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Abstract. We propose and analyse two island models that provably
find good approximations for the SetCover problem. A homogeneous is-
land model running parallel instances of the SEMO algorithm—following
Friedrich et al. (Evolutionary Computation 18(4), 2010, 617-633)—leads
to significant speedups over a single SEMO instance, but at the expense
of large communication costs. A heterogeneous island model, where each
island optimises a different single-objective fitness function, provides sim-
ilar speedups at reduced communication costs. We compare different
topologies for the homogeneous model and different migration policies
for the heterogeneous one.
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1 Introduction

Due to the current development in computer architecture and the steeply ris-
ing number of processors in modern devices, parallelisation is becoming a more
and more important issue. Evolutionary algorithms (EAs) can be parallelised by
using island models, also called coarse-grained EAs or multi-deme models [1,2].
Several subpopulations are evolved on different processors. Subpopulations coor-
dinate their search by a process called migration, where selected individuals, or
copies thereof, are sent to other islands. Migration often happens periodically or
probabilistically and islands are typically connected by spatial structures such as
rings or torus graphs [3]. Compared to panmictic populations, this decreases the
spread of information. A slower spread of information can increase the diversity
in the whole system, and by choosing the right topology and the frequency or
probability of migration, the communication effort can be tuned.

Despite being applied and researched intensively, the theoretical foundation
of parallel EAs is still in its infancy. Even the effect of the most fundamental pa-
rameters on performance is not well understood [1] and more research is needed
to understand the search dynamics in island models [4]. Present theoretical stud-
ies include takeover times and growth curves (see, e. g., [5] or [1, Chapter 4]).
Recently the expected running time of parallel EAs has been studied, leading
to a constructed example where island models excel over panmictic popula-
tions [6,7] and examples where the diversity in island models makes crossover
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a powerful operator [8,9]. Also the speedup in island models has been studied
rigorously: how the number of generations can be decreased by running multiple
islands instead of one. Studies include pseudo-Boolean optimisation [10,11] and
polynomial-time solvable problems from combinatorial optimisation [12].

These works form a solid foundation towards a theory of parallel metaheuris-
tics, but they leave open many important questions. None of these works ad-
dresses how island models behave on general instances of NP-hard problems, or
how they deal with multiobjective fitness functions. Furthermore, studies have
been limited to homogeneous island models, where all islands run the same al-
gorithm. In many settings heterogeneous models make more sense—islands can
use different parameters, different operators, and even different fitness functions.
This closely relates to the emerging area of hyper-heuristics [13].

In this work we propose and analyse homogeneous and heterogeneous island
models for the SetCover problem. Given a set S with m elements and a col-
lection of n subsets of S with associated costs, the SetCover problem asks for
a selection of subsets of S that cover the whole set and have minimum cost.
This classic NP-hard problem is one of the most fundamental problems in com-
puter science. Friedrich et al. [14] studied a SEMO algorithm on a biobjective
formulation of the problem and showed that SEMO efficiently computes an Hm-
approximation, where Hm =

∑m
i=1

1
i is the m-th Harmonic number.

We study a parallel version of this algorithm where each island runs an in-
stance of SEMO. Each island use the same bi-objective fitness functions to be
minimised: one criterion counting the number of uncovered elements and the
other representing the cost of the selection. Each island stores a population of
non-dominated solutions. At the end of each generation migration occurs trans-
mitting a copy of the whole population to all neighbouring islands.

We show that this leads to significant speedups, depending on the topology
and the migration probability, for probabilistic migration policies. However, this
homogeneous island model has large communication costs as whole populations
are exchanged between islands. To this end, we propose a heterogeneous island
model that has a lower communication cost and islands run simpler algorithms.

