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Abstract. In this paper, we study bounds for the α-approximate effec-
tiveness of non-decreasing (µ+λ)-archiving algorithms that optimize the
hypervolume. A (µ + λ)-archiving algorithm defines how µ individuals
are to be selected from a population of µ parents and λ offspring. It is
non-decreasing if the µ new individuals never have a lower hypervolume
than the µ original parents. An algorithm is α-approximate if for any op-
timization problem and for any initial population, there exists a sequence
of offspring populations for which the algorithm achieves a hypervolume
of at least 1/α times the maximum hypervolume.

Bringmann and Friedrich (GECCO 2011, pp. 745–752) have proven that
all non-decreasing, locally optimal (µ+ 1)-archiving algorithms are (2 +
ε)-approximate for any ε > 0. We extend this work and substantially
improve the approximation factor by generalizing and tightening it for
any choice of λ to α = 2− (λ−p)/µ with µ = q ·λ−p and 0 ≤ p ≤ λ−1.
In addition, we show that 1 + 1

2λ
− δ, for λ < µ and for any δ > 0, is

a lower bound on α, i.e. there are optimization problems where one can
not get closer than a factor of 1/α to the optimal hypervolume.

Keywords: Multiobjective Evolutionary Algorithms, Hypervolume,
Submodular Functions

1 Introduction

When optimizing multiple conflicting objectives, there usually is no single best
solution. Instead, there are incomparable tradeoff solutions, where no solution
is strictly better than any other solution. Better in this case refers to Pareto-
dominance, i.e. one solution is said to be better than another, or dominate it, if
it is equal or better in all objectives, and strictly better in at least one objective.
The set of non-dominated solutions is called the Pareto-optimal set. Usually, this
Pareto-optimal set can contain a large number of solutions, and it is infeasible
to calculate all of them. Instead, one is interested in finding a relatively small,
but still good subset of this Pareto-optimal set.
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It is not a priori clear how a good subset should look like, i.e. how the
goodness of a subset can be measured. One of the most popular measures for
subset quality is the hypervolume indicator, which measures the volume of the
dominated space. Therefore, one possibility to pose a multiobjective optimization
problem is to look for a solution set P∗ of fixed size, which maximizes the
hypervolume.

Algorithms that optimize the hypervolume face several problems. First, the
number of possible solutions can become very large, so it is not possible to select
from all solutions. Second, even if all solutions are known and the non-dominated
solutions can be identified, the number of subsets explodes and not all of them
can be enumerated for comparison.

In this paper, we consider (µ + λ)-evolutionary algorithms, or (µ + λ)-EAs.
They iteratively improve a set of solutions, where the set is named ’popula-
tion’ and the iteration is denoted as ’generation’. In particular, they maintain
a population of size µ, generate λ offspring from the µ parents and then se-
lect µ solutions from the µ parents and the λ offspring that are to survive into
the next generation. Note that we here only consider non-decreasing algorithms,
i.e. algorithms whose hypervolume cannot decrease from one generation to the
next.

Several questions arise in this setting. First, what are upper and lower bounds
on the hypervolume that a population of a fixed size will achieve? Is it possible
to prove that a set of size µ with the maximal hypervolume can be found,
without explicitly testing all possible sets? To answer these questions, the term
effectiveness has been defined. An algorithm is effective if for any optimization
problem1 and for any initial population2, there is a sequence of offspring3 which
leads to the population with maximum hypervolume. Obviously, (µ + µ)-EAs
are always effective: We just choose the first set of offspring to be exactly the
population with the maximal hypervolume and then we select this set as the
new population. It has also been shown by Zitzler et al.[4] that (µ+ 1)-EAs, on
the other hand, are ineffective. Recently, it has been shown by Bringmann and
Friedrich [1] that all (µ+ λ)-EAs with λ < µ are ineffective.

Bringmann and Friedrich then raised the follow-up question: If it is not possi-
ble to reach the optimal hypervolume for all optimization problems and all initial
populations, is it at least possible to give a lower bound on the achieved hyper-
volume? To this end, they introduced the term α-approximate effectiveness. An
algorithm is α-approximate if for any optimization problem and for any initial
population there is a sequence of offspring with which the algorithm achieves at

1 We only consider finite search spaces here, such that mutation operators exist which
produce offspring with a probability larger than zero. Note that any search space
coded on a computer is finite.

2 Note that the term for any initial population implies that at any point during the
algorithm, there exists a sequence of offspring with which an effective algorithm can
achieve the optimal hypervolume.

