Memetic algorithms: a short introduction, pp. 219–234. McGraw-Hill
Ltd., UK, Maidenhead, UK, England (1999)

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf


19. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. European Journal of Operational Research
177(3), 2033–2049 (2007)

20. Černý, V.: Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applications
45, 41–51 (1985)

21. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research 32(1), 565–606
(2008)


	A Non-Adaptive Stochastic Local Search Algorithm for the CHeSC 2011 Competition

