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Abstract. When the function to be optimized is characterized by a
limited and unknown number of interactions among variables, a context
that applies to many real world scenario, it is possible to design optimiza-
tion algorithms based on such information. Estimation of Distribution
Algorithms learn a set of interactions from a sample of points and en-
code them in a probabilistic model. The latter is then used to sample
new instances. In this paper, we propose a novel approach to estimate
the Markov Fitness Model used in DEUM. We combine model selection
and model fitting by solving an `1-constrained linear regression prob-
lem. Since candidate interactions grow exponentially in the size of the
problem, we first reduce this set with a preliminary coarse selection cri-
teria based on Mutual Information. Then, we employ `1-regularization
to further enforce sparsity in the model, estimating its parameters at
the same time. Our proposal is analysed against the 3D Ising Spin Glass
function, a problem known to be NP-hard, and it outperforms other
popular black-box meta-heuristics.

Keywords: Estimation of Distribution Algorithms, Markov Fitness Model,
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1 Introduction

Black-box optimization consists of a set of meta-heuristics used to search for the
optimum of a function when no information about its structure is available. Such
approach to optimization can be used to define general purpose algorithms that
do not depend on the function to be optimized, and it becomes the only pos-
sible approach when the mathematical formulation of the function is unknown.
In particular model based meta-heuristics [25] introduce a statistical model to
represent correlations among variables and to guide the search for the optimum.

Most of the model based meta-heuristics, cf. [25], use a probabilistic de-
scription of the given problem to drive their search towards solutions with the
best value. The most general model is the joint probability distribution p which
characterizes the correlations among all the variables involved in the objective
function f . In the discrete setting, the probability simplex is able to capture



any possible order of interactions among the variables; however, its dimension
equals the cardinality of the search space, and the estimation of its parameters
is unfeasible.

In practice, most of the problems we are interested in, even NP-hard prob-
lems, are characterized by a limited set of correlations and can be characterized
by a sparse pattern of interactions. It follows that model based search in a black-
box context, to be really effective, must face the problem of selecting a lower
dimensional model, which is computationally tractable, and would be able to
capture all, or at least most, of relevant correlations. The family of the model
and the way in which it is chosen define the particular class of meta-heuristics.

Once the model has been selected, model based algorithms implement differ-
ent techniques to search for the optimal distribution in the model, for instance
by applying estimation and sampling techniques, as in Estimation of Distribu-
tion Algorithm (EDA) [10], or by following the gradient of the expected value of
f as in CMA-ES [8] and SNGD [11]. Within EDAs, a distinctive feature of the
algorithms that belong to the Distribution Estimation Using Markov Networks
(DEUM) [18] framework is the direct use of a probabilistic model of the objective
function, which is sampled to search for a global minimum.

Selecting a model and estimating the parameters correspond, respectively,
to a model selection and a model fitting problem, and in the general case are
computationally expensive to address. On the other hand being able to recover
the correct set of interactions, or at least a model that capture most of them,
allows to work with tractable models with good properties, i.e., from any point
the gradient of the expected value of the original function points in the direction
of the global optimum, so that different optimization algorithms are less prone
to end up with local minima, [12].

In DEUM, the joint probability distribution is represented using the for-
malism of Markov Networks (MNs) [22], also known as Markov Random Fields
(MRFs), an example of undirected Probabilistic Graphical Models (PGMs). The
structure of the MN, i.e., the set of conditional independences, can be either
fixed a priori [18, 19], in which case we refer to fixed structure DEUM algo-
rithms, or learned from scratch using model selection criteria such as Mutual
Information [17] or χ2-independence test [4]. Once the structure is identified,
the parameters of the model are estimated from a subset of points with least
square method, and then the model is sampled to look for a global optimum.

A common hypothesis when learning a model in EDAs is to limit the search
to pairwise interactions. This reduces the number of possible interactions to

(
n
2

)
.

