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Abstract. The information geometric optimization (IGO) flow has been
introduced recently by Arnold et al. This distinguished mathematical
flow on the parameter manifold of a family of search distributions con-
stitutes a novel approach to the analysis of several randomized search
heuristics, including modern evolution strategies. Besides its appealing
theoretical properties, it offers the unique opportunity to approach the
convergence analysis of evolution strategies in two independent steps.
The first step is the analysis of the flow itself, or more precisely, the con-
vergence of its trajectories to Dirac peaks over the optimum. In a second
step it remains to study the deviation of actual algorithm trajectories
from the continuous flow. The present study approaches the first prob-
lem. The IGO flow of isotropic Gaussian search distributions is analyzed
on convex, quadratic fitness functions. Convergence of all trajectories to
the Dirac peak over the optimum is established.

1 Introduction

Our theoretical understanding of evolution strategies (ESs) lags behind their
practical successes. ESs are powerful optimization techniques that can work un-
der adverse conditions, like non-smooth, discontinuous, or even noisy fitness
functions. However, useful convergence guarantees exist only for the simplest
algorithms on restricted problem classes [5,2]. Narrowing this gap between prac-
tically relevant problems and theoretical guarantees is a long-standing goal of
evolutionary algorithms research.

In this context we view the recently introduced information geometric opti-
mization (IGO) flow [1] as a promising tool towards a unified analysis of ran-
domized search algorithms. Various invariance properties make this flow on the
parameter manifold of a family of search distributions a canonical means for
optimization. It can be interpreted as a continuous time version of various it-
erative, randomized search techniques. In particular, it resembles the behavior
of existing evolution strategies [4,3] in the limit of large populations and small
search strategy updates.

This hints at a two-step analysis: Convergence of the flow trajectories on
an as large as possible class of problems should be separated from bounding
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the deviation of discrete trajectories of actual algorithms from the continuous
trajectories of the flow. With the present work we progress towards the first
goal. We provide a complete convergence analysis of the IGO flow of isotropic
Gaussian distributions on convex, quadratic fitness functions to the Dirac peak
over the optimum. This problem class is of prime interest, since it approximates
local optima of twice differentiable fitness functions. The result is non-trivial,
since there exist counter examples where the flow converges prematurely.

2 The Information Geometric Optimization Flow

The IGO flow is defined in the context of randomized search for the minimum
of a fitness function f : X → R in the black box model. Iterative, randomized
search algorithms like evolutionary algorithms can be interpreted as defining
a sequence of search distributions. The IGO flow resembles this process with
a continuous time flow on the parameter manifold Θ of a family Pθ of search
distributions (with densities pθ). In the limit of large populations and small
learning rates popular ESs such as CMA-ES [4] and NES [6,3] closely follow this
flow [1]. The IGO framework lifts optimization from the search space X to the
parameter manifold Θ. For example, for isotropic Gaussians the parameter space
Θ = R

d × R
+ is composed of the mean vector and the standard deviation.

In a first step the fitness function is normalized w.r.t. the current search
distribution, which also makes it invariant under monotonic transformations.
We need the following notation. Let B(x0, r) = {x ∈ R

d | ‖x− x0‖ < r} denote
the open ball of radius r around x0. Let u

f(y) = {x ∈ R
d | f(x) < y} denote the

sub-level sets of the fitness function, and let qfθ (y) = Pθ(u
f (y)) denote the (lower)

quantile function, measuring the probability to sample a solution x with fitness
f(x) better than y under the search distribution encoded by θ. This function is

assumed to be continuous.1 Combining these definitions we write ufθ (q) = uf(y)

if q = qfθ (y). The composition qfθ ◦ f assigns to each point the probability to
sample a better point under Pθ. Importantly, this is a monotone, rank preserving
transformation of the fitness function, which is itself (by construction) invariant
under rank-preserving transformations of the fitness values.

