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Abstract. The Information-Geometric Optimization (IGO) has been introduced
as a unified framework for stochastic search algorithms. Given a parametrized
family of probability distributions on the search space, the IGO turns an arbi-
trary optimization problem on the search space into an optimization problem on
the parameter space of the probability distribution family and defines a natural
gradient ascent on this space. From the natural gradients defined over the entire
parameter space we obtain continuous time trajectories which are the solutions of
an ordinary differential equation (ODE). Via discretization, the IGO naturally de-
fines an iterated gradient ascent algorithm. Depending on the chosen distribution
family, the IGO recovers several known algorithms such as the pure rank-μ up-
date CMA-ES. Consequently, the continuous time IGO-trajectory can be viewed
as an idealization of the original algorithm.

In this paper we study the continuous time trajectories of the IGO given the
family of isotropic Gaussian distributions. These trajectories are a deterministic
continuous time model of the underlying evolution strategy in the limit for popu-
lation size to infinity and change rates to zero. On functions that are the composite
of a monotone and a convex-quadratic function, we prove the global convergence
of the solution of the ODE towards the global optimum. We extend this result
to composites of monotone and twice continuously differentiable functions and
prove local convergence towards local optima.

1 Introduction

Evolution Strategies (ESs) are stochastic search algorithms for numerical optimization.
In ESs, candidate solutions are sampled using a Gaussian distribution parametrized by a
mean vector and a covariance matrix. In state-of-the art ESs, those parameters are itera-
tively adapted using the ranking of the candidate solutions w.r.t. the objective function.
Consequently, ESs are invariant to applying a monotonic transformation to the objective
function. Adaptive ES algorithms are successfully applied in practice and there is ample
empirical evidence that they converge linearly towards a local optimum of the objective
function on a wide class of functions. However, their theoretical analysis even on simple
functions is difficult as the state of the algorithm is given by both the mean vector and
the covariance matrix that have a stochastic dynamic that needs to be simultaneously
controlled. Their linear convergence to local optima is so far only proven for functions
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that are composite of a monotonic transformation with a convex quadratic function—
hence function with a single optimum—for rather simple search algorithms compared
to the covariance matrix adaptation evolution strategy (CMA-ES) that is considered as
the state-of-the-art ES [1–4]. In this paper, instead of analyzing the exact stochastic
dynamic of the algorithms, we consider the deterministic time continuous model under-
lying adaptive ESs that follows from the Information-Geometric Optimization (IGO)
setting recently introduced [5].

The Information-Geometric Optimization is a unified framework for randomized
search algorithms. Given a family of probability distributions parametrized by θ ∈ Θ,
the original objective function, f , is transformed to a fitness function Jθ defined on Θ.
The IGO algorithm defined on Θ performs a natural gradient ascent aiming at max-
imizing Jθ . For the family of Gaussian distributions, the IGO algorithm recovers the
pure rank-μ update CMA-ES [6], for the family of Bernoulli distributions, PBIL [7]
is recovered. When the step-size for the gradient ascent algorithm (that corresponds to
a learning rate in CMA-ES and PBIL) goes to zero, we obtain an ordinary differential
equation (ODE) in θ. The set of solutions of this ODE, the IGO-flow, consists of contin-
uous time models of the recovered algorithms in the limit of the population size going
to infinity and the step-size (learning rate for ES or PBIL) to zero.