Other additional hypothesis [4, 17] limit the maximum size of the neighbourhood
of each variable to force a sparse pattern of interactions. A different approach to
model selection in DEUM has been proposed in [13] where `1-regularized logistic
regression is employed to recover the neighbourhood of each variable, cf. [16].
This choice allows to shrink the conditional probability distribution of a vari-
able given its neighbourhood through a regularization parameter. The approach
showed promising results both in terms of model selection and optimization
performance. However, the computational effort was still very expensive.



The aim of this paper is to provide a novel method to estimate the statis-
tical model used in DEUM by introducing a sparse model selection approach
when estimating the Markov Fitness Model, thus dealing with model selection
and model fitting at the same time. To obtain this result, we formalize the es-
timation problem as an `1-constrained linear regression problem, also known as
the Lasso [20]. In this formulation, the penalizing `1-constraint addresses model
selection, while the least square error minimization allows to estimate the co-
efficients of the model. Since candidate interactions grows exponentially in the
problem size in the general case and quadratically if we restrict to pairwise in-
teractions, we firstly use a preliminary coarse selection criteria based on Mutual
Information to reduce the size of this set, similarly to the approach in [17], but
with no constraint on the size of the neighbourhood.

The remaining of the paper is organized as follows. In Section 2 we describe
the Markov Fitness Model underlying the DEUM framework. In Section 3 we
introduce our approach based on `1-constrained linear regression to estimate
the set of interactions and associated parameters of the model. In Section 4 we
present the Sparsified DEUM algorithm (sDEUM), while in Section 5 we provide
an empirical analysis of its performance using the well-known 3D Ising Spin Glass
function [2] as a benchmark. The paper ends in Section 6 with conclusions and
future directions of research.

2 Objective Function Modelling by Markov Networks

EDAs and more in general most model-based meta-heuristics make use of a sta-
tistical model, i.e., a set of probability distributions, to represent the interactions
among the variables of an optimization problem. Usually the model is estimated
from a subset of points, selected from a larger sample according to the value
of f . The same applies for the algorithms in the DEUM framework, with the
difference that the statistical model is employed to learn a model of f , rather
than to estimate the correlations among its variables.

We consider the unconstrained optimization problem of minimizing a real-
valued function f defined over a vector of n binary variables X = (X1, . . . , Xn)
with values in Ω = {−1,+1}n. Since the domain is finite, and x2 = 1, any f can
be written as a square-free polynomial

f(x) =
∑
α∈I

cαx
α. (1)

Here, we employ a notation based on the multi-index α = (α1, . . . , αn) ∈ I ⊂
{0, 1}n, with xα =

∏n
i=1 x

αi
i . The associated real coefficients cα ∈ R \ {0} are

indexed by α. Each monomial represents an interaction among a set of variables
in f . We say that the set of interactions in function f is sparse if # (I) � 2n,
where # (I) represents the cardinality of I. Many well known functions belong
to this class, and even if the number of interactions is limited the optimization of
such functions can be an NP-hard problem. For instance, the energy function of
an Ising Spin glass problem [2] defined over a 3D toroidal lattice has # (I) = 3n



interactions, where l = 3
√
n is the size of the grid. In the maximum cut [23]

problem the cardinality of I corresponds to the number of edges in the graph,
and in general # (I) ≤

(
n
2

)
.

In the DEUM framework, probabilities of points in the search space Ω are
assigned under the hypothesis that the probability of x should be proportional
to the value of f , i.e.,

p(x) ≡ f(x)

Z
, with Z =

∑
x∈Ω

f(x). (2)

In particular, DEUM uses the Gibbs distribution as a statistical model, which
is an example in the exponential family of distributions that can be equivalently
represented with the formalism of MNs. The Gibbs distribution is used to learn
a model of the objective function, by means of the Markov Fitness Model [3].

2.1 Markov Networks and Gibbs Distribution

Most EDAs make use of PGMs to represent the statistical model they use. In
particular, the algorithms in the DEUM framework employ undirected graphical
models called MNs. One of the advantages of a PGM is that the graph represents
the conditional independence structure of the random variables, and provides a
way to factorize the joint probability distribution associated to the graph.