In a second step a non-increasing weight function w : [0, 1] → R is introduced
that puts user-defined emphasis on different quantiles. A simple choice is the
indicator w = 1[0,q] for some quantile q. The function W f

θ = w ◦ qfθ ◦ f is a
monotonically decreasing transformation of f . Thus, for fixed θ, maximization
of W f

θ is equivalent to minimization of f . This is an objective function on the
search space X , which can be transferred to the parameter manifold Θ in the
form J(θ, θ′) = Eθ′ [W f

θ (x)]. For fixed θ this is an objective function in θ′.
The parameter manifold Θ is naturally equipped with the Fisher metric. Max-

imization in the resulting statistical manifold can be achieved locally by gradient

1 Otherwise the subsequent technical analysis is unnecessarily complicated by the need
to distinguish upper and lower quantiles, see e.g. [1], equation (3). The assumption
is always fulfilled for the distributions and fitness functions considered in this paper.
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ascent. The gradient in the inner geometry of distributions pulled back to the
parameter manifold Θ is the natural gradient, denoted by the symbol ˜∇. Steep-
est ascent is thus realized by following the vector field V (θ) = ˜∇θ′ |

θ′=θ
J(θ, θ′).

The formula

V (θ) =

∫

W f
θ (x)

˜∇θ′ log
(

pθ′(x)
)

dPθ(x) (1)

(equation (10) in [1]) connects the vector field V to the natural gradient of the
logarithmic density in equation (2). It also ensures the continuity of V , provided
that pθ is non-zero and continuous.

The IGO flow is the solution of the differential equation φ̇t(θ) = V (φt(θ)).
Here φt(θ) denotes a trajectory with initial condition φ0(θ) = θ. The upper index
t denotes time. This flow is invariant under coordinate changes of θ and under
rank-preserving (strictly monotone) transformations of fitness values [1].

The IGO vector field is defined by means of a natural gradient operator.
However, its definition is not of the form V (θ) = ˜∇θJ

′(θ) for some potential
function J ′. The existence of such a potential function would greatly simplify
the analysis of the IGO flow, but there are counter-examples where it does not
exist. It remains unclear whether such a function exists for the case of isotropic
Gaussians and convex, quadratic fitness function.

In this context it is worth mentioning that the family of NES algorithms [6,3]
is commonly derived for the potential function J ′(θ) = Eθ [f(x)] of expected
fitness. It has been argued in [1] that practical NES algorithms follow the IGO
flow instead. This is because NES algorithms are rendered invariant under rank-
preserving transformations of the fitness function by a technique called fitness
shaping. Expected fitness has the desirable property to be a potential function of
the corresponding flow. However, its drawbacks are that depending on the fitness
function (over which there is no control in a black box setting) the expectation
may not always exist, the resulting flow is not invariant under monotone fitness
transformations, and existing algorithms do not approximate the corresponding
flow. Consequently we focus on the IGO flow in this study, albeit expected fitness
has its merits, e.g., on finite search spaces (where the expectation always exists).

Isotropic Gaussian search distributions on X = R
d with densities

pμ,σ(x) =
1

(
√
2π · σ)d · exp

(

−‖x− μ‖2
2σ2

)

are characterized by a mean vector μ ∈ R
d and a variance σ2 ∈ R

+. In this paper
we use the parameterization θ = (μ, σ) ∈ R

d ×R
+ = Θ. For isotropic Gaussians

the flow is invariant under translation, scaling, and rotation of the search space
(provided that the initial conditions are transformed accordingly).

The natural gradient of the logarithmic density (see equation (1)) can be
computed as

G(θ, x) = ˜∇θ log
(

pθ(x)
)

=

⎛

⎝

x− μ

σ
4d

[

(

‖x−μ‖
σ

)2

− d

]

⎞

⎠ . (2)
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Analogously, the vector field is decomposed into components V = (Vμ, Vσ) de-
scribing the evolution of the mean and the standard deviation under the flow.

The IGO flow of Gaussian distributions is of particular interest for its con-
nection to evolution strategies [1,4,3].

3 Analysis of the IGO Flow

We start with the core technical lemma. This auxiliary result decomposes the
IGO vector field into additive components, with each component corresponding
to a tractable, geometric problem.