The heterogeneous island model consists of m + 1 islands using different
single-objective fitness functions. Each island stores one individual and runs
a (1+1) EA (or RLS that just differs in using local instead of global mutation).
The fitness functions are such that on island i only selections covering i elements
are feasible. Therefore, each island i keeps the best individual covering i elements
of S. The island model can be implemented on fewer than m+ 1 processors by
running multiple islands on each processor. We show that the collection of is-
lands is able to guarantee the same performance and approximation quality as
in the homogeneous model, but with lower communication costs and simpler op-
erations. We also study different migration policies for the heterogeneous model
and show how the migration policy affects running time and communication
costs.

Due to space restrictions, many proofs are omitted or reduced to proof
sketches.
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2 Preliminaries

Let S = {s1, · · · , sm} be a set containing m elements and C = {C1, · · · , Cn} be
a collection of non-empty sets such that Ci ⊂ S for 1 ≤ i ≤ n and

⋃n
i=1 Ci = S.

Each set Ci has a cost ci > 0. We call X = x1 · · ·xn a selection of C and we say
that Ci is in the selection X iff xi = 1. The optimal solution to the SetCover
problem is an X such that

⋃
i:xi=1 Ci = S and

∑
i:xi=1 ci is minimum.

We define the following measures:

– c(X) = |⋃i:xi=1 Ci| is the number of covered elements of the selection.
– |X |1 =

∑n
i=1 xi is the number of selected sets of a selection.

– cost(X) =
∑

i:xi=1 ci is the cost of a selection.
– cmax = maxi ci is the maximum cost of a set.

– ce(Ci, X) =

∣
∣
∣Ci�

⋃

j:xj=1 Cj

∣
∣
∣
1

ci
is the cost-effectiveness of a set w. r. t. X .

The homogeneous island model consists of an archipelago of μ islands each
one running the SEMO algorithm, minimising the fitness function f(X) =
(m − c(X), cost(X)). SEMO always maintains a set of non-dominated search
points. New solutions are created by selecting uniformly a search point from
the current population and mutating it. The offspring is added to the current
population and then all dominated search points are removed. SEMO uses local
mutations: one bit is chosen uniformly at random and then flipped. A variant
called global SEMO uses standard bit mutations instead (called global muta-
tions), flipping each bit independently with probability 1/n. In the homogeneous
island model based on SEMO or global SEMO (see Algorithm 1), each island
maintains such a population. For migration, a copy of this whole set is transmit-
ted to all neighbouring islands. The union of this set with the target island’s set
is considered and then all dominated solutions are removed. This way, the best
solutions among source and target islands are maintained and combined.

Algorithm 1. Homogeneous island model based on (global) SEMO

1: Initialise P (0) = {P (0)
1 , . . . , P

(0)
µ }, where P

(0)
i = {0n} for 1 ≤ i ≤ µ. Let t := 0.

2: repeat forever
3: for each island i do in parallel
4: Simulate one generation of (global) SEMO, updating P

(t)
i .

5: Send a copy of the population P
(t)
i to all neighbouring islands.

6: Unify P
(t)
i with all populations received from other islands.

7: Remove all dominated search points from P
(t)
i .

8: Let t := t + 1.

The heterogeneous island model consists of a fully connected archipelago of
m+ 1 islands indexed 0, . . . ,m. Each island stores just one individual and runs
an (1+1) EA (or RLS) using a single-objective function that is different on each
island. For island i we define the fitness function (to maximise) as:

fi(X) =

{
ncmax − cost(X) if c(X) = i
−|c(X)− i| if c(X) �= i
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The idea is that island i stores an individual that represents the so far best
selection covering i elements (referred to as feasible). If the solution does not
cover i elements, the fitness is negative and hints are given towards covering i
elements1. Each island is thus assigned a different part of the search space to
optimise. This is similar to what happens in dynamic programming [15].

The heterogeneous island model is shown in Algorithm 2. Note that the het-
erogeneous island model can be easily implemented on μ ≤ m processors by
running up to �m+1

µ � islands on each processor.
Both island models are initialised with empty selections. This is a sensible

strategy for SetCover and theoretical results [14] as well as preliminary exper-
iments have shown that this only speeds up computation.