Given a vector X = (X1, . . . , Xn) of random variables, a MN is defined by a
pair (G, Φ), where G = (V, E) is an undirected graph and Φ is a set of local energy
functions ϕ associated to the cliques. Each random variable Xi in X corresponds
to a vertex vi ∈ V, while the edges eij ∈ E define the topology of the graph. We
denote with Ni the neighbourhood of a variable Xi, i.e., the set of vertices vj
such that eij ∈ E . A set XC of fully connected vertexes of G is called clique. A
clique is maximal if it is not contained in the set of vertices of any other clique.

The topology of the MN determines a set of conditional independence state-
ments according to the absence of edges in the graph. As stated in the Hammersley-
Clifford theorem [7], a positive probability distribution satisfies all the Markov
properties with respect to the graph G if and only if it factorizes according to
the graph itself. This implies that the joint probability distribution of X can be
expressed as the product of a set of non-negative functions ϕC , called potential
functions, defined over the clique C ∈ C, i.e.,

p(x) =
1

Z

∏
C∈C

ϕC(xC) (3)

where Z is a normalization constant that ensures the probabilities sum to 1.
Without loss of generality, by absorbing cliques in maximal cliques, in the rest
of the paper we restrict the factorization to the product of potential functions
defined over the maximal cliques of G.

Moreover, the Hammersley-Clifford theorem implies the equivalence of the
probability distribution p in (3) associated to G and the Gibbs (or Boltzmann)



distribution of the form

p(x) =
1

Z
e−U(x)/T , with Z =

∑
x∈Ω

e−U(x)/T . (4)

In statistical physics, the normalizing constant Z is called partition function,
T > 0 is the temperature of the distribution, and U(x) the energy function.
The temperature parameter controls the sharpness of the distribution. Indeed,
for T → ∞, Equation (4) tends to the uniform distribution over Ω, while for
T → 0 the probability mass concentrates over the global minima of the energy
function. The energy function of the Gibbs distribution is defined as the sum of
local functions uC associated to ϕC defined over the maximal cliques of G, i.e.,

U(x) =
∑
C∈C

uC(xC). (5)

In EDAs, the search space Ω is explored by sampling from a density in a
statistical model. However, sampling from (4) is non trivial due to the presence
of the partition function Z, whose computation requires a summation over the
entire space Ω, and thus is unfeasible since it is exponential in n. Nevertheless,
the Gibbs distribution can be sampled using a Gibbs sampler, and exploiting the
local Markov property, so that the conditional probability of Xi only depends
on its neighbourhood Ni. Moreover, due to the {±1} encoding, we have

pi(xi|Ni) =
p(x)∑

xi∈{±1} p(x)
=

e−U(x)/T∑
xi∈{±1} e

−U(x)/T
=

1

1 + exi∆iU(x)/T
, (6)

where ∆iU(x) is the difference between U(x) and U(x̃i), where x̃i equals x
except for the sign of xi that has been changed. Since all terms in U(x) and
U(x̃i) agree except those containing xi, and thus ∆iU(x) only depends on Ni,
its computation can be further simplified.

2.2 The Markov Fitness Model

In the DEUM framework, probabilities are assigned to points in Ω proportionally
to the value of f , and a model is chosen in the family of Gibbs distributions. By
setting T = 1, in order to simplify the formulas, and combining Equations (2),
(4) and (5), we have

p(x) ≡ f(x)∑
Ω f(x)

=
e−

∑
C∈C uC(xC)∑

Ω e
−

∑
C∈C uC(xC)

,

that in particular is implied by setting

− ln(f(x)) =
∑
C∈C

uC(xC), (7)



i.e., when U(x) is supposed to be a good model for f . This relationship between
the energy function of the Gibbs distribution and f is called Markov Fitness
Model (MFM) [3]. Notice that Equation (7) defines a probabilistic model of f .