3 Note that the term there is a sequence of offspring assumes that we are given varia-
tion operators that produce any sequence of offspring with probability greater than
zero.
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least 1/α ·Hmax, where Hmax is the maximum achievable hypervolume of a pop-
ulation of size µ. They proved in their paper that a (µ+1)-EA is 2-approximate
and conjectured that for larger λ, a (µ+ λ)-EA is O(1/λ)-approximate.

On the other hand, we might also be interested in upper bounds on the achiev-
able hypervolume. Bringmann and Friedrich [1] have found an optimization prob-
lem where no algorithm can achieve more than 1/(1 + 0.1338(1/λ− 1/µ)− ε) of
the optimal hypervolume, i.e. there is no (1+0.1338(1/λ−1/µ)−ε)-approximate
archiving algorithm for any ε > 0.

Why is knowledge of the bounds of the α-approximate effectiveness useful?
Assume that we are using an exhaustive mutation operator, which produces
any offspring with a probability larger than zero. Therefore, the probability of
generating an arbitrary sequence of offspring is also larger than zero. The 1

2 -
approximate effectiveness of (µ + 1)-EAs now tells us that if we execute the
evolutionary algorithm for a sufficiently large number of generations, we will
end up with a population that has at least half of the maximal hypervolume. In
case of a (µ+ µ)-EA, on the other hand, we know that we will finally achieve a
population with maximum hypervolume, i.e. α = 1. We are therefore interested
in deriving bounds on the effectiveness of evolutionary algorithms.

This paper extends the work of Bringmann and Friedrich by (a) computing
the α-approximate effectiveness of (µ+λ)-EAs for general choices of λ, (b) tight-
ening the previously known upper bound on α, and (c) tightening the previously
known lower bound on α. The results for (a) and (b) are based on the theory
of submodular functions, see [2]. For (c) we show that for λ < µ, there exist
optimization problems where any (µ + λ)-EA does not get closer than a factor
of 1/α to the optimal hypervolume with α = 1 + 1

2λ − δ, for any δ > 0.

The paper is organized as follows: The next section presents the formal set-
ting, including the definition of the hypervolume, the algorithmic setting, defi-
nitions for the effectiveness and approximate effectiveness and an introduction
into submodular functions. In Section 3 we determine an upper bound on α for
general choices of µ and λ, thereby giving a quality guarantee in terms of a lower
bound of the achievable hypervolume. Finally in Section 4, we will determine a
lower bound on α for general choices of µ and λ.

2 Preliminaries

Consider a multiobjective minimization problem with a decision space X and an
objective space Y ⊆ R

m = {f(x)|x ∈ X}, where f : X → Y denotes a mapping
from the decision space to the objective space with m objective functions f =
{f1, ..., fm} which are to be minimized.

The underlying preference relation is weak Pareto-dominance, where a solu-
tion a ∈ X weakly dominates another solution b ∈ X , denoted as a � b, if and
only if solution a is better or equal than b in all objectives, i.e. iff f(a) 6 f(b),
or equivalently, iff fi(a) ≤ fi(b), ∀i ∈ {1, ...,m}. In other words, a point p ∈ X
weakly dominates the region {y ∈ R

m : f(p) 6 y} ⊂ R
m.
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2.1 Hypervolume Indicator

The hypervolume indicator of a given set P ⊆ X is the volume of all points in R
m

which are dominated by at least one point in P and which dominate at least one
point of a reference set R ⊂ R

m.4 Roughly speaking, the hypervolume measures
the size of the dominated space of a given set. Sets with a larger hypervolume
are considered better. More formally, the hypervolume indicator can be written
as

H(P) :=

∫

y∈Rm

AP(y) dy

where AP(y) is called the attainment function of set P with respect to a given
reference set R, and is defined as follows:

AP(y) =

{

1 if ∃p ∈ P, r ∈ R : f(p) 6 y 6 r
0 else

The goal of a (µ + λ)-EA is to find a population P∗ ⊆ X of size µ with the
maximum hypervolume:

H(P∗) = max
P⊆X ,|P|=µ

H(P) = Hmax
µ (X )

2.2 Algorithmic Setting

Algorithm 1 General (µ+ λ)-EA framework: µ denotes the population size; λ
the offspring size; the algorithm runs for g generations.
1: function EA(µ, λ, g)
2: P0 ← initialize with µ random solutions
3: for t = 1 to g do

4: Ot ← generate λ offspring
5: Pt ← select µ solutions from Pt−1 ∪ Ot

6: end for

7: return Pg

8: end function

The general framework we are considering here is based on a (µ+ λ) evolu-
tionary algorithm (EA) as shown in Algorithm 1. The selection step of Line 5 is
done by a (µ+λ)-archiving algorithm5. We here assume that the archiving algo-
rithm is non-decreasing, i.e. H(Pt) ≥ H(Pt−1), 1 ≤ t ≤ g. We use the following
formal definition (as given in [1]) to describe an archiving algorithm:

4 No assumptions on the reference set have to be made, as our results have to hold
for any objective space, including the one only containing solutions that dominate
at least one reference point. If that set is empty, all algorithms are effective, as the
hypervolume is always zero.