In this paper we analyze the convergence of the IGO-flow for isotropic ESs where the
family of distributions is Gaussian with covariance matrix equal to an overall variance
times the identity. The underlying algorithms are step-size adaptive ESs that resemble
ESs with derandomized adaptation [8] and encompass xNES [9] and the pure rank-μ
update CMA-ES with only one variance parameter [6]. Previous works have proposed
and analyzed continuous models of ESs that are solutions of ODEs [10, 11] using the
machinery of stochastic approximation [12, 16]. The ODE variable in these studies en-
codes solely the mean vector of the search distribution and the overall variance is taken
to be proportional to H(∇f) where H is a smooth function with H(0) = 0. Conse-
quently the model analyzed looses invariance to monotonic transformation of the ob-
jective function and scale-invariance, both being fundamental properties of virtually all
ESs. The technique relies on the Lyapunov function approach and assumes the stability
of critical points of the ODE [10, 11]. In this paper, our approach also relies on the sta-
bility of the critical points of the ODE that we analyze by means of Lyapunov functions.
However one difficulty stems from the fact that when convergence occurs, the variance
typically converges to zero which is at the boundary of the definition domain Θ. To
circumvent this difficulty we extend the standard Lyapunov method to be able to study
stability of boundary points.

Applying the extended Lyapunov’s method to the IGO-flow in the manifold of
isotropic Gaussian distributions, we derive a sufficient condition on the so-called weight
functionw—parameter of the algorithm and usually chosen by the algorithm designer—
so that the IGO-flow converges to the global minimum independently of the starting
point on objective functions that are composite of a monotonic function with a convex
quadratic function. We will call those functions monotonic convex-quadratic-composite
in the sequel. We then extend this result to functions that are the composition of a mono-
tonic transformation and a twice continuously differentiable function, called monotonic
C2-composite in the rest of the paper. We prove local convergence to a local optimum of
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the function in the sense that starting close enough from a local optimum, with a small
enough variance, the IGO-flow converges to this local optimum.

The rest of the paper is organized as follows. In Section 2 we introduce the IGO-flow
for the family of isotropic Gaussian distributions, which we call ES-IGO-flow. In Sec-
tion 3 we extend the standard Lyapunov’s method for proving stability. In Section 4 we
apply the extended method to the ES-IGO-flow and provide convergence results of the
ES-IGO-flow on monotonic convex-quadratic-composite functions and on monotonic
C2-composite functions.

Notation. For A ⊂ X , where X is a topological space, we let Ac denote the comple-
ment of A in X , Ao the interior of A, A the closure of A, ∂A = A \ Ao the boundary
of A. Let R and R

d be the sets of real numbers and d-dimensional real vectors, R�0

and R+ denote the sets of non-negative and positive real numbers, respectively. Let ‖x‖
represent the Euclidean norm of x ∈ R

d. The open and closed balls in R
d centered at θ

with radius r > 0 are denoted by B(θ, r) and B(θ, r).
Let μLeb denote the Lebesgue measure on either R or R

d. Let P1 and Pd be the
probability measures induced by the one-variate and d-variate standard normal distri-
butions, p1 and pd the probability density function induced by P1 and Pd w.r.t. μLeb.
Let pθ and Pθ represent the probability density function w.r.t. μLeb and the probability
measure induced by the Gaussian distribution N (m(θ), C(θ)) parameterized by θ ∈ Θ,
where the mean vector m(θ) is in R

d and the covariance matrix C(θ) is a positive defi-
nite symmetric matrix of dimension d. We sometimes abbreviate m(θ(t)) and C(θ(t))

to m(t) and C(t). Let vec : Rd×d → R
d2

denote the vectorization operator such that
vec : C �→ [C1,1, C1,2, . . . , C1,d, C2,1, . . . , Cd,d]

T, where Ci,j is the i, j-th element of
C. We use both notations: θ = [mT, vec(C)T]T and θ = (m,C).

2 The ES-IGO-Flow

The IGO framework for continuous optimization with the family of Gaussian dis-
tributions is as follows. The original objective is to minimize an objective function
f : Rd → R. This objective function is mapped into a function on Θ. Hereunder, we
suppose that f is μLeb-measurable. Let w : [0, 1] → R be a bounded, non-increasing
weight function. We define the weighted quantile function [5] as

W f
θ (x) = w

(
Pθ[y : f(y) � f(x)]

)
. (1)

The function W f
θ (x) is a preference weight for x according to the Pθ-quantile. The

fitness value of θ′ given θ is defined as the expectation of the preference W f
θ over Pθ′ ,