Algorithm 2. Heterogeneous island model based on (1+1) EA (or RLS)

1: Initialise the island individuals X
(0)
0 , . . . , X

(0)
m to 0n. Let t := 0.

2: repeat forever
3: for each island i do in parallel
4: Produce a global (or local) mutation X̃

(t)
i of the individual X

(t)
i .

5: Send a copy of X̃
(t)
i to each other island.

6: Choose X
(t+1)
i with maximal fi-value among X

(t)
i , X̃

(t)
i and all immigrants.

7: Let t := t + 1.

The homogeneous and heterogeneous island models differ fundamentally in
their search behaviour. Following Skolicki [16], we distinguish intra-island evo-
lution (the evolution within each island) and inter-island evolution (evolution
among and between islands). The homogeneous model uses intra-island evolu-
tion to generate improvements by mutation, and migration helps to propagate
these improvements to other islands. The heterogeneous island model strongly
relies on inter-island evolution; in fact, beneficial mutations as in the homoge-
neous model yield solutions that are only feasible on other islands. The two
island models also differ in the population size. In the heterogeneous model the
population of each island consists of just one individual, while in the homoge-
neous model the population size of each island is upper bounded by m. This
generally means that the time and space required to compute a generation in
the homogeneous model is larger than in the heterogeneous one.

We define the parallel running time as the number of generations of an
island model until it has found a satisfactory solution, in our case an Hm-
approximation. We also refer to the sequential running time as the product
between the parallel running time and the number of islands. This represents
the computational effort to simulate the model on a single processor. The speedup
of an island model with μ islands is defined as the rate between the expected
parallel running time of the island model and the expected running time of the
same EA using only a single island. This kind of speedup is called weak orthodox
speedup in Alba’s taxonomy [17]. If the speedup is of order Θ(μ), we speak of

1 Our analysis holds for any negative function for the second case of fi.



Homogeneous and Heterogeneous Island Models for the Set Cover Problem 15

a linear speedup. Furthermore, we also consider the effort for performing migra-
tion. We define the communication effort as the total number of individuals sent
between islands, throughout a run of an island model. The (expected) communi-
cation effort is given by the (expected) parallel time, multiplied by the number
of islands and the (expected) number of emigrants sent by one island.

In order to achieve a good balance between the communication effort and the
parallel running time, we consider the following migration policies. The first two
policies make sense for both island models. The last two policies are tailored
towards the heterogeneous model.

complete migration: each island sends migrants to all other islands.
uniform probabilistic: each island sends migrants to every other island inde-

pendently with a migration probability p.
non-uniform probabilistic: each island i sends migrants to every other island

(i+ k) mod (m+ 1) independently with probability 1/k.
smart migration: Each island i sends migrants to island c(X̃i), where X̃i is

the offspring generated on island i.

3 Analysis of the Homogeneous Island Model

We first consider the homogeneous model with uniform probabilistic migration
as this includes complete migration. In their analysis of SEMO, Friedrich et
al. [14] consider the time until SEMO finds an empty selection, and how long it
takes to get a Hm-approximate solution from there. Their results are as follows.

Theorem 1 (Friedrich et al. [14]). For any initialisation and every Set-
Cover instance, SEMO and global SEMO find an Hm-approximate solution in
O(m2n+mn log(ncmax)) expected generations. When starting with a population
containing only an empty selection, the time bound is O(m2n) generations.

The following lemma is at the heart of their–and our–analysis. It goes back to
Chvatal’s analysis of the greedy algorithm [18]. Starting with an empty set, the
greedy algorithm subsequently adds the most cost-effective set to the current
solution. When k elements are covered, for some 0 ≤ k ≤ m, the cost of this
partial solution is at most cost(X) ≤ (Hm −Hm−k)OPT, where OPT denotes
the cost of an optimal solution. For k = m this gives an Hm-approximation.