5 We use the term archiving algorihm here to be compliant with [1]. It does not mean
that we keep a separate archive in addition to the population P

t.
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Definition 1. A (µ + λ)-archiving algorithm A is a partial mapping A : 2X ×
2X → 2X such that for a µ-population P and a λ-population O, A(P,O) is a
µ-population and A(P,O) ⊆ P ∪O.

Using this definition, the for-loop in Algorithm 1 can be described as follows,
see also [1]:

Definition 2. Let P0 be a µ-population and O1, ...,ON a sequence of λ-
populations. Then

Pt := A(Pt−1,Ot) for all t = 1, ..., N

We also define

A(P0,O1, ...,Ot) := A(A(P0,O1, ...,Ot−1),Ot)
= A(...A(A(P0,O1),O2), ...,Ot)
= Pt for all t = 1, ..., N

As mentioned above, we only consider non-decreasing archiving algorithms
which are defined as follows, see also [1]:

Definition 3. An archiving algorithm A is non-decreasing, if for all inputs P
and O, we have

H(A(P,O)) ≥ H(P)

2.3 Effectiveness and Approximate Effectiveness

Following Bringmann and Friedrich [1], we here assume a worst-case view on the
initial population and a best-case view on the choice of offspring. This means that
we would like to know for any optimization problem, starting from any initial
population, whether there exists a sequence of offspring populations such that
the EA is able to find a population with the maximum possible hypervolume. If
so, the archiving algorithm is called effective:

Definition 4. A (µ+ λ)-archiving algorithm A is effective, if for all finite sets
X , all objective functions f and all µ-populations P0 ⊆ X , there exists an N ∈ N

and a sequence of λ-populations O1, ...,ON ⊆ X such that

H(A(P0,O1, ...,ON )) = Hmax
µ (X )

Similarly, we use the following definition for the approximate effectiveness,
which quantifies the distance to the optimal hypervolume that can be achieved:

Definition 5. Let α ≥ 1. A (µ + λ)-archiving algorithm A is α-approximate
if for all finite sets X , all objective functions f and all µ-populations P0 ⊆ X ,
there exists an N ∈ N and a sequence of λ-populations O1, ...,ON such that

H(A(P0,O1, ...,ON )) ≥
1

α
Hmax

µ (X )

Of course, an effective archiving algorithm is 1-approximate. Here, we are
interested in deriving bounds on α for any choice of µ and λ.
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2.4 Submodular Functions

The theory of submodular functions has been widely used to investigate problems
where one is interested in selecting optimal subsets of a given size. But what
exactly is a submodular function? At first, they map subsets of a given base set
to real numbers, just like the hypervolume indicator defined above. In addition,
submodular functions show a diminishing increase when adding points to sets
that become larger. In other words, let us define the set function z : 2X → R,
where 2X is the power set of the decision space. Then the contribution of a point
s ∈ X with respect to set A ⊂ X is c(s,A) = z(A ∪ {s}) − z(A). When z is
a submodular function, the contribution c(s,A) gets smaller when A becomes
larger. More formally, a submodular function z is defined as follows:

∀A ⊆ B ⊆ X , ∀s ∈ X\B : z(A ∪ {s})− z(A) ≥ z(B ∪ {s})− z(B) (1)

i.e. if set A is contained in set B, the contribution of adding a point s to A is
larger or equal than the contribution of adding s to B. A submodular function
is non-decreasing if it is monotone in adding points:

∀B ⊆ X , ∀s ∈ X\B : z(B ∪ {s}) ≥ z(B)

Now, we show that the hypervolume indicator as defined above is non-
decreasing and submodular.

Theorem 1. The hypervolume indicator H(P) is non-decreasing submodular.