Every uC is defined over a subset of the variables in x according to the
nodes in the maximal clique. Thus uC admits a polynomial expansion as for f
in Equation (1), and

− ln(f(x)) =
∑
C∈C

∑
α∈IC

θα,Cx
α, (8)

where the set of interactions identified by IC depends on the variables in the
maximal clique. Every θα,C ∈ R is a parameter associated to the expansion of
uC . By grouping similar terms and introducing a set M for all the monomials
that appear in Equation (8), the expression can be simplified to

− ln(f(x)) =
∑
α∈M

θαx
α. (9)

The statistical model used in the MFM in (9) can be written as an m-
dimensional exponential family, with m = #(M),

p(x; θ) = exp

{∑
α∈M

θαx
α − ψ(θ)

}
, (10)

where ψ(θ) = lnZ(θ) is the normalizing factor and xα are the sufficient statistics.
In order to reduce the number of parameters of the statistical model, further

assumptions can be made in the choice of the monomials that appear in uC in
Equation (8). For instance, in the Ising DEUM algorithm [19], where the G is a
toroidal 2D lattice and all maximal cliques have size 2, every uij(xi, xj) takes
the form of θijxixj , so that all linear terms are not included among the sufficient
statistics of the exponential model since they are not required to capture such
class of Ising Spin Glass functions.

3 Sparse Learning of the Markov Fitness Model

To make the estimation of the MFM computationally feasible, we need to con-
sider a reduced set of monomials as support statistics in (10) by imposing sparsity
on the interactions pattern of the variables. This can be done a priori by making
proper assumptions on the model, for instance limiting the neighbourhood size
of each variable or the total number of interactions in the graph. On the other
hand sparsity can be obtained by employing machine learning techniques such as
`1-regularization in the estimation of the model. For instance, Ravikumar et al.
[16] address sparse model selection by solving a set of n `1-constrained logistic
regression problems. Other approaches, such as [9], solve the problem of sparse
structure learning by evaluating pseudo-likelihoods. In the literature of discrete
EDAs, some related methods have been applied in L1BOA [24] and DEUM`1 [13].



3.1 Problem Statement and Theoretical Approach

Let consider the MFM in Equation (8), where the set of monomials identified
by indices in M defines a set of interactions among the variables in f . In the
DEUM framework the coefficients θ are estimated by solving a linear system
of equations. More in general the estimation of θ can be seen as a linear re-
gression problem where, given a sample of observations, −ln(f(x)) corresponds
to the response variable, and xα to the covariates. By introducing a shrinkage
regression technique in estimating the value of the parameters we can perform
model selection by zeroing a subset of coefficients, and thus obtaining a sparse
model. As a consequence, by applying a shrinkage technique in estimation, we
can perform model selection at the same time of model fitting.

In particular we learn the MFM by solving an `1-constrained linear regres-
sion problem, also known as the Lasso [20]. The solution of the Lasso gives a
sparse estimation of θ, hence, it selects a set of sufficient statistics for the sta-
tistical model of f in (10). The `1-constrained linear regression problem can be
formalized as the minimization problem

min
θ∈Rm

{
1

2
|| − ln(f(x))−

∑
α∈M

θαx
α||22 + λ||θ||1

}
, (11)

where the first term represents the residual sum of squares, and the second
term is an `1-constraint weighted by a control parameter λ, called regularization
parameter. The value of the regularization parameter strongly affects the sparsity
pattern of the vector of coefficients. Indeed, for λ→ ∞ all coefficients will vanish,
while, for λ→ 0 the solution of the Lasso corresponds to the usual least square
estimation of the MFM, which in general is not sparse.

To correctly dimension the value of the regularization parameter λ we refer
to the asymptotic results presented in [5]. In particular dimensioning λ as

λ = K

√
log(m)

N
, (12)

where K is a constant, m is the number of monomials in the exponential family,
and N is the size of the sample used for the regression, guarantees that the
correct correlations can be identified as N → ∞. The same result has been
applied in [16], where the authors show how N may depend on the topology of
the graph. Such result is obtained under the hypothesis that the sample is i.i.d.
from to an unknown probability distribution. Usually such hypothesis cannot be
satisfied in black-box optimization, since f is unknown. In order to deal with
this issue, we propose to perform `1-constrained linear regression over a subset
of samples selected from a randomly generated initial sample according to the
value of f . This procedure can only approximate an i.i.d. sample, but from our
experiments it was sufficient to correctly reconstruct the topology of the MN.