Jθ(θ
′) = Ex∼Pθ

[
W f

θ (x)
]
. Note that since W f

θ (x) depends on θ so does Jθ(θ
′). The

function Jθ is defined on a statistical manifold (Θ, I) equipped with the Fisher metric
I as a Riemannian metric. The Fisher metric is the natural metric. It is compatible with
relative entropy and with KL-divergence and is the only metric that does not depend
on the chosen parametrization. Using log-likelihood trick and exchanging the order of
differentiation and integration, the “vanilla” gradient of Jθ at θ′ = θ can be expressed
as ∇θ′Jθ(θ

′)|θ′=θ = Ex∼Pθ

[
W f

θ (x)∇θ ln(pθ(x))
]
. The natural gradient, that is, the
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gradient taken w.r.t. the Fisher metric, is given by the product of the inverse of the
Fisher information matrix Iθ at θ and the vanilla gradient, namely I−1

θ ∇θ′Jθ(θ
′)|θ′=θ .

The IGO ordinary differential equation is defined as

dθ

dt
= I−1

θ ∇θ′Jθ(θ
′)
∣
∣
θ′=θ

. (2)

Since the right-hand side (RHS) of the above ODE is independent of t the IGO ODE is
autonomous. The IGO-flow is the set of solution trajectories of the above ODE (2).

When the parameter θ encodes the mean vector and the covariance matrix of the
gaussian distribution in the following way θ = [mT, vec(C)T]T, the product of the
inverse of the Fisher information matrix I−1

θ and the gradient of the log-likelihood
∇θ ln(pθ(x)) can be written in an explicit form [14] and (2) reduces to

dθ

dt
=

∫
W f

θ (x)

[
x−m

vec
(
(x−m)(x −m)T − C

)
]
Pθ(dx) . (3)

The pure rank-μ update CMA-ES [6] can be considered as an Euler scheme for solving
(3) with a Monte-Carlo approximation of the integral. Let x1, . . . , xn be samples inde-
pendently generated from Pθ . Then, the quantile Pθ[y : f(y) � f(xi)] in (1) is approx-
imated by the number of solutions better than xi divided by n, i.e.,

∣
∣{xj , j = 1, . . . , n :

f(xj) � f(xi)}
∣∣/n =: Ri/n. Then W f

θ (xi) is approximated by w
(
(Ri − 1/2)/n

)
,

where w is the given weight function. The Euler scheme for approximating the solu-
tions of (3) where the integral is approximated by Monte-Carlo leads to

θt+1 = θt + η
n∑

i=1

w
(
(Ri − 1/2)/n

)

n

[
xi −mt

vec
(
(xi −mt)(xi −mt)T − Ct

)
]

, (4)

where η is the time discretization step-size. This equation is equivalent to the pure
rank-μ update CMA-ES when the learning rates ηm and ηC , for the update of mt and
Ct respectively, are set to the same value η, while they have different values in practice
(ηm = 1 and ηC � 1). The summation on the RHS in (4) converges to the RHS of (3)
with probability one as λ → ∞ (Theorem 4 in [5]).

In the following, we study the simplified IGO-flow where the covariance matrix is
parameterized by only a single variance parameter v as C = vId. Under the parameter-
ization θ = [mT, v]T, (2) reduces to dθ

dt =
∫
W f

θ (x)
[ x−m
‖x−m‖2/d−v

]
Pθ(dx). Using the

change of variable z = (x−m)/
√
v, the above ODE reads

dθ

dt
= Fθ(θ) , Fθ(θ) =

∫
W f

θ (m+
√
vz)

[ √
vz

v(‖z‖2 /d− 1)

]
Pd(dz) (5)

and we rewrite it by part

dm
dt = Fm(θ) , Fm(θ) =

√
v
∫
W f

θ (m+
√
vz)zPd(dz) (6)

dv
dt = Fv(θ) , Fv(θ) = v

∫
W f

θ (m+
√
vz)(‖z‖2 /d− 1)Pd(dz) . (7)