Lemma 1. Let OPT be the cost of an optimal set cover and X be such that
c(X) = k (with k < m) and cost(X) ≤ (Hm−Hm−k)OPT. Adding the most cost-
effective set to X creates X ′ with c(X ′) = k′ and cost(X ′) ≤ (Hm−Hm−k′)OPT.

Proof. The selection X leaves m − k elements of S uncovered. These elements
can be covered at cost OPT since the optimal cover covers the whole set. Then
there is a set with cost-effectiveness at least m−k

OPT . Let i be the number of newly
covered elements by adding this set, then after adding the set we get a solution
covering k′ = k + i elements at cost no more than

(

Hm −Hm−k +
i

m− k

)

·OPT ≤ (Hm −Hm−k′) ·OPT .
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This behaviour can be mimicked by SEMO [14] and the homogeneous is-
land model. Friedrich et al. [14] define the potential of the population of the
archipelago as the largest k such that there is an individual in the population
that covers k elements and costs at most (Hm−Hm−k) ·OPT. The potential can
never decrease as SEMO always keeps some solution with k covered elements in
the population. Starting with empty selections, the initial potential is at least 0.

The probability of increasing the potential is at least 1/((m + 1)en) for the
following reasons. It is sufficient to select the solution defining the potential
and to add a set with maximum cost-effectiveness (Lemma 1). The population
contains at most m + 1 individuals, so the probability of selecting the right
parent is at least 1/(m + 1). The probability of a specific 1-bit mutation is at
least 1/n · (1− 1/n)n−1 ≥ 1/(en) for both local and global SEMO.

This analysis can be transferred to our homogeneous island model using the
general method by Lässig and Sudholt [10] based on fitness levels. Assume the
search space can be partitioned into fitness-level sets ordered w. r. t. fitness such
that an EA never decreases its current level. If we have lower bounds on the
probability that the EA will leave a current level towards a better fitness-level
set, we get an upper bound on the expected hitting time of the final level. For
island models we get upper bounds on the expected parallel running time that
depend on the topology at hand and the probability that migration successfully
transmits information about the current best fitness level. A rapid spread of
information enables more islands to search on the current best fitness level,
which gives better performance guarantees than a slow spread of information.

In [10] upper bounds are stated for common topologies: ring graphs, torus or
grid graphs, and the complete topology. In our case instead of using fitness levels,
we argue with the potential of islands. As seen above, the potential can never
decrease. We have m+ 1 potential values, and the probability of increasing the
potential on any island is at least 1/((m+ 1)en). Plugging this into the results
from [10,19], we get the following bounds on the expected parallel time. The
expected communication effort is by a factor of pd(m + 1)μ larger than the
expected parallel time, where d is the degree of any node in the topology.

Theorem 2. For the homogeneous island model based on (global) SEMO on
μ islands and migration probability p > 0 the expected parallel time until an
Hm-approximation for SetCover is found is bounded by

– O
(

n1/2m3/2

p1/2 + nm2

µ

)
for any ring topology,

– O
(

n1/3m4/3

p2/3 + nm2

µ

)
for any undirected

√
μ×√

μ grid or torus graph

– O
(

m
p + nm2

µ

)
for the complete topology Kµ.

The expected communication effort is O
(
p1/2μn1/2m5/2 + pnm3

)
for rings,

O
(
p1/3μn1/3m7/3 + pnm3

)
for grids and O

(
μ2m2 + pμnm3

)
for Kµ.