A solution of the minimization problem defined in Equation (11) gives an
estimation of the MFM that approximates a statistical model of f . However, the
number of potential covariates in the regression problem grows exponentially



with n, making the minimization problem computationally unfeasible. Indeed
its complexity is bounded by O(m3). Even under the hypothesis of limiting the
maximum order of interactions to the second, we have m =

(
n
2

)
and the problem

does not scale very well. For this reason, we propose to apply a rough selection
procedure to reduce the set of covariates in the MFM before solving the Lasso.

3.2 Taking Care of Dimensionality: Candidate Edges Reduction

In order to reduce the complexity of the `1-constrained linear regression problem
we only consider pairwise interactions among variables, so that the MFM in
Equation (8) can be represented as a complete pairwise graph G(V, E), such that
(i, j) ∈ E for every j > i. However, the number of terms to consider still grows
quadratically with n. In order to further reduce the number of edges before
solving the Lasso, we select first a subset with a computationally lighter but yet
less accurate method based on a measure of correlation among the variables.

Similarly to [17], we evaluate Mutual Information (MI) for each pair of ran-
dom variables in the original function. MI is a metric that measures the mutual
dependence between random variables. Given a pair of discrete random variables
Xi and Xj , their Mutual Information I is defined as

I(Xi, Xj) =
∑

xi,xj∈{±1}

pij(xi, xj) log

(
pij(xi, xj)

pi(xi)pj(xj)

)
, (13)

where pi and pj are the marginal probabilities, and pij is their joint probability.
If the MI between Xi and Xj is higher than a given threshold, then we include
the associated monomial during the solution of the Lasso; otherwise, we remove
the edge (i, j) from the graph.

The overall procedure can be summarized as follow. Given a sample we com-
pute the Mutual Information matrix A, which is symmetric and has dimension
n×n. Then, we proceed by removing from the initial complete graph every edge
(i, j) whose Mutual Information aij is lower than the threshold b · a, where b is
a weight coefficient and a is the average Mutual Information of variables in X.

Such procedure allows us to reduce the candidate set of interactions in the
regression problem. The optimal value of b such that only real interactions are
recovered, strongly depends from both the original function f and the sample.
In principle, correctly dimensioning b represents a hard task to address. Higher
values of b cut most of the edges, while less restrictive choices give a dense
network, that in turn, is more like to contain all the relevant interactions of the
problem together with many undesired ones. We choose non-restrictive values
for b since the purpose of this preliminary selection is to reduce the number
of edges rather then selecting a good model for X. Shakya et al. [17] reduce
furthermore the density of the network by making hypothesis on the maximum
neighbourhood size of the nodes. We do not apply such step here, since we would
like model selection to be as much independent as possible on prior knowledge
about f , and leave to the Lasso the task of identifying the correct interactions.



Algorithm 1: sDEUM(P, b, smi, s`1)

Let E be the set of edges of a fully connected pairwise MN1

Randomly generate initial sample P of size P2

Evaluate f for each point in P3

Select a subset Pmi from P of size smiP4

Compute the MI matrix A and the average MI a given Pmi5

Select a subset of edges Emi from E according to A and the threshold ba6

Let m = #(Emi)7

Select a subset P`1 from P of size N = s`1P8

Estimate a distribution p in the MFM, by solving the Lasso with covariates9

associated to Emi and observations in P`1 , with λ = K
√

logm
N

, as in Eq. (11)

Sample pwith theGibbs sampler by evaluating conditional probabilities inEq. (6)10

4 Shrinkage DEUM Optimization Algorithm

In this section, in the light of the machine learning techniques described in
the first part of the paper, we present the Shrinkage Distribution Estimation
Using Markov Networks algorithm (sDEUM). The sDEUM algorithm consists
of a black-box meta-heuristics able to learn from scratch a sparse probabilistic
model of the function to be minimized. The use of `1-penalized linear regression
allows sDEUM to shrinkage the size of the θ parameters of the MFM. Due to
the `1 constraint and according to the size of the λ parameter, some coefficients
are fixed to zero with high probability, so that an implicit model selection is
performed while solving the regression problem. The model is then sampled to
generate new points, possibly with optimal values for f .