Lemma 1. The IGO flow vector field V (θ) can be written in the form

V (θ) =

∫

[0,1]

⎡

⎢

⎣

∫

uf
θ (q)

G(θ, x) dPθ(x)

⎤

⎥

⎦
dg(q)

=

∫

[0,1]×[0,∞)

⎡

⎢

⎣

∫

uf
θ (q)∩B(μ,r)

G(θ, x) dx

⎤

⎥

⎦
dhθ(q, r)

w.r.t. non-negative measures g(q) and hθ(q, r).

Proof. We rewrite W f
θ (x) =

∫ 1

0
1uf

θ (q)
(x) dg(q) as an integral of constant func-

tions on sub-level sets of f (which are super-level sets of W f
θ ). Analogously, we

rewrite Pμ,σ =
∫∞
0 UB(μ,r) dβσ(r) as a superposition of uniform distributions

UB(μ,r) over balls around the center μ. By construction the measures g and βσ
are non-negative. Plugging both decompositions into equation (1) and choosing
hθ as the product of g and βσ completes the proof. �

The above lemma allows us to analyze the IGO flow based on the natural gradient
of the logarithmic density given by equation (2), restricted to the intersection of a

ball with a sub-level set. For convex functions the integration area ufθ (q)∩B(μ, r)
is convex (possibly empty). This lemma will be applied multiple times in the
following.

3.1 Linear Objective Functions

The goal of minimization of a linear fitness function f(x) = vTx is to move the
center of the distribution into the direction −v as quickly as possible, and to
drive the step size σ to infinity. The invariance properties of the IGO flow allow
us to assume v = (1, 0, . . . , 0) ∈ R

d, μ = 0, and σ = 1.
Using Lemma 1 we write Vμ(0, 1) as an integral over terms of the form

∫

uf
θ (q)∩B(0,r)

x dx. The half-space ufθ (q) is given by the inequality x1 < y, with

y = 0 for the median (q = 1/2). The inner product of the above term with
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v yields the same expression with integrand x1 (first component of x) instead
of x. There are three cases: The integral is zero if the ball is fully contained
in or disjoint to the half-space. Otherwise it is negative. It follows Vμ(0, 1) =
(−c, 0, . . . , 0) ∈ R

d for some c > 0, and for symmetry and invariance reasons it
holds Vμ(μ, σ) = −σ · c · v. Thus, the flow moves the center μ in direction −v.
However, it may converge prematurely if σ decays too quickly.

Lemma 1 allows us to write the component Vσ(0, 1) as an integral over terms
of the form

∫

uf
θ (q)

(‖x‖2 − d) dP(0,1)(x). The expectation of the integrand over

the whole space vanishes, and so it does (for symmetry reasons) restricted to
the half-space x1 < 0 (q = 1/2). However, for x1 < y with y < 0 (q < 1/2) the
integral is positive, since compared to the half-space x1 < 0 probability mass is
missing particularly for shorter-than-average vectors x. It follows with an analog
argument that the integral is negative for y > 0 (q > 1/2). Thus, depending on
the choice of the weight function w, it is possible that Vσ(0, 1) is negative. In this
case the step size σ decays exponentially, resulting in (premature) convergence
of the IGO flow trajectories to Dirac delta peaks. For example, for the so-called
“selection quantile” weight function w(t) = 1[0,q](t) trajectories convergence
prematurely for q > 1/2, and σ grows exponentially for q < 1/2. The ability
to handle a (close to) linear objective function is a must for any reasonable
optimization scheme. Care should be taken to impose sufficient selection pressure
by the choice of the weight function. This assumption is formalized as follows:

Assumption. Let L be defined as Vσ(0, 1) for a linear objective function f(x) =
vTx with slope ‖v‖ 	= 0. Using translation and scale invariance this is equivalent
to Vσ(μ, σ) = σ ·L. We assume in the following that w is chosen such that L > 0.

3.2 Convex Quadratic Objective Functions

The core contribution of the present work is the analysis of the IGO flow on
objective functions of the form f(x) = xTQx, where Q ∈ R

d×d is symmetric and
positive definite. This situation is analyzed in the following lemmas.

Lemma 2. V is scale invariant: it holds V (λ · θ) = λ · V (θ) for all λ > 0.

