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Abstract. In this paper we address the problem of model selection in
Estimation of Distribution Algorithms from a novel perspective. We per-
form an implicit model selection by transforming the variables and choos-
ing a low dimensional model in the new variable space. We apply such
paradigm in EDAs and we introduce a novel algorithm called I-FCA,
which makes use of the independence model in the transformed space,
yet being able to recover higher order interactions among the original
variables. We evaluated the performance of the algorithm on well known
benchmarks functions in a black-box context and compared with other
popular EDAs.
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1 Introduction

Estimation of Distribution Algorithms (EDAs) belong to the class of meta-
heuristics for optimization where the search is guided by a statistical model
able to capture the interactions among the variables in the problem. The choice
of the model is crucial, indeed much of the literature in the EDAs community
is focused on applying machine learning techniques for model selection, able to
identify the correct interactions among the variables from a sample of observa-
tions. Some examples are the algorithms which learn the structure of a Bayesian
Network, as in the Bayesian Optimization Algorithms (BOA) [4], clustering al-
gorithms for the variables that appear to be correlated, extended Compact Ge-
netic Algorithm (eCGA) [2] or model selection for Markov Random Field, as in
DEUM [5]. Although very powerful, these techniques have their main drawback
in the computational complexity of the model selection and sampling phases [1].

In this paper we propose a novel approach to the problem of model selection
based on the idea of applying a transformation of variables and then employing
fixed, low dimensional model in the new transformed space. This corresponds
to implicitly identify a different statistical model in the original space which
depends on the particular transformation applied. Obviously we moved much
of the computational complexity from model selection to the choice of a good



transformation of variables; on the other side it becomes easier to select models
able to capture higher order interactions among the variables. Instead of limiting
the search up to a given order of interactions, due to the family of transforma-
tions we introduced we are able to identify non hierarchical models that can be
efficiently employed in an EDAs.

This paper is organized as follows: we first introduce how transformation of
variables can be employed in EDAs, then we present I-FCA, a novel algorithm
which employs this technique. Finally we compare the performances with other
popular EDAs.

2 Variable Transformations in EDAs: Function

Composition Algorithms

In this section we apply the idea of choosing a transformation of variables and
then considering low-dimensional statistical models in the transformed space to
introduce a novel family of EDAs called Function Composition Algorithms (FCAs).
In the following we address the maximization of f(x) : Ωn → R, Ω = {±1}.

We introduce a new vector of variables y = (y1, . . . , yn) in Ω and a one-to-one
map h : Ω → Ω such that y = h(x). We can thus express f as the composition
of a function g(y) : Ω → R with h, i.e., f = g ◦h and g = f ◦h−1. Since h defines
a permutation of the points in Ω, follows that max g = max f .

Recall the basic iteration of an EDA:

Pt selection
−−−−−→ Pt

s

estimation
−−−−−−→ p(x; θt) ∈ M

sampling
−−−−−→ Pt+1

At each iteration, EDAs start with a population Pt, chose a subset of individuals
according to a selection policy and use this sample to estimate the parameters
of a distribution p(x; θ) belonging to a model M. For instance this can be done
by means of statistical techniques such as max-likelihood estimation. A new
population Pt+1 is finally generated sampling individuals from p(x; θ). In the
estimation phase, some algorithms, such as UMDA [3], employ a fixed model
while more powerful EDAs, such as BOA [4], DEUM [5] perform a model selec-
tion step using machine learning techniques in order to chose a good model able
to express the interactions among variables in the selected population Ps.

We introduce the following variation of an EDA, where estimation and sam-
pling are preceded and followed by two transformation steps: first a one-to-one
map y = h(x) is applied to each individual in the selected sample, obtaining P̃s,
then the new sample P̃t+1 is mapped back in the original space with h−1:

Pt
s

y=h(x)
−−−−−→ P̃s

estimation
−−−−−−→ q(y; ξt) ∈ N

sampling
−−−−−→ P̃t+1 x=h−1(y)

−−−−−−→ Pt+1

Here N identifies a model for the transformed variables y which corresponds to
a model M for x which depends on the particular map h applied. Both models
are characterized by the same dimension of the parameter space.