Proof. At first, we define the contribution of a solution s to a set B as

H(B ∪ {s})−H(B) =

∫

y∈Rm

C(B, s, y) dy

with
C(B, s, y) = AB∪{s}(y)−AB(y)

Using the definition of the attainment function A we find

C(B, s, y) =

{

1 if (∃r ∈ R : f(s) 6 y 6 r) ∧ (@p ∈ B : f(p) 6 y)
0 else

As C(B, s, y) is non-negative, the hypervolume indicator is non-decreasing.
Consider two arbitrary sets A,B ⊆ X with A ⊆ B, and an arbitrary solution

s ∈ X , s 6∈ B. To prove that the hypervolume indicator is submodular, we have
to show that

H(A ∪ s)−H(A) ≥ H(B ∪ s)−H(B) (2)

or equivalently

∫

y∈Rm

C(A, s, y) dy ≥

∫

y∈Rm

C(B, s, y) dy (3)
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for A ⊆ B, s 6∈ B.
To this end, we will show that for all y ∈ R

m the inequality C(A, s, y) ≥
C(B, s, y) holds. As C(·, ·, ·) can only assume the values 0 and 1, we have to show
that for all y ∈ R

m, s 6∈ B we have

C(A, s, y) = 0 ⇒ C(B, s, y) = 0

Following the definition of C, there are the following three cases where
C(A, s, y) = 0:

1. (@r ∈ R : y 6 r): In this case, we also have C(B, s, y) = 0 as the condition
is the same for C(A, s, y) and C(B, s, y).

2. (f(s) 66 r): Again, we find C(B, s, y) = 0 as the condition is the same for
C(A, s, y) and C(B, s, y).

3. (∃p ∈ A : f(p) 6 y): In other words, there exists a solution p ∈ A in A
which weakly dominates y. But as A ⊆ B, we also have p ∈ B and therefore,
(∃p ∈ B : f(p) 6 y). Therefore, we find C(B, s, y) = 0.

As a result, (3) holds and the hypervolume indicator is submodular. ut

3 Upper Bound on the Approximate Effectiveness

In this section, we will provide quality guarantees on the hypervolume achieved
by an EA in terms of the α-approximate effectiveness, i.e. we will provide an
upper bound on α for all population sizes µ and offspring set sizes λ.

In the previous section, we showed that the hypervolume is non-decreasing
submodular. Nemhauser, Wolsey and Fisher [3] have investigated interchange
heuristics for non-decreasing set functions and showed approximation proper-
ties in case of submodular set functions. We will first show that the interchange
heuristic in [3] is execution-equivalent to the previously defined (µ+λ)-EA frame-
work. Then, the approximation properties for the R-interchange heuristics are
used to determine upper bounds on α.

The heuristic described in [3] is shown in Algorithm 2 where we deliberately
changed the variable names to make them fit to the notations introduced so far.
It makes use of the difference between sets, which is defined as follows: Given two
sets A and B, the difference between A and B is A− B = {x : x ∈ A ∧ x 6∈ B},
i.e. the set of all solutions which are contained in A but not in B.

The heuristic in Algorithm 2 is of a very general nature. No assumptions are
made about the starting population P0, and the method of searching for Pt. For
example, we can set the function z(P) = H(P) and then choose the following
strategy for Line 5:

1. Determine a set Ot of offspring of size λ.
2. Select µ solutions from Pt−1 ∪ Ot using an archiving algorithm A, i.e. S =

A(Pt−1,Ot).
3. Execute the above two steps until H(S) > H(Pt−1) and then set Pt = S,

or until no such S can be found.
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Algorithm 2 Interchange heuristic: µ is the size of the final set; λ the maximum
number of elements which can be exchanged.
1: function heuristic(µ, λ)
2: P0 ← initialize with an arbitrary set of size µ
3: t← 1
4: while true do

5: determine a set Pt of size µ with |Pt − Pt−1| ≤ λ such that z(Pt) > z(Pt−1)
6: if no such a Pt exists then

7: break
8: end if

9: t← t + 1
10: end while

11: return PG ← Pt−1

12: end function

Following Algorithm 2, the above steps need to guarantee that a set Pt with
H(Pt) > H(Pt−1) is found if it exists. For example, we can use an exhaustive
offspring generation, i.e. every subset of size λ of the decision space X can be
determined with a probability larger than zero. Moreover, the archiving algo-
rithm A must be able to determine an improved subset of Pt−1 ∪Ot if it exists.
In other words, we require from A that H(A(P,O)) > H(P) if there exists a
subset of P ∪O of size µ with a larger hypervolume than H(P). For example, A
may in turn remove all possible subsets of size λ from Pt−1 ∪ Ot and return a
set that has a better hypervolume than Pt−1. Note that this instance of the in-
terchange heuristic can be easily rephrased in the general (µ+λ)-EA framework
of Algorithm 1 with an unbounded number of generations.

Nemhauser et al. [3] have proven the following result for the interchange
heuristic:

Theorem 2. Suppose z is non-decreasing and submodular. Moreover, define the
optimization problem z∗ = maxP⊆X ,|P|≤µ z(P). If µ = q · λ − p with an integer
0 ≤ p ≤ λ− 1, then

z∗ − z(PG)

z∗ − z(∅)
≤

µ− λ+ p

2µ− λ+ p

where z(PG) is the value of the set obtained by Algorithm 2 and z(∅) is the value
of the empty set.