The upper bounds are asymptotically minimised for choosing the number of is-
lands as μ =

√
pnm, μ = (pnm)2/3, and μ = pnm, respectively. With these

choices we get expected parallel times of O(n1/2m3/2/p1/2), O(n1/3m4/3/p2/3),
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and O(m/p), respectively (see Table 1 in Section 5). The expected communi-
cation effort is O(pnm3), O(pnm3), and O(p2n2m4), respectively. Multiplying
all parallel times by μ, we see that the expected sequential time is bounded by
O(nm2) in all three cases. This asymptotically matches the upper bound from
Theorem 1 for initialisation with empty selections. This means that, apart from
constant factors hidden in the asymptotic notation, in these cases parallelization
does not increase the (upper bounds on the) total running time, but the (upper
bounds on the) parallel time can decrease significantly. In fact, all numbers of
islands up to the values mentioned above yield linear speedups—for cases where
the O(nm2)-bound for a single (global) SEMO is asymptotically tight.

As remarked in [11], the bound for the complete topology with p = 1 also
applies to an offspring population-version of SEMO where λ offspring are created
and added to the population, before removing dominated solutions.

4 Analysis of the Heterogeneous Island Model

For the heterogeneous model based on (1+1) EA or RLS we first present an
analysis for the complete migration policy.

Theorem 3. The heterogeneous island model with complete migration finds
an Hm-approximate solution for SetCover in an expected parallel time of
O(n ·min(m,n)). The expected communication effort is O(nm2 ·min(m,n)).

Proof. As in Theorem 2 we calculate the expected time to produce a solution
that is at least as good as the greedy solution, starting from 0n and always adding
the most cost-effective set. We define again the potential of the population of the
archipelago as the largest k such that there is an individual in the population
that covers k elements and costs at most (Hm − Hm−k) · OPT. At the end of
each generation (after migration and selection) the potential can’t decrease. In
fact the individual Xk on island k can only be replaced by an individual with
the same number of covered elements but a lower cost (and that would not affect
the potential). Instead the potential can be increased to k′ mutating Xk such
that the most cost-effective set is added. That would produce an individual X̃k

such that c(X̃k) = k′ > k and cost(X̃k) ≤ (Hk −Hm−k′) ·OPT (Lemma 1).
After migration and selection this individual will replace the individual on the

island k′ (which had higher cost and therefore lower fitness). This specific 1-bit
mutation happens with probability at least 1/n · (1− 1/n)n−1 ≥ 1/(en) for both
local and global mutation. At most n sets can be included in a selection but,
if n > m, at most m of them will be selected since each most cost-effective set
covers at least one new element (otherwise its cost-effectiveness would be 0). So
after O(n ·min(m,n)) expected generations k = m and then on island m we get
an Hm −Hm−m = Hm-approximate solution.

Comparing this time with [14] and assuming n = O(m), we get that our parallel
time is by a factor of Θ(m) lower, while we get the same upper bound for the
sequential running time.
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For uniform probabilistic migration with migration probability p < 1, the
island model only increases the potential if migration happens on the edge that
links the two islands involved (k and k′). The probability estimate for this event
decreases by a factor of p, and the waiting time thus increases by 1/p.

Theorem 4. The heterogeneous island model with uniform probabilistic migra-
tion and migration probability p finds an Hm-approximate solution for Set-
Cover in an expected parallel time of O(n ·min(m,n)/p). The expected commu-
nication effort is O(nm2 ·min(m,n)).

We see that our estimate of the communication effort has not improved. This
is not surprising as we only rely on inter-island evolution for making progress.
A uniform migration probability delays the inter-island evolution and the re-
duced communication effort in a single generation is nullified by a larger parallel
running time.

With non-uniform probabilistic migration, the chance of making the right
migration is generally higher than for uniform migration probabilities. Typically
only few new elements are covered, when adding a most cost-effective set. A large
number of new elements implies that we make large progress. This balances
out a small migration probability: if adding the most cost-effective set covers
j new elements, the probability of making this move is at least 1/j · 1/(en). In
expectation, the potential increases by at least j ·1/j ·1/(en) = 1/(en), regardless
of j. A straightforward drift analysis gives the following.

Theorem 5. The heterogeneous island model with non-uniform probabilistic mi-
gration finds an Hm-approximate solution for SetCover in an expected parallel
time of enm. The expected communication effort is at most enm2Hm.