In the following we give the details of Independence-FCA (I-FCA), a novel
EDA which fixesN to be the independence model for Y and performs an implicit



model selection step among a wide family of n-variate models by means of the
choice of the one-to-one map h. At each iteration a map h is chosen among
a subset of all the possible one-to-one maps by means of a greedy strategy
which maximizes the likelihood of q(y; ξt) with respect to P̃s. The resulting low-
dimensional model M for X achieves a better approximation of the sample Ps

with respect to the independence model for X .
The subset of the class of the one-to-one maps employed by I-FCA, indexed

by j, k ∈ {1, . . . , n}, with j 6= k, is defined such that

h
(j,k)
i :

{

yi = xixk if i = j

yi = xi otherwise.

Obviously we have n(n−1) different h(j,k) transformations. It is easy to see that
they are one-to-one and that h−1 = h, since x2

i = 1 and Ω = {±1}. Next we
extend the class of transformations we consider by allowing elements h to be the
composition of a finite number m of maps of the form h(j,k):

h = h(j1,k1) ◦ . . . ◦ h(jm,km) ◦ . . . ◦ h(jm,km).

Since the inverse of each transformation in the sequence of compositions is the
element itself, it is easy to see that h−1 is the compositions of all the h(jm,km)

in the inverse order.
In I-FCA we propose a strategy for the choice of map h based on the maxi-

mization of the likelihood of the transformed selected sample P̃s with respect to
the estimated distribution q(y, ξ̂) ∈ N , where N is the independence model for
Y . This is equivalent to minimize the Kullback-Leibler divergence between the
empirical distribution representing the selected population and its projection on
the independence model, which gives a measure of the loss of information which
occurs when P̃s is approximated with q(y, ξ). In order to make the search for h
feasible, we chose a greedy approach: we initialize h to be the identity map y = x,
then we iteratively examine all the n(n− 1) maps h(j,k) and compose the h map
obtained at the previous step with the map h(j,k) which better improves the like-
lihood of (h ◦ h(j,k))(Ps) with respect to the independence model. The iteration
stops when no improvement in the likelihood is achievable composing further
maps of the form h(j,k) or when the maximum number m of transformations in
h has been reached. See Algorithm 1.

Since the chosen encoding for h is redundant, the procedure IsAllowed()
is needed to avoid the evaluation of maps which lead to configurations already
appeared in previous stages. The worst case time complexity of the search strat-
egy for h is O(n2mN), where N is the population size, even though it is possible
to take advantage of the likelihood decomposition to cut most of the complexity
which comes from iterations over the selected population.

3 Experimental Results

In this section we present the results of a preliminary performance evaluation
for the novel I-FCA algorithm on a set of well known benchmarks functions:



Algorithm 1 I-FCA - Choice of the map h

1: m← 0;
2: maxL ← Lind; ⊲ The likelihood of Ps w.r.t the independence model
3: repeat

4: h[m]← NULL; ⊲ The m-th element of the composition sequence
5: for all j, k ∈ {1, . . . , n}, j 6= k do

6: if IsAllowed(h(j,k)) then
7: P̃s ← h(j,k)(Ps);
8: θ̂ ←MaxLikelihoodEstimation(P̃s);
9: L ← Likelihood(P̃s, q(y; θ̂));
10: if L > maxL then

11: h[m]← h(j,k);
12: end if

13: end if

14: end for

15: Ps ← h[m](Ps);
16: m← m+ 1;
17: until m ≥ m ∨ h[m − 1] = NULL;
18: return h;

Alternated Bits, 2D Ising spin glass and Trap3. The first two functions are
quadratic while Trap3 includes hierarchical interactions up to order three.

After a preliminary tuning the I-FCA parameters were chosen as follows. As
the selection policy we perform truncation selection and keep the S highest fit-
ness individuals, where S is a function of the problem size n but it is independent
with respect to N . We found that S = 5n is a good choice for all the benchmark
functions considered. Moreover we set m = n. This result is also supported by
an analysis on the set of models M obtainable mapping the independence model
for Y into a model for X by means of h. The success ratio as a function of the
population size N is shown in Figure 1, for different problem sizes n. We next
compare the performances of I-FCA with three well known EDAs: UMDA [3]
, hBOA and DEUMce [5]. UMDA employs the independence model and it is
identical to I-FCA once h is fixed to be the identity map y = x. hBOA make
use of densities which factorize according to the structure of a Bayesian Network
which is learned at every iteration from the selected sample. DEUMce employs
a Cross Entropy criterion to learn the structure of a Markov random field where
interactions up to order two are considered.