We have shown that the hypervolume indicator is non-decreasing submod-
ular. Therefore, if we set the function z(P) = H(P) and note that H(∅) = 0,
we can easily obtain the following bound on the approximation quality of Algo-
rithm 2:

Proposition 1. If µ = q · λ− p with an integer 0 ≤ p ≤ λ− 1, then

H(PG) ≥
1

2− λ−p
µ

·Hmax
µ (X ) (4)

This bound can be compared to the definition of the approximate effective-
ness, see Definition 5, i.e. it bounds the achievable optimization quality in terms
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of the hypervolume if a certain algorithm structure is used. But whereas Defini-
tion 5 and the corresponding value of α = 2+ε from [1] is related to Algorithm 1,
the above bound with α = 2− λ−p

µ is related to Algorithm 2.

We will now show that the improved approximation bound of α = 2 − λ−p
µ

is valid also in the case of Algorithm 1, thereby improving the results in [1].

Theorem 3. Suppose a non-decreasing (µ + λ)-archiving algorithm which sat-
isfies in addition

∃S : (S ⊂ P ∪ O) ∧ (|S| = µ) ∧ (H(S) > H(P)) ⇒ H(A(P,O)) > H(P)

Then for all finite sets X , all objective functions f and all µ-populations P0 ⊆ X
the following holds: For any run of an instance of Algorithm 2, one can determine
a sequence of λ-populations O1, ...,ON such that

H(A(P0,O1, ...,ON )) = H(PG)

Proof. The proof uses the special instance of Algorithm 2 that has been in-
troduced above. Line 5 is implemented as follows: (1) Determine a set Ot of
offspring of size λ using an exhaustive generation, i.e. each subset of X is deter-
mined with non-zero probability. (2) Use the archiving algorithm A to determine
a set S = A(Pt−1,Ot). (3) Repeat these two steps until H(S) > H(Pt−1) or no
such S can be found. Due to the required property of A, no such S can be found
if it does not exist.

Algorithm 2 yields as final population PG = Pt−1 which can be rewritten
as Pt−1 = A(P0,O1, ...,Ot−1) The sets of offspring Oi are generated as de-
scribed above. Using N = t−1 yields the required resultH(A(P0,O1, ...,ON )) =
H(PG). ut

As a direct consequence of the execution equivalence between Algorithm 1
and Algorithm 2 according to the above theorem, the Definition 5 and (4), we
can state the following result:

Proposition 2. A non-decreasing (µ + λ)-archiving algorithm A(P,O), which
yields a subset of P ∪ O of size µ with a better hypervolume than that of P if
there exists one, is (2 − λ−p

µ )-approximate where µ = q · λ − p with an integer
0 ≤ p ≤ λ− 1.

It is interesting to note two special cases of the above proposition:

1. µ = λ: In this case, we have a (µ+µ)-EA. It holds that p = 0 and therefore,
the formula evaluates to α = 1, which means that this algorithm actually is
effective. This corresponds to the obvious result mentioned in the introduc-
tion.

2. λ = 1: In this case, we have a (µ + 1)-EA. It holds that p = 0 and q = µ
and therefore, the formula evaluates to α = 2− 1

µ , which is tighter than the

bound of Bringmann and Friedrich [1].
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Figure 1 shows the relation between λ and α for several settings of µ. As can
be seen, it is a zigzag line which corresponds to the modulo-like definition of p
and q. The local maxima of each line are located where µ is an integer multiple
of λ.
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Fig. 1. Quality guarantees for the hypervolume achieved by a (µ+ λ)-EA. For a given
µ and a given λ, there is a sequence of offspring such that at least 1

α
·Hmax

µ (X ) can be
achieved, irrespective of the optimization problem and the chosen initial population.

4 Lower Bound on the Approximate Effectiveness

In the previous section we gave an upper bound on α. In this section, on the other
hand, we will give a lower bound on α. This lower bound is tight for µ = 2, i.e. is
equal to the upper bound. To find this bound, we will show that there exist
optimization problems and initial populations, such that any non-decreasing
archiving algorithm will end up with a hypervolume that is at most 1/(1 + 1

2λ )
of the optimal hypervolume. Whereas a first particular example has been shown
in [4], a more general lower bound was shown in [1], where Bringmann and
Friedrich found a problem where any non-decreasing archiving algorithm ends
up with a hypervolume that is at most 1/(1 + 0.1338(1/λ − 1/µ) − ε) of the
optimal hypervolume, for any ε > 0. The new bound substantially tightens the
result of [1], but relies on the general definition of the hypervolume indicator
which uses a reference set R instead of a single reference point.