The domain of this ODE is Θ = {θ = (m, v) ∈ R
d × R+}. We call (5) the ES-IGO

ordinary differential equation. The following proposition shows that for a Lipschitz
continuous weight function w, solutions of the ODE (5) exist for any initial condition
θ(0) ∈ Θ and are unique.
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Proposition 1 (Existence and Uniqueness). Suppose w is Lipschitz continuous. Then
the initial value problem: dθ

dt = Fθ(θ), θ(0) = θ0, has a unique solution on [0,∞) for
each θ0 ∈ Θ, i.e. there is only one solution θ : R�0 → Θ to the initial value problem.

Proof. We can obtain a lower bound a(t) > 0 and an upper bound b(t) < ∞ for v(t)
for each t � 0 under a bounded w. Similarly, we can have an upper bound c(t) < ∞
for ‖m(t)‖. Then we have that (m(t), v(t)) ∈ E(t) = {x ∈ R

d : ‖x‖ � c(t)} × {x ∈
R+ : a(t) � x � b(t)} and E(t) is compact for each t � 0. Meanwhile, Fθ is
locally Lipschitz continuous for a Lipschitz continuous w. Since E(t) is compact, the
restriction of Fθ into E(t) is Lipschitz continuous. Applying Theorem 3.2 in [15] that
is an extension of the theorem known as Picard-Lindelöf theorem or Cauchy-Lipschitz
theorem, we have the existence and uniqueness of the solution on each bounded interval
[0, t]. Since t is arbitrary, we have the proposition. 
�
Now that we know that solutions of the ES-IGO ODE exist and are unique, we define
the ES-IGO-flow as the mapping ϕ : R�0×Θ → Θ, which maps (t, θ0) to the solution
θ(t) of (5) with initial condition θ(0) = θ0. Note that we can extend the domain of Fθ

from Θ = R
d × R+ to Θ = R

d × R�0. It is easy to see from (5) that the value of
Fθ(θ) at θ = (m, 0) is 0 for any m ∈ R

d. However, we exclude the boundary ∂Θ from
the domain for reasons that will become clear in the next section. Because the initial
variance must be positive and the variance starting from positive region never reach the
boundary in finite time, solutions ϕ(t, ·) will stay in the domain Θ. However, as we will
see, they can converge asymptotically towards points of the boundary.

Since Jθ is adaptive, i.e. Jθ1(θ) �= Jθ2(θ) for θ1 �= θ2 in general, it is not trivial
to determine whether the solutions to (2) converge to points where Fθ(θ) = 01. Even
knowing that they converge to zeros of Fθ(θ) is not helpful at all, because we have
Fθ(θ) = 0 for any θ with variance zero and we are actually interested in convergence
to the point (x∗, 0) where x∗ is a local optimum of f .

Remark 1. Because of the invariance property of the natural gradient, the mean vector
m(θ) and the variance v(θ) obey (6) and (7) under re-parameterization of the Gaussian
distributions. Therefore, the trajectories of m and v are also independent of the param-
eterization. For instance, we obtain the same trajectories v(θ) for any of the following
parameterizations: θd+1 = v, θd+1 =

√
v, and θd+1 = 1

2 ln v, although the trajectories
of the parameters θd+1 are of course different. Consequently, the same convergence
results for m(θ) and v(θ) (see Section 4) will hold under any parameterization. Pa-
rameterizations θ = (m, v) and θ = (m, 1

2 ln v) correspond to the pure rank-μ update
CMA-ES and the xNES with only one variance parameter. Thus, the continuous model
to be analyzed encompasses both algorithms.