Straightforward implementations of these algorithms have been implemented
in Evoptool [6] and all code is available at1. We run experiments with different
parameter settings and population sizes and we computed the normalized value
of f , the success ratio, the number of fitness evaluations, time and algorithm
iterations when the best found individual appeared in the population, averaged
over multiple runs. The results for the parameter settings which gave highest
success ratio and least number of fitness function evaluations are presented in

1 http://airlab.elet.polimi.it/index.php/Evoptool
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Fig. 1. Probability of success for three problems as a function of the population size
for different problem sizes n. (a) Alternated Bits, n ∈ {25, 64, 100}, 50 runs (b) 2D
Ising spin glass, n ∈ {25, 64, 100}, 5 instances, 16× 5 runs (c) Trap3, n ∈ {24, 63, 102},
50 runs

Table 1. It is possible to see that I-FCA outperforms UMDA: this proves the
viability of the variables transformation approach. Moreover, the performances
of I-FCA are comparable with hBOA, although the latter is able to achieve
reliable convergence to the global optimum with smaller populations. Part of
this comes from the more advanced selection scheme employed. DEUMce fails
to find any good solution on Trap3, because of the third interaction present in
the function, which instead are correctly handled by I-FCA and hBOA.

4 Conclusions

In this work we have introduced a novel EDA called I-FCA and we have tested
out algorithm on three well known benchmark function. I-FCA has a low num-
ber of parameters for which we were able to give problem independent settings.
Although a wider set of benchmark functions has to be analyzed, our prelimi-
nary experiments have shown that I-FCA can challange algorithms which learn
expressive models, such as hBOA, employing only a low dimensional model, once
a proper variable transformation has been learnt.
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Alternated Bits

n 25 64 100

N n2.0 n2.2 n2.0 n2.2 n2.2 n1.4 n2.2 n2.2 n2.2 n1.4 n2.2 n2.0

fbest[%] 100.0 94.4 100.0 97.7 100.0 88.8 100.0 100.0 100.0 85.4 100.0 100.0
success [%] 100.0 14.6 100.0 83.3 100.0 0.0 100.0 100.0 97.9 0.0 100.0 100.0
fevals × 103 2.43 13.14 3.82 1.12 51.08 7.42 119.0 9.42 179.3 15.69 444.9 10.01
iteration 3.60 10.62 4.71 − 5.19 21.56 11.25 − 6.98 24.50 16.35 −
t [s] 0.26 0.22 0.48 0.98 8.77 0.18 79.19 1.72 23.07 0.50 1649.7 8.04

Ising spin glass 2D

n 25 64 100

N n2.4 n2.4 n2.2 n2.4 n2.4 n1.8 n2.2 n2.4 n2.4 n1.6 n2.2 n2.4

fbest[%] 99.5 97.3 100.0 94.9 99.7 92.8 99.7 100.0 99.6 85.2 99.9 100.0
success [%] 92.5 55.0 100.0 50.0 87.5 2.5 87.5 100.0 70.0 0.0 95.0 100.0
fevals × 103 5.55 26.78 6.89 2.03 130.4 43.16 155.5 21.62 488.0 39.27 498.4 63.10
iteration 2.23 11.40 4.42 − 5.80 23.82 15.15 − 7.53 24.32 18.48 −
t [s] 0.17 0.24 0.73 2.88 10.67 0.91 95.26 2.54 76.83 1.18 1707.6 37.53

Trap3

n 24 63 102

N n2.4 n2.6 n2.4 n1.8 n2.6 n1.8 n2.2 n1.8 n2.4 n1.8 n2.0 n1.8

fbest[%] 100.0 95.5 100.0 90.9 100.0 90.3 100.0 82.3 100.0 90.2 100.0 77.9
success [%] 100.0 4.2 100.0 0.0 100.0 0.0 100.0 0.0 95.8 0.0 100.0 0.0
fevals × 103 4.81 6.78 13.68 0.32 159.8 23.65 150.8 0.91 348.3 82.15 287.5 2.46
iteration 2.12 1.29 5.35 − 3.15 13.21 15.29 − 5.19 19.48 26.29 −
t [s] 0.19 0.10 1.18 4.26 8.69 0.62 97.63 2.05 20.43 2.31 992.7 15.74

Table 1. Statistics of the best solutions averaged over 48 runs for Alternated Bits
and Trap3 and 8 runs × 5 instances for Sping glass. UMDA: truncation selection 50%,
DEUMce: truncation selection 30%, Cross Entropy min significance 2.0. CPU: AMD
OpteronTM 6176, 2.3 GHz
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