Theorem 4. Let λ < µ. There is no α-approximate non-decreasing (µ + λ)-
archiving algorithm for any α < 1 + 1

2λ .
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Proof. We proof this theorem by finding a population P0 = {s0, ..., sµ−1} whose
hypervolume indicator H(P0) can not be improved by any non-decreasing (µ+
λ)-archiving algorithm, i.e. it is locally optimal. At the same time, the optimal
population P∗ = {o0, ..., oµ−1} has a hypervolume indicator value of H(P∗)
which satisfies H(P∗) = (1 + 1

2λ − δ)H(P0) for any δ > 0.
The setting we are considering for the proof is shown in Figure 2. There are

2 · µ points, where the initial population is set to P0 = {s0, ..., sµ−1} and the
optimal population would be P∗ = {o0, ..., oµ−1}. We consider a setting with
multiple reference points {r0, ..., r2µ−2}, such that the areas contributing to the
hypervolume calculation are Ai (areas only dominated by the initial population),
Bi (areas only dominated by the optimal population), and Ci and Di (areas
dominated by one solution of the initial population and one solution of the
optimal population), see Figure 2. The objective space is the union of all points,
i.e. Y = P0 ∪ P∗.
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A
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Fig. 2. Schematic drawing of the example setting in the proof of Theorem 4.

In our example, we set these areas as follows, assuming λ < µ:

Ai = ε for 0 ≤ i < µ , Bi =

{

ε for 0 ≤ i < λ
1 for λ ≤ i < µ

Ci =
∑

i−λ≤j<i

Bj mod µ , Di =
∑

i+1≤j<i+1+λ

Bj mod µ

Note that for any choice of areas Ai, Bi, Ci, and Di, corresponding coordi-
nates can be found for all si and oi and ri by using the following recursions:

sxi = oxi−1 +
Ai

syi − oyi
, oxi = sxi +

Bi

oyi − syi+1
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syi = oyi−1 −
Ci−1

sxi−1 − oxi−2
, oyi = syi −

Di−1

oxi−1 − sxi−1

rxi =

{

oxi/2−1 i even

sx(i−1)/2−1 i odd
, ryi =

{

oyi/2+1 i even

sy(i−1)/2 i odd

where sxi , o
x
i , s

y
i , o

y
i and ryi , r

y
i are the x-axis and y-axis coordinates of si, oi

and ri, respectively. While sx0 , s
y
0, and rx0 with rx0 < sx0 can be chosen arbitrarily,

the coordinates for oy0 and sy1 are set as follows:

oy0 = sy0 −
A0

sx0 − rx0
, sy1 = oy0 −

C0

sx0 − rx0

Furthermore, ry2µ−2 and oxµ−1 are set as follows:

ry2µ−2 = oyµ−1 −
Cµ−1

sxµ−1 − oxµ−2
, oxµ−1 = sxµ−1 +

Bµ−1

oyµ−1 − ry2µ−2

First, we want to show that for the example, P0 is a local optimum, i.e.H(P0)
can not be improved by any non-decreasing (µ+ λ)-archiving algorithm. To do
so consider a λ-population O ⊂ Y and a µ-population P1 ⊂ P0 ∪ O. In order
for P0 to be a local optimum, we have to show that H(P0) ≥ H(P1).

Note that for the rest of the proof, we will always use the indices modulo µ
without writing it explicitly. Put differently, we will write Ai,Bi,Ci, and Di as
a short form of Ai mod µ,Bi mod µ,Ci mod µ, and Di mod µ.

The hypervolume of the initial population can be written as H(P0) = H −
∑

0≤i<µ Bi = H − (µ − λ) − λε, where H is the hypervolume of all solutions,

i.e. H = H(P0 ∪ P∗). Similarly, we can write H(P1) = H −
∑

i:si,oi 6∈P 1 Ci −
∑

i:si+1,oi 6∈P 1 Di −
∑

i:oi 6∈P1 Bi −
∑

i:si 6∈P1 Ai. Using these expressions, we get
the following set of equivalent inequalities:

H(P0) ≥ H(P1)
H − (µ− λ)− λε ≥ H −

∑

i:si,oi 6∈P 1 Ci −
∑

i:si+1,oi 6∈P 1 Di

−
∑

i:oi 6∈P1 Bi −
∑

i:si 6∈P1 Ai

(µ− λ) + λε ≤
∑

i:si,oi 6∈P 1 Ci +
∑

i:si+1,oi 6∈P 1 Di

+((µ− λ) + λε−
∑

i:oi∈P1 Bi) +
∑

i:si 6∈P1 Ai

∑

i:oi∈P1

Bi ≤
∑

i:si,oi 6∈P 1

Ci +
∑

i:si+1,oi 6∈P 1

Di +
∑

i:si 6∈P1

Ai (5)