Proof. The lemma follows directly from equations (1) and (2) and the scale
invariance of the level sets of f(x) = xTQx. �

As a consequence, the vector field V is fully described by its values on a section
of co-dimension one through the equivalence classes [θ] = R

+ · θ in Θ. The set
S =

{

θ ∈ Θ
∣

∣ ‖θ‖ = 1
}

is such a section, with ‖ · ‖ denoting the Euclidean
two-norm on Θ ⊂ R

d+1.

Lemma 3. For μ 	= 0 the inner product 〈Vμ(μ, σ), μ〉 is negative.

Note that the above inner product is the time derivative of 1
2‖μ‖2 under the flow

(since by definition Vμ is the time derivative of μ). Thus, the center component μ
moves towards the optimum, although not necessarily straight.
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cog

x∗ μ

Z+cZ−c

u

B

Fig. 1. The figure depicts the sets B (circular outline), u (elliptic outline), the optimum
x∗ in the origin, the mean vector μ (arrow), the hyperplane H0 (vertical line), the
parameterized line cog(c) of centers of gravity of Yc = Hc ∩ u (dashed line), as well as
a number of sets Zc (vertical, dotted lines). Refer to the proof of Lemma 3 for further
details.

Proof. This proof amounts to a non-trivial application of Lemma 1. The proof
is based on an involved construction, see Figure 1.

Fix q ∈ [0, 1] and r > 0, and the corresponding sets u = ufθ (q) and B =
B(μ, r). We define the hyperplanes Hc = {x ∈ R

d | 〈x, μ〉 = ‖μ‖2+c} orthogonal
to μ, as well as their subsets Yc = Hc ∩ u and Zc = Yc ∩ B. Let M denote the
(d-1)-dimensional Lebesgue measure on the hyperplanes Hc. Then the center of
gravity of Yc is defined as cog(c) = 1/M(Yc) ·

∫

Yc
x dx. For a convex, quadratic

objective function the set u is the interior of an ellipsoid, and analogously, each
set Yc is the interior on an ellipsoid in d− 1 dimensions. The centers of gravity
cog(c) as a function of c form a parameterized line.

Recall that the μ-component of the natural gradient of the logarithmic density
is x − μ. The relevant expression for the application of Lemma 1 is the inner
product of x− μ with μ. The sets Zc form sections of u∩B such that 〈x− μ, μ〉
takes the constant value c. Now fix a positive constant c > 0 and consider the
pair of sections Z+c and Z−c, as well as the translation ψc : H+c → H−c along
the line cog(c).

By construction it holds ψc(Yc+) ⊂ Y−c, and again by construction it holds
ψc(Z+c) ⊂ Z−c (see Figure 1), and since the translation ψc is measure preserving
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it follows M(Z+c) ≤ M(Z−c). In those cases where Zc is bounded by the ellip-
soid and not only by the ball (these cases exist if u∩B 	= ∅ and u∩B 	= B) the
inequality is strict, because the ellipsoid Y+c is strictly smaller than for Y−c (see
also Figure 1).

The inner term of Lemma 1 projected onto the direction μ becomes

〈∫

u∩B

(x − μ) dx, μ

〉

=

∫ ∞

−∞
c ·M(Zc) dc

=

∫ ∞

0

c · (M(Z+c)−M(Z−c)
)

dc < 0 .

Finally, the application of Lemma 1 yields 〈Vμ(μ, σ), μ〉 < 0. �

The next three lemmas analyze the evolution of the step size. Their proofs rely on
the following types of topological arguments: Continuous functions map compact
sets in the preimage onto compact sets in the image, and preimages of open
sets are open. This implies two handy properties: First, a continuous function
attains infimum and supremum on a compact set, which means that minimum
and maximum exist. Second, if a continuous function is positive in one point,
then it is positive in a (small) open neighborhood of this point.

We define the set M = (Rd × R
+
0 ) \ {(0, 0)} and the continuous2 function

n : M → [0,∞], n(μ, σ) = ‖μ‖/σ, measuring normalized distance of the search
distribution to the optimum. Because of n(θ) = n(λ · θ) for all θ ∈ M and
λ > 0 the function is uniquely described by its values on the compact half-
sphere S =

{

θ ∈ M
∣

∣ ‖θ‖ = 1
}

, which is the topological closure of the open
half-sphere S ⊂ Θ.