Remark 2. Theory of stochastic approximation says that a stochastic algorithm θt+1 =
θt + ηht follows the solution trajectories of the ODE dθ

dt = E[ht | θt = θ] in the limit

1 If Jθ is not adaptive and defined to be the expectation of the objective function f(x) over Pθ ,
convergence to the zeros of the RHS of (2) is easily obtained. For example, see Theorem 12 and
its proof in [13], where the solution to the system of a similar ODE whose RHS is the vanilla
gradient of the expected objective function is derived and the convergence of the solution
trajectory to the critical point of the expected function is proven.
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for η to zero under several conditions. In our setting, θ encodes m and v and the noisy
observation ht =

∑λ
i=1 wRiI−1

θ ∇θ ln pθt(xi), where wi, i = 1, . . . , λ, are predefined
weights and Ri is the ranking of xi. If we define w(p) =

∑λ
i=1 wi

(
λ−1
i−1

)
pi−1(1−p)λ−i

in (1), then Fθ(θ) = E[ht | θt = θ] and the ODE agrees with (5). Therefore, (5) can
be viewed as the limit behavior of adaptive-ES algorithms not only in the case η → 0
and λ → ∞ but also in the case η → 0 and finite λ. Indeed, it is possible to bound
the difference between {θt, t � 0} and the solution θ(·) of the ODE (5) by extending
Lemma 1 in Chapter 9 of [16].The details are omitted due to the space limitation.2

3 Extension of Lyapunov Stability Theorem

When convergence occurs, the variance typically converges to zero. Hence the study
of the convergence of the solutions of the ODE will be carried out by analyzing the
stability of the points θ∗ = (x∗, 0). However, because points with variance zero are
excluded from the domain Θ, we need to extend classical definitions of stability to be
able to handle points located on the boundary of Θ.

Definition 1 (Stability). Consider the following system of differential equation

θ̇ = F (θ), θ(0) = θ0 ∈ D, (8)

where F : D �→ R
dθ is a continuous map and D ⊂ R

dθ is open. Then θ∗ ∈ D is called

– stable in the sense of Lyapunov3 if for any ε > 0 there is δ > 0 such that θ0 ∈
D ∩ B(θ∗, δ) =⇒ θ(t) ∈ D ∩ B(θ∗, ε) for all t � 0, where t �→ θ(t) is any
solution of (8);

– locally attractive if there is δ > 0 such that θ0 ∈ D∩B(θ∗, δ) =⇒ limt→∞‖θ(t)−
θ∗‖ = 0 for any solution t �→ θ(t) of (8);

– globally attractive if limt→∞ ‖θ(t)− θ∗‖ = 0 for any θ0 ∈ D and any solution
t �→ θ(t) of (8);

– locally asymptotically stable if it is stable and locally attractive;
– globally asymptotically stable if it is stable and globally attractive.

We can now understand why we need to exclude points with variance zero from the
domain Θ. Indeed, points with variance zero are points from where solutions of the
ODE will never move because Fθ(θ) = 0. Consequently, if we include points (x, 0)

2 When H(θ) is a (natural) gradient of a function, the stochastic algorithm is called a stochastic
gradient method. The theory of stochastic gradient method (e.g., [17]) relates the convergence
of the stochastic algorithm with the zeros of H(θ). However, it is not applicable to our algo-
rithm due to the reason mentioned above Remark 1.

3 Usually, stability is defined for stationary points. However, it is not the only case that a point
is stable in our definition. Let θ∗ ∈ D be a stable point. If θ∗ ∈ D or F can be prolonged
by continuity at θ∗ as limθ→θ∗ F (θ) = F (θ∗), then F (θ∗) = 0. That is, θ∗ is a stationary
point. However, limθ→θ∗ F (θ) does not always exist for a stable boundary point θ∗ ∈ ∂D.
For example, consider the ODE: dθ1/dt = −θ1/

√
θ21 + θ22 , dθ2/dt = −θ2. The domain is

R × R+. Then, |θ1| and θ2 are monotonically decreasing to zero. Hence, (0, 0) is globally
asymptotically stable. However, limθ→(0,0) F (θ) does not exist.
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in Θ, none of these points can be attractive as in a neighborhood we always find θ0 =
(x0, 0) such that a solution starting in θ0 stays there and cannot thus converge to any
other point.