Algorithm 1 summarizes the procedure implemented in sDEUM. The meta-
heuristic is characterized by some parameters: the population size P , the MI
coefficient b, the percentages of selection smi and s`1 , and the constant K. Two
different subsets are selected from the same initial random sample: Pmi for the
computation of the MI matrix and P`1 for solving the Lasso, respectively. This
choice allows a better sizing of observations for the two different estimation
tasks. In both cases a truncation selection operator is employed, other policies
are possible, but they are not investigated here.

Once the MFM is estimated, next step in the DEUM framework consists of
sampling the distribution to search for the optimum of f . In sDEUM, as in [19,
13], we use a Gibbs sampler, i.e., a Monte Carlo Markov Chain sampling method.
The Gibbs sampler allows to generate instances with minimum values for the
energy U of the Gibbs distribution by cooling the temperature during sampling.
Refer to [19] for a presentation of the sampling schema employed in DEUM.

When the estimated model is good enough, repeatedly sampling the model
with an adequate cooling schema yields with high probability the global optima
of f . As a consequence, as in most of the DEUM framework algorithms, model
learning in sDEUM is performed only once, and the learned model is repeatedly
sampled using the Gibbs sampler (single generation approach).



5 Empirical Performance Analysis

In this section we present the results of an empirical analysis of the performance
of sDEUM. We set up a series of experiments in order to evaluate the ability of
the algorithm to reconstruct the correct set of interactions among the variables
in the model and to find the global minimum of the function. In all the experi-
ments, we evaluated the performance using the 3D Ising spin glass problem [2] as
a benchmark, whose interaction structure is known and can be used to determine
a set of model selection statistics, such as precision, recall and F1 score. First we
analyse the behaviour of sDEUM when its parameters are changed, in order to
find the best configuration, then we compare its performance in solving the en-
ergy minimization problem with those of DEUMce [17], Simulated Annealing [1]
and hBOA [15]. DEUMce and Simulated Annealing have been tuned to achieve
best performance, while results of hBOA are taken from [14]. Since the difficulty
of the 3D Ising spin glass problem may depend from the particular instance, we
averaged the results over 10 different instances, and for each of them we run 30
independent executions of every algorithm. In order to simplify the experimental
comparison and evaluation, sDEUM, DEUMce and Simulated Annealing were
implemented within the Evoptool toolkit [21]. The source code of the algorithms
and the Ising spin glass instances can be found on the Evoptool homepage3.

5.1 Experimental Setting and 3D Ising Spin Glass Problem

In statistical physics, the Ising spin glass problem is an energy minimization
problem in the space of binary configurations of a set of spins σ = (σ1, . . . , σn),
where each spin can be either up, σi = +1, or down, σi = −1. The optimal
solutions, i.e., the ground states of the spin glass, are those configurations that
minimize the energy function

E(σ) = −
∑
i∈L

hiσi −
∑

i<j∈L

Jijσiσj , (14)

where L is a toroidal lattice of n sites, while hi and Jij are coupling constants
respectively of a single spin σi and a pair of spins (σi, σj). The difficulty of the
problem is strongly related to the dimensionality of the lattice. Indeed, even if
with particular choices of h and J the problem in 1D and 2D can be solved in
polynomial time, it becomes NP-hard for all kind of coupling constants, as soon
as it reaches the third dimension, and in particular when the edge degree of each
vertex equals 6, see [2].

In our experiments we use spin glasses defined over a 3D grid with periodic
boundaries [2]. The contribution to the energy given by singleton spins is not
taken into account, therefore hi = 0 for every spin. The instances of the problem
are randomly generated with couplings Jij that takes values in {±1} with equal
probability. Instances of the problem and their optimal solutions are generated
using the spin glass ground states server by the group of Prof. Michael Jünger4.