To prove this inequality (5), we need to consider all possible µ-populations
P1 ⊂ P0 ∪ O, i.e. the results of all possible (µ + λ)-archiving algorithms. To
go from P0 to P1, λ solutions si of the initial set are discarded and the same
number of solutions oi from the optimal set are added. We call these discarded
si and added oi affected solutions.
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In the following, we consider blocks of affected solutions. To this end, we
first mark all solutions in P0 ∪P∗ that are either removed from P0 or added to
P0 when going from P0 to P1. This set of marked solutions is then partitioned
into the minimal number of subsets, such that each subset contains all solutions
in index range [i, i + k]. Depending on whether the first and last solutions in
such a subset are from set P0 or P∗ we call it an (s, s)-, (s, o)-, (o, s)- or (o, o)-
block, respectively. For example, an (o, s)-block with index range [2, 5] contains
solutions {o2, s3, o3, s4, o4, s5}. The rationale is that non-neighboring solutions
do not influence each other, as they do not dominate any common area. As for
the blocks, there are two cases which will be considered separately.

Blocks of even length: There are two types of blocks of even length: Those
starting with an added solution from the optimal set, i.e. (o, s)-blocks, and those
starting with a discarded solution from the initial set, i.e. (s, o)-blocks. The first
case can be formalized as follows: The (o, s)-block with index range [i, i+k] exists
iff (ol ∈ P1, i ≤ l < i+k)∧(oi+k 6∈ P1)∧(si ∈ P1)∧(sl 6∈ P1, i+1 ≤ l < i+k+1).
For this block, (5) evaluates to:

∑

i:oi∈P1 Bi ≤
∑

i:si,oi 6∈P 1 Ci +
∑

i:si+1,oi 6∈P 1 Di +
∑

i:si 6∈P1 Ai
∑

i≤l<i+k Bl ≤ Ci+k + 0 +
∑

i+1≤l<i+k+1 Al
∑

i≤l<i+k Bl ≤
∑

i+k−λ≤l<i+k Bl + kε

0 ≤
∑

i+k−λ≤l<i Bl + kε

The last step is true because we know that k ≤ λ. As all Bl as well as ε are
larger than zero, (5) holds.

The second case can be formalized as follows: The (s, o)-block with index
range [i, i+ k] exists iff (oi−1 6∈ P1) ∧ (ol ∈ P1, i ≤ l < i+ k) ∧ (sl 6∈ P1, i ≤ l <
i+ k) ∧ (si+k ∈ P1). For this block, (5) evaluates to:

∑

i:oi∈P1 Bi ≤
∑

i:si,oi 6∈P 1 Ci +
∑

i:si+1,oi 6∈P 1 Di +
∑

i:si 6∈P1 Ai
∑

i≤l<i+k Bl ≤ 0 +Di−1 +
∑

i≤l<i+k Al
∑

i≤l<i+k Bl ≤
∑

i≤l<i+λ Bl + kε

0 ≤
∑

i+k≤l<i+λ Bl + kε

Again, we can see that the last inequality holds, and therefore, (5) holds.

Blocks of odd length: Such blocks consist of either a set of discarded solutions that
enclose a set of added solutions or vice versa, i.e. (s, s)- or (o, o)-blocks. Due to
|P0| = |P1|, the number of added solutions from the optimal set must be equal to
the number of discarded solutions from the initial set. Directly following this, we
know that for each block of discarded solutions enclosing added solutions, there
must be another block of added solutions enclosing discarded solutions and vice
versa. These two types of blocks can be formalized as follows: The (s, s)-block
with index range [i, i+ k] exists iff (ol ∈ P1, i ≤ l < i+ k − 1) ∧ (oi−1, oi+k−1 6∈
P1) ∧ (sl 6∈ P1, i ≤ l < i+ k). The (o, o)-block with index range [j, j + p] exists
iff (ol ∈ P1, j ≤ l < j + p) ∧ (sl 6∈ P1, j + 1 ≤ l < j + p) ∧ (sj , sj+p ∈ P1). Also,
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we know that 1 ≤ k, p ≤ λ and k + p ≤ λ+ 1. Considering both of these blocks,
(5) evaluates to:

∑

i:oi∈P1 Bi ≤
∑

i:si,oi 6∈P 1 Ci +
∑

i:si+1,oi 6∈P 1 Di

+
∑

i:si 6∈P1 Ai
∑

i≤l<i+k−1 Bl +
∑

j≤l<j+p Bl ≤ Ci+k−1 +Di−1 +
∑

i≤l<i+k Al

+
∑

j+1≤l<j+p Al
∑

i≤l<i+k−1 Bl +
∑

j≤l<j+p Bl ≤
∑

i+k−1−λ≤l<i+k−1 Bl +
∑

i≤l<i+λ Bl

+(k + p− 1)ε
∑

j≤l<j+p Bl ≤ p ≤
∑

i+k−1−λ≤l<i+λ Bl + (k + p− 1)ε

p ≤ λε+ λ− k + 1 + (k + p− 1)ε

The second last step can be done because we know that at most λ of the Bl’s
are set to ε and therefore, at least λ − k + 1 ≥ p of the Bl’s remain which are
set to 1. Also, because of p ≤ λ− k+1, the last inequality holds and with it (5)
holds.

Combinations of blocks: As stated before, only neighboring solutions in Y =
P0 ∪ P∗ share a common dominated area. From the definition of the different
types of blocks it can be seen that there are no adjacent blocks, because in this
case, the two blocks would be combined into one. Therefore, each pair of blocks is
separated by at least one solution from Y which is not affected by the transition
from P0 to P1. As a result, the changes in hypervolume when going from P0

to P1 can be considered separately for each block. We have shown that for any
block, (5) holds. From this we can conclude that H(P0) ≥ H(P1) and therefore,
P0 is a local optimum.

Now that we’ve done the first part of the proof, i.e. showing that any non-
decreasing (µ + λ)-archiving algorithm will not be able to escape from P0, we
would like to calculate how far the hypervolume of P0 is from the maximum

achievable hypervolume. In other words, we would like to calculate H(P∗)
H(P0) . The

hypervolume of the initial population evaluates to:

H(P0) =
∑

0≤l<µ Cl +
∑

0≤l<µ Dl +
∑

0≤l<µ Al

=
∑

0≤l<µ

(

∑

l−λ≤j<l Bj +
∑

l+1≤j<l+1+λ Bj

)

+ µε

=
∑

0≤l<µ

(

∑

l−λ≤j<l+1+λ Bj −Bl

)

+ µε

= (2λ+ 1)
∑

0≤l<µ Bl −
∑

0≤l<µ Bl + µε

= 2λ
∑

0≤l<µ Bl + µε

The hypervolume of the optimal population, on the other hand, can be cal-
culated as follows:

H(P∗) =
∑

0≤l<µ Cl +
∑

0≤l<µ Dl +
∑

0≤l<µ Bl

=
∑

0≤l<µ

∑

l−λ≤j<l+1+λ Bj

= (2λ+ 1)
∑

0≤l<µ Bl

Both sets of equations make use of
∑

0≤l<µ

∑

l−λ≤j<l+1+λ Bj = (2λ +
1)

∑

0≤l<µ Bl. This is due to the fact that the inner sum of the left-hand term
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consists of 2λ + 1 summands. Because all indices are taken modulo µ, we see
that each Bj is summed up 2λ+ 1 times in the whole term.

Finally, this leads us to the following result, which holds for any δ > 0 if
ε → 0 and λ < µ:

H(P∗)
H(P0) =

(2λ+1)
∑

0≤l<µ Bl

2λ
∑

0≤l<µ Bl+µε

= 1 + 1
2λ − δ

Note that in the case of λ = µ, the equation evaluates to H(P∗)
H(P0) = 1, which

is very natural, since for µ = λ, any non-decreasing (µ+ λ)-archiving algorithm
is effective. ut

We may also interpret the above result in terms of the more practical inter-
change heuristic shown in Algorithm 2. One can conclude that for z(P) = H(P),
i.e. we use the hypervolume indicator for archiving, we may end up with a solu-
tion that is not better than 1/α times the optimal hypervolume with α > 1+ 1

2λ ,
even after an unlimited number of iterations.

5 Conclusion

In this paper, we investigated the α-approximate effectiveness of (µ + λ)-EAs
that optimize the hypervolume. The value of α gives a lower bound on the
hypervolume which can always be achieved, independent of the objective space
and the chosen initial population. While it is obvious that for µ = λ, α is equal
to 1, Bringmann and Friedrich have shown that for λ = 1, α is equal to 2. This
paper strictly improves the currently known bound and finds that for arbitrary
λ, the approximation factor α is equal to 2 − λ−p

µ , where µ = q · λ − p and
0 ≤ p ≤ λ− 1.

Furthermore, we improve the available lower bound on α for the general
definition of the hypervolume indicator, i.e. α > 1+ 1

2λ . Upper and lower bounds
only match for a population size of µ = 2. It might be possible to further
tighten the lower bound by extending the worst case construction in the proof
of Theorem 4 to higher dimensions of the objective space.
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