Lemma 4. It holds V (0, σ) = (0,−c · σ) for some c > 0.

Proof. We apply Lemma 1 to compute Vμ(0, σ). The sub-level set ufθ (q) as well
as the ball B(μ, r) = B(0, r) are symmetric around the origin, and so is their
intersection. The inner term in the integration is x, such that the integral over
ufθ (q) ∩B(0, r) vanishes.

The form Vσ(0, σ) = −c · σ follows from Lemma 2. It remains to show that
Vσ is negative. We apply Lemma 1 again and consider the inner term

∫

uf
θ (q)

σ

4d

[

(‖x‖
σ

)2

− d

]

dPθ(x) .

The integration, when spanning the whole search space, amounts to zero. How-
ever, the set ufθ (q) is convex and symmetric around the origin and thus puts
more probability mass on smaller-than-average vectors. As a result the above
expression is negative, and we obtain Vσ(0, σ) < 0 from Lemma 1. �

Lemma 5. There exists c1 <∞ such that n(μ, σ) > c1 implies Vσ(μ, σ) > 0.

2 The set [0,∞] is equipped with the standard one-point-compactification topology.
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Proof. The objective function f(x) = xTQx is differentiable and can thus, lo-
cally, be approximated arbitrarily well by its first order Taylor expansion. Thus,
for fixed μ 	= 0 the fitness approaches an affine linear function with non-zero slope
in the limit σ → 0. The limit limσ→0 Vσ(μ, σ)/σ = L > 0 exists for all μ 	= 0, and
Vσ/σ is continuous. This allows us to extend the domain of Vσ/σ as a continuous
function from Θ toM , or analogously from S to S. Let Sμ =

{

μ ∈ R
d
∣

∣ ‖μ‖ = 1
}

denote the unit sphere in R
d. We use n = n|

S
as a shorthand notation for the

function n restricted to S. Then the pre-image of infinity under n takes the form
n−1(∞) = Sμ × {0} ⊂ M , and the function Vσ/σ has the constant value L on
this set.

The continuity of Vσ/σ implies that there exists an open neighborhood N ⊂ S
of Sμ × {0} with Vσ(μ, σ)/σ > 0 for all (μ, σ) ∈ N . The set S \ N is compact,
and therefore also its image n(S \N). By construction this set does not contain
infinity. Thus, the choice c1 = max

(

n(S \N)
)

concludes the proof. �

Lemma 6. There exists c2 > 0 such that n(μ, σ) < c2 implies Vσ(μ, σ) < 0.

Proof. The proof is analogous to the previous one. Consider the point (μ, σ) =
(0, 1) ∈ S. Lemma 4 implies Vσ(0, 1) < 0, and it holds n−1({0}) = {(0, 1)}. From
the continuity of Vσ we conclude the existence of an open neighborhood N ′ ⊂ S
of (0, 1) with Vσ(μ, σ) < 0 for all (μ, σ) ∈ N ′. The set n(S \N ′) ⊂ [0,∞] is closed
and does not contain zero, which allows for the choice c2 = min

(

n(S \N ′)
)

. �

Theorem 1. For all θ0 ∈ Θ the IGO flow trajectory φt(θ0) converges to a Dirac
peak over the optimum: It holds limt→∞ φt(θ0) = (0, 0).

Proof. For b > 0 we define the open neighborhood B ⊂ Θ = R
d × R

+
0 of

θ∗ = (0, 0) ∈ Θ as B = {(μ, σ) ∈ Θ |σ < b, ‖μ‖ < c2 · b}. Since b is arbitrary,
showing that the trajectory φt(θ0) enters B in finite time and stays there will
prove the statement. Based on lemmas 5 and 6 we split the parameter space into
three dynamic regimes

R1 = {θ1 ∈ Θ | c1 ≤ n(θ1)}
R2 = {θ2 ∈ Θ | c2 ≤ n(θ2) ≤ c1}
R3 = {θ3 ∈ Θ |n(θ3) ≤ c2}

of qualitatively different behavior. The constraints imposed by the various lem-
mas on the vector field are illustrated in Figure 2. In particular, Lemma 3 implies
that the flow can only shrink μ, which corresponds to the vector field pointing
to the “left” in Figure 2. In addition, the vertical component is by Lemma 5
restricted to point “upwards” (Vσ > 0) in R1, and according to Lemma 6 “down-
wards” (Vσ < 0) in R3.