A standard technique to prove stability is Lyapunov’s method that consists in finding
a scalar function V : Rdθ → R�0 that is positive except for a candidate stable point θ∗

with V (θ∗) = 0, and that is monotonically decreasing along any trajectory of the ODE.
Such a function is called Lyapunov function (and is analogous to a potential function in
dynamical systems). Lyapunov’s method does not require the analysis of the solutions
of the ODE. The standard Lyapunov’s stability theorem gives practical conditions to
verify that a function is indeed a Lyapunov function. However, because our candidate
stable points are located on ∂Θ, we need to extend this standard theorem.

Lemma 1 (Extended Lyapunov Stability Method). Consider the autonomous system
(8), where F : D → R

dθ is a map and D ⊂ R
dθ is the open domain of θ. Let θ∗ ∈ D

be a candidate stable point. Suppose that there is an R > 0 such that
(A1): F (θ) is continuous on D ∩B(θ∗, R);
(A2): there is a continuously differentiable V : Rdθ → R such that for some strictly
increasing continuous function α : R+ → R+ satisfying limp→∞ α(p) = ∞,

V (θ∗) = 0, V (θ) � α(‖θ − θ∗‖) ∀θ ∈ D ∩B(θ∗, R) \ {θ∗} (9)

and ∇V (θ)TF (θ) < 0 ∀θ ∈ D ∩B(θ∗, R) \ {θ∗}; (10)

(A3): for any r1 and r2 such that 0 < r1 � r2 < R, if a solution θ(·) to (8) starting
from Dr1,r2 = {θ ∈ D : r1 � ‖θ − θ∗‖ � r2} stays in Dr1,r2 for t ∈ [0,∞), then
there is a T � 0 and a compact set E ⊂ Dr1,r2 such that θ(t) ∈ E for t ∈ [T,∞).

Then, θ∗ is locally asymptotically stable. If (A1) and (A2) hold with D replacing
D ∩B(θ∗, R) and (A3) holds with R = ∞, then θ∗ is globally asymptotically stable.

Proof. We follow the proof of Theorem 4.1 in [15]. We have from assumptions (A1)
and (A2) that there is δ < R such that θ∗ is stable and V (θ(t)) → Ṽ � 0 for each
θ0 ∈ D ∩ B(θ∗, δ). Moreover, under (A1) and (A2) with D replacing D ∩ B(θ∗, R)
we have that V (θ(t)) → Ṽ � 0 for each θ0 ∈ D. Since limt→∞ V (θ(t)) → 0 implies
limt→∞ ‖θ − θ∗‖ = 0 by (9), it is enough to show Ṽ = 0. We show Ṽ = 0 by
contradiction argument. Assume that Ṽ > 0. Then, we have that for each θ0 ∈ D (or
∈ D ∩ B(θ∗, δ) for the case of local asymptotic stability) there are r1 and r2 such that
0 < r1 � r2 (� δ) and θ(t) lies in Dr1,r2 for t � 0. Note that Dr1,r2 is not necessarily
a compact set. This is different from Theorem 4.1 in [15]. By assumption (A3) we have
that there is a compact set E and T � 0 such that θ(t) ∈ E for t � T . Since V is
continuously differentiable and F is continuous,∇V (θ)TF (θ) is continuous. Then, the
function θ �→ V (θ)TF (θ) has its maximum −β on the compact E and −β < 0 by (10).
This leads to V (θ(t)) � V (θ(T )) − β(t − T ) ↓ −∞ as t → ∞. This contradicts the
hypothesis that V > 0. Hence, Ṽ = 0 for any θ0 ∈ D (or ∈ D ∩B(θ∗, δ)). 
�

4 Convergence of the ES-IGO-Flow

In this section we study the convergence properties of the ES-IGO-flow ϕ : (t, θ0) �→
θ(t), where θ(·) represents the solution to the ES-IGO ODE (5) with initial value



Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies 49

θ(0) = θ0, i.e., dϕ(t,θ0)
dt = Fθ(ϕ(t, θ0)) and ϕ(0, θ0) = θ0. By the definition of asymp-

totic stability, the global asymptotic stability of θ∗ ∈ Θ implies the global convergence,
that is, limt→∞ ϕ(t, θ0) = θ∗ for all θ0 ∈ Θ. Moreover, the local asymptotic stability of
θ∗ ∈ Θ implies the local convergence, that is, ∃δ > 0 such that limt→∞ ϕ(t, θ0) = θ∗

for all θ0 ∈ Θ ∩ B(θ∗, δ). We will prove convergence properties of the ES-IGO-flow
by applying Lemma 1. In order to prove our result we need to make the following as-
sumption on w:
(B1): w is non-increasing and Lipschitz continuous with w(0) > w(1);
(B2):

∫
w(P1[y : y � z])(z2/d− 1/d)P1(dz) = α > 0.

Assumption (B1) is not restrictive. Indeed, the non-increasing and non-constant prop-
erty of w(·) is a natural requirement and any weight setting in (4) can be expressed, for
any given population size n, as a discretization of some Lipschitz continuous weight
function. Assumption (B2) is satisfied if and only if the variance v diverges exponen-
tially on a linear function. In fact, Fv(θ) defined in (7) reduces to v

∫
w(P1[y : y �

z])(z2/d− 1/d)P1(dz) when f(x) = aTx for ∀a ∈ R
d \ {0} and we have that v̇ = αv

and the solution is v(t) = v0 exp(αt). Then, v(t) → ∞ as t → ∞. Assumption (B2)
holds, for example, if w is convex and not linear.

Let G be the set of strictly increasing functions g : R → R that are μLeb-measurable
and C2 be the set of twice continuously differentiable functions h : Rd → R that are
μLeb-measurable. Under (B1) and (B2), we have the following main theorems.

Theorem 1. Suppose that the objective function f is a monotonic convex-quadratic-
composite function g ◦ h, where g ∈ G and h is a convex quadratic function x �→
(x − x∗)TA(x − x∗)/2 where A is positive definite and symmetric. Assume that (B1)
and (B2) hold. Then, θ∗ = (x∗, 0) ∈ Θ is the globally asymptotically stable point of
the ES-IGO. Hence, we have the global convergence of ϕ(t, θ0) to θ∗.

Proof. Since the ES-IGO does not explicitly utilize the function values but uses the
quantile Pθ[y : f(y) � f(x)] which is equivalent to Pθ[y : g−1 ◦ f(y) � g−1 ◦ f(x)],
without loss of generality we assume f = h.
According to Lemma 1, it is enough to show that (A1) and (A2) hold with D(= Θ)
replacing D ∩ B(θ∗, R) and (A3) holds with R = ∞. As is mentioned in the proof of
Proposition 1, Fθ is locally Lipschitz continuous for a Lipschitz continuous w. Thus,
(A1) is satisfied under (B1).

We can choose as a Lyapunov candidate function V (θ) =
∑d

i=1(mi−x∗i)2+d·v =

‖m− x∗‖2 + Tr(vId). All the conditions on V described in (A2) are obvious except
for the negativeness of ∇V (θ)TFθ(θ). To show the negativeness, rewrite Fθ(θ) as∫
W f

θ (m +
√
vz)Fθ(θ, z)Pd(dz). The idea is to show the (strictly) negative correla-

tion between W f
θ (m +

√
vz) and ∇V (θ)TFθ(θ, z) by using an extension of the result

in [18, Chapter 1] and apply the inequality
∫
W f

θ (m+
√
vz)∇V (θ)TFθ(θ, z)Pd(dz) <∫

W f
θ (m +

√
vz)Pd(dz)

∫ ∇V (θ)TFθ(θ, z)Pd(dz) = 0. We use the non-increasing
property of w with w(0) > w(1) in (B1) to show the negative correlation.