Smart migration sends emigrants only to the unique island where they are con-
sidered feasible. The proof of Theorem 3 only relies on such migrations. Hence
the upper bound also holds for smart migration.

Theorem 6. The heterogeneous island model with smart migration finds an
Hm-approximate solution for SetCover in an expected parallel time of
O(n ·min(m,n)). The expected communication effort is O(nm ·min(m,n)).

In our setting, smart migration outperforms all other migration policies as it
leads to the best upper bound for the communication effort.

5 Discussion and Conclusions

We have proposed and analysed two parallel EAs for the SetCover problem
that provably find good approximations. Table 1 gives an overview of our results,
regarding parallel and sequential expected running times as well as the communi-
cation effort. In order to fairly compare heterogeneous and homogeneous models
we consider them running on μ processors. For the heterogeneous model this
means (for μ ≤ m) running up to �m+1

µ � islands on the same processor and thus

increasing the parallel running time by a factor of Θ(mµ ).
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Table 1. Upper bounds on expected parallel times (general bounds and bounds for
best µ), expected sequential times and expected communication effort for homogeneous
island models with various migration topologies and for heterogeneous island models
with various migration policies, until an Hm-approximation is found for any SetCover
instance with m elements and n sets. p denotes the migration probability. We simplified
min(n,m) ≤ m and we constrained µ to yield linear speedups.

Algorithm parallel time bounds seq. time comm. effort
general b. � best bound

Non-parallel SEMO O(nm2) � O(nm2) O(nm2) 0

Homogeneous island model based on (global) SEMO and topology. . .

– ring (µ ≤ √
pnm) O

(
nm2

µ

)
� O

(
n1/2m3/2

p1/2

)
O(nm2) O(pnm3)

– grid (µ ≤ (pnm)2/3) O
(

nm2

µ

)
� O

(
n1/3m4/3

p2/3

)
O(nm2) O(pnm3)

– complete (µ ≤ pnm) O
(

nm2

µ

)
� O

(
m
p

)
O(nm2) O(p2n2m4)

Heterogeneous island model with µ ≤ m based on (1+1) EA (or RLS) and policy. . .

– complete O
(

nm2

µ

)
� O(nm) O(nm2) O(nm3)

– uniform prob. O
(

nm2

µp

)
� O

(
nm
p

)
O
(

nm2

p

)
O(nm3)

– non-uniform prob. O
(

nm2

µ

)
� O(nm) O(nm2) O(nm2 log m)

– smart migration O
(

nm2

µ

)
� O(nm) O(nm2) O(nm2)

For the homogeneous model based on (global) SEMO, the topology determines
how many islands still give a linear speedup. For dense topologies more islands
can be used. The migration probability gives a smooth trade-off between this
maximum number of islands and the communication effort. For large migration
probabilities the heterogeneous island model based on the (1+1) EA (or RLS)
has lower communication costs, when comparing complete topologies or using the
right migration policies. It is also easier to implement as unlike for the SEMO-
based model it is not necessary for each island to handle large populations and to
remove many dominated solutions. Thus the heterogeneous model is also faster
when considering the time and space required to compute a generation.

The discussion on migration policies has revealed how adding more knowledge
about the problem can decrease the communication effort. The complete migra-
tion and uniform migration policies do not require any knowledge about the
problem at hand, while non-uniform migration only needs a sensible ordering of
islands to work. This ordering should be consistent with the similarity between
different islands. We believe that this approach can be fruitful for other heteroge-
neous island models. Smart migration requires knowledge about the problem at
hand since it needs to inspect the genotype to determine the island to send it to.
But it leads to the best performance guarantees among all considered policies.

Experiments (not included here) show that on random SetCover instances
both island models quickly find better solutions than the greedy algorithm. An
experimental study is left for future work. Future work should also investigate
whether the approach used in the heterogeneous island model (i. e. assigning a
portion of the search space to each island) can solve a broader class of problems.
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