3
Available at http://airwiki.ws.dei.polimi.it/index.php/Evoptool

4
Available at http://www.informatik.uni-koeln.de/ls juenger/research/sgs/
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Fig. 1. F1 measure of model selection based on MI vs preliminary selection based on
MI followed by `1-constrained linear regression for the Ising spin glass problem for
n = 64, (left ) 2D lattice; (right) 3D lattice.

The sDEUM algorithm has been run for different values of its parameters: the
sample size P , the threshold coefficient of MI b, and the percentages of selection
smi and sl1. After preliminary tests, the constant K in (12) has been fixed to
the value of K = 16. In particular, to solve the `1-constrained linear regression
problem, we employed the R package lars available on CRAN, implementing
the Least Angle Regression (LARS) [6] algorithm.

The performance of sDEUM is compared with those of DEUMce, Simulated
Annealing (SA) and the Hierarchical Bayesian Optimization Algorithm (hBOA).
DEUMce is a DEUM algorithm with model learning capability based on the
evaluation of the Mutual Information plus a structure refinement mechanism
that bounds the maximum edge degree of each node. SA is a meta-heuristic
characterized by the number P of starting points, by the initial temperature T
and the cooling rate c of the Metropolis sampler. The hBOA algorithm is an
optimization meta-heuristic belonging to the family of EDAs based on Bayesian
Networks (BNs). At each generation, hBOA employs a niching mechanism to
select individuals in the population. The sample of individuals is used to learn a
BN, which in turns is sampled to produce the set of solutions. For further details
on the implementations of DEUMce, SA and hBOA refer to [17], [1] and [15],
respectively.

The performance of the algorithm is evaluated according to a set of statistics
that concerns the F1 measure, the probability of success and the average number
of evaluations of f required to find the first ground state at each execution. In
particular, the F1 measure is defined as the harmonic mean of precision and recall
statistics, while the probability of success is computed as the rate of successful
executions, i.e., the percentage of runs in which at least an optimal solution is
sampled.

5.2 Impact of Learning Parameters

In order to successfully minimize a given objective function f , it is essential to
recover a good statistical model for the variables in the problem, i.e., to learn
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Fig. 2. Probability of success over normalized size of initial population (P/n). Bench-
mark: 3D Ising Spin Glass function, n ∈ {27, 64, 125}. sDEUM parameters: smi = 0.3;
(left) b = 1.5, s`1 = 0.1; (center) b = 1.5, s`1 = 0.3; (right) b = 1.1, s`1 = 0.3.

most of the interactions present in f and to correctly estimate the value of their
parameters.

The threshold coefficient b of the preliminary selection based on MI, as well
as the λ parameter of the Lasso, determine the sparsity level of the recovered
structure. However, to correctly dimension b a preliminary tuning phase which
depends on the problem is usually required, while, in contrast, the λ parameter
can be chosen according to Equation (12) to ensure good theoretical perfor-
mance.

In Fig. 1 we compared the model selection performance of our approach with
those of the model selection based on MI, when solving the Spin Glass function
with 2D and 3D structure and 64 variables. As we can see, in case of model
selection based only on MI the results vary greatly according to the value of b.
In contrast, when MI is followed by the `1-constrained regression, the choice of
value for b results less problem dependent. Indeed, thanks to the `1-constraint,
the value of b required to recover a good model can be chosen in a broader range
of less selective values.

In Fig. 2 we can see the probability of success plotted against the size of the
initial population P for problem size n ∈ {27, 64, 125}, and for different values
of the threshold coefficient b ∈ {1.1, 1.5}, that determines how dense the MFM
is after preliminary model selection based on MI. When n = 27 or n = 64, a
less restrictive value of b provides better performance, see Fig. 2 (right); while
when the size of the problem increases, n = 125, a higher value of the coefficient
b results in earlier convergence, see Fig. 2 (center).