For initial conditions θ1 ∈ R1, θ2 ∈ R2, or θ3 ∈ R3 we define compact sets C1,
C2, and C3 in which the trajectory φt(θi) is restricted to stay for t > 0 according
to the above conditions until it enters the set B. Figure 2 (right) illustrates these
sets, which will be considered w.l.o.g. as closed (otherwise consider the closure).
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‖μ‖

σ

n

0

∞

c1

c2

R1

R2

R3

θ1

θ2

θ3

θ1

θ2

θ3

C1

C2

C3

Fig. 2. Left: Illustration of the different dynamic regimes R1, R2, and R3. The quarter-
circles and the half-circle attached to the prototypical points θi ∈ Ri, i ∈ {1, 2, 3},
illustrate how the vector field V (θ) is constrained by the various lemmas. Right: Il-
lustration of the compact regions Ci (gray areas), in downscaled versions of the same
figure. The second and third of the small figures also depict the open neighborhood B
of (μ, σ) = (0, 0) (dark gray area).

They are compact, since they are also bounded away from infinity and from the
boundary of Θ. These sets are split into

C′
i =

{

(μ, σ) ∈ Ci

∣

∣

∣

∣

‖μ‖ ≥ c2 · b
2

}

and C′′
i =

{

(μ, σ) ∈ Ci

∣

∣

∣

∣

‖μ‖ ≤ c2 · b
2

}

.

Lemma 3 together with the condition μ ≥ c2 · b/2 implies that restricted to the
sets C′

i it holds 〈Vμ, μ〉 < 0. Each of these sets is compact, and thus the maximum
of this function exists, which is a negative value. This value provides a non-zero
lower bound on the velocity of the movement of the trajectory towards smaller
‖μ‖ (“to the left” in Figure 2). Thus, the flow leaves the set C′

i in finite time.
Assume the flow did not reach B, then it must enter the corresponding set C′′

i .
By construction, these compact sets are fully contained in regime R3. There the
function Vσ is negative, and with the same argument the maximum exists and
is negative, which provides a lower bound on the velocity of the flow moving
towards smaller σ (“downwards”). Thus, the flow enters B in finite time. The
shape of B is constructed so that the flow stays inside (see Lemmas 3 and 6). �
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As a comment and without proof we want to add that the same compactness
arguments give rise to the existence of a linear convergence rate.

4 Discussion

It has been proven that all trajectories of the IGO flow on isotropic Gaussian
distributions converge to the Dirac peak over the optimum. Due to invariance
properties this result holds for all convex quadratic functions and rank-preserving
transformations thereof, given that the quantile weights are chosen so that the
flow does not get stuck on a linear slope. The importance of this result is that
it describes the dynamics of the flow in the proximity of local optima of twice
differentiable fitness functions.

This is a promising result, although we view it rather as a first step. The author
has good faith that most of the statements brought forward in the various lemmas
can be generalized. This is because the proof techniques are kept as general as
possible. In particular, geometric and topological arguments have been preferred
over an algebraic treatment of the (linear or quadratic) objective function. Thus,
large parts of the analysis should be generalizable, which holds in particular for
the proof of the theorem.

This leaves us with a considerable body of future work. The analysis can be
extended into different directions. First, the class of search distributions can be
broadened. Gaussian distributions with fully adaptive covariance matrix are of
primary interest, since the corresponding flow is resembled by state-of-the-art
evolution strategies [1,4,3]. Second, the class of fitness functions can be extended.
An ambitious goal is to cover the full class of all smooth, uni-modal problems.
Third, the present understanding of how closely actual evolutionary algorithms
follow the IGO flow is limited. The idea of transferring results from the IGO flow
to evolution strategies drives the present ongoing investigation and is therefore
a primary research goal.
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