To prove (A3), we require (B2). Since a continuously differentiable function can be
approximated by a linear function at any non-critical point x̄, the natural gradient Fθ

is approximated by that on a linear function in a small neighborhood of (x̄, 0). We use
the property μLeb[x : f(x) = f̄ ] = 0 to approximate Fθ . As is mentioned above,
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(B2) implies Fv on a linear function is positive. By using the approximation and this
property, we can show that E = Dr1,r2∩{θ : v � v̄} satisfies (A3) for some v̄ > 0. 
�
We have that for any initial condition θ(0) = (m0, v0), the search distribution Pθ

weakly converges to the Dirac measure δx∗ concentrated at the global minimum point
x∗. This result is generalized to monotonic C2-composite functions using a quadratic
Taylor approximation. However, global convergence becomes local convergence.

Theorem 2. Suppose that the objective function f is a monotonic C2-composite func-
tion g ◦ h, where g ∈ G and h ∈ C2 has the property that μLeb[x : h(x) = s] = 0
for any s ∈ R. Assume that (B1) and (B2) hold. Let x∗ be a critical point of h, i.e.
∇h(x∗) = 0, with a positive definite Hessian matrix A. Then, θ∗ = (x∗, 0) ∈ Θ is a lo-
cally asymptotically stable point of the ES-IGO. Hence, we have the local convergence
of ϕ(t, θ0) to θ∗. Moreover, if x̄ is not a critical point of h(·), for any θ0 ∈ Θ, ϕ(t, θ0)
will never converge to θ̄ = (x̄, 0).

Proof. As in the proof of Theorem 1, we assume f = h without loss of generality. The
proofs of (A1) and (A3) carry over from Theorem 1 because we only used the property
μLeb[x : f(x) = f̄ ] = 0. To show (A2), we use the Taylor approximation of the ob-
jective function f . Since f is approximated by a quadratic function in a neighborhood
of a critical point x∗, we approximate the natural gradient by the corresponding natu-
ral gradient on the quadratic function. Then, employing the same Lyapunov candidate
function as in the previous theorem we can show (A2). Because of the approximation,
we only have local asymptotic stability. The last statement of Theorem 2 is an immedi-
ate consequence of the approximation of the natural gradient and (B2). 
�
We have that starting from a point close enough to a local minimum point x∗ with a
sufficiently small initial variance, the search distribution weakly converges to δx∗ . It is
not guaranteed for the parameter to converge somewhere when the initial mean is not
close enough to the local optimum or the initial variance is not small enough. Theorem 2
also states that the convergence (m(t), v(t)) → (x̄, 0) does not happen for x̄ such that
∇h(x̄) �= 0. That is, the continuous time ES-IGO does not prematurely converge on a
slope of the landscape of f .

5 Conclusion

In this paper we have proven the local convergence of the continuous time model associ-
ated to step-size adaptive ESs towards local minima on monotonic C2-composite func-
tions. In the case of monotonic convex-quadratic-composite functions we have proven
the global convergence, i.e. convergence independently of the initial condition (pro-
vided the initial step-size is strictly positive) towards the unique minimum. Our analysis
relies on investigating the stability of critical points associated to the underlying ODE
that follows from the Information Geometric Optimization setting. We use a classical
method for the analysis of stability of critical points, based on Lyapunov functions. We
have however extended the method to be able to handle convergence towards solutions
at the boundary of the ODE definition domain. We believe that our approach is general
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enough to handle more difficult cases like the CMA-ES with a more general covariance
matrix. We want to emphasize that the model we have analyzed is the correct model
for step-size adaptive ESs as the ODE encodes both the mean vector and step-size and
preserves fundamental invariance properties of the algorithm.
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2. Jägersküpper, J.: Probabilistic runtime analysis of (1+, λ), ES using isotropic mutations. In:
Proceedings of the 2006 Genetic and Evolutionary Computation Conference, GECCO 2006,
pp. 461–468. ACM (2006)
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