These results suggest that the value of b should increase with n. A possible
explanation is given by the fact that the number of interactions grows linearly as
3n for a 3D lattice, while the number of total interactions is quadratic, for this
reason a more restrictive choice of b helps to reduce the number of candidate
interaction before the Lasso is solved.
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Fig. 3. Average number of evaluations of f (log scale) over problem size required to
find first optimal solution with probability 1. Benchmark: 3D Ising Spin Glass function,
n ∈ {27, 64, 125}. Algorithms: sDEUM, DEUMce, SA, hBOA.

In a black-box scenario an i.i.d. sample is not available to solve the lasso.
Instead we choose a subset of the sample based on the value of the function f ,
and we compared the performance of the algorithm for different values of s`1 .
In Fig. 2(left) and Fig. 2(center) we show the results for s`1 equal to 0.1 and
0.3, respectively. It is possible to notice that even if selection helps identify a
good sample with respect to the random observations generated when the algo-
rithms starts, decreasing that percentage too much results in lower performances.
This result suggests that if the output of a selection is a sample not informa-
tive enough, then we have preliminary convergence and a larger population is
necessary.

5.3 Analysis of Optimization Performance

In this section we compare the performance of sDEUM to find the ground states
of the 3D Ising Spin Glass function with those of DEUMce, Simulated Annealing
and hBOA. We analyse the results in terms of average amount of evaluations
of the objective function required to find the optimum with a probability of
success equals to 1 for each algorithm on 10 instances of the problem. The
parameters of sDEUM, DEUMce and Simulated Annealing have been chosen
after a preliminary tuning phase on this set of experiments. This was not possible
for the hBOA algorithm, and results provided5 here are taken from [14].

The trend highlighted in Fig. 3 suggests that sDEUM algorithm requires
a lower number of evaluations of f with respect to other meta-heuristics on
this benchmark. Indeed, the overall number of evaluations for sDEUM appears

5
The performance of hBOA in [14] are evaluated over a set of instances of the 3D Ising Spin Glass
function different from our set but with the same setting: 3D toroidal lattice, hi = 0, Jij ∈ {±1}.



to grow polynomially as O(n2.04), while the same metric grows as O(n2.16),
O(n3.06) and O(n2.91), for DEUMce, SA and hBOA [14], respectively.

The lower requirements in terms of fitness evaluations of both sDEUM and
DEUMce with respect to SA and hBOA are due to the single iteration ap-
proach characteristic of the DEUM algorithms. Indeed, most of the evaluations
in DEUM, concern the initial sample, before selection is applied. Moreover, the
shrinkage method used in sDEUM compared with the approach of DEUMce
based on MI and structure refinement is able to recover a good model with a
smaller sample of observations and thus further reduce the number of evaluations
of the objective function.

6 Conclusions

In this paper we presented a novel approach to the estimation of the MFM
based on `1-regularized linear regression. Our proposal allows to perform both
model selection and model fitting at the cost of solving a single regularized linear
regression problem. The advantage of this approach is due to theoretical results
on the dimensioning of λ, that in contrast to the threshold parameter of Mutual
Information, permits to be more robust and less problem dependent.

In the context of the DEUM framework, we developed a novel algorithm
called sDEUM that estimates the MFM using an approach based on shrinkage
regression. In order to make Lasso more efficient, sDEUM uses a preliminary
σ coarse selection based on Mutual Information in order to find a candidate
set of interactions for the MFM. This candidate set is then used to solve the
regularized regression problem by means of Least Angle Regression (LARS).
We showed that sDEUM is able to learn a probabilistic description of the ob-
jective function and to successfully use it to address optimization. We remark
lower requirements in terms of number of evaluations of f to reach optimality
with respect to other popular algorithms in the EDA framework. In particular,
solving the Lasso defined on the MFM allows to reduce the necessary number
of observations with respect to performing `1-regularized logistic regression on
the conditional probability distribution of each variable, as previously done in
DEUM`1 [13].
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10. P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Algoritms. A
New Tool for evolutionary Computation. Springer, 2001.
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