
On Algorithm-Dependent Boundary Case Identification
for Problem Classes�

Chao Qian, Yang Yu, and Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210046, China

{qianc,yuy,zhouzh}@lamda.nju.edu.cn

Abstract. Running time analysis of metaheuristic search algorithms has attracted
a lot of attention. When studying a metaheuristic algorithm over a problem class,
a natural question is what are the easiest and the hardest cases of the problem
class. The answer can be helpful for simplifying the analysis of an algorithm
over a problem class as well as understanding the strength and weakness of an
algorithm. This algorithm-dependent boundary case identification problem is in-
vestigated in this paper. We derive a general theorem for the identification, and
apply it to a case that the (1+1)-EA with mutation probability less than 0.5 is
used over the problem class of pseudo-Boolean functions with a unique global
optimum.

1 Introduction

Metaheuristic search algorithms such as simulated annealing (SA) [11], particle swarm
optimization (PSO) [10], evolutionary algorithms (EA) [2], etc., have been widely and
successfully applied to real-world optimization problems. An advantage of metaheuris-
tic algorithms is their problem independence, i.e., they can be applied to a very large
range of optimization problems. A natural theoretical question is, therefore, how well
the metaheuristic algorithms perform on classes of problems.

A commonly used quality measure of a metaheuristic algorithm is its expected run-
ning time, i.e., the expected number of steps that it takes to find an optimum. Several
approaches, e.g., drift analysis [7] and convergence-based approach [17], have been
developed for running time analysis of metaheuristic algorithms. The running time
of several metaheuristic algorithms has been studied on some simple pseudo-Boolean
problems, e.g., [4,7,5], and later, on some combinatorial optimization problems, e.g.,
[1,12]. In most of these studies, the analysis was over restricted problem classes where
the problem cases have similar structures. While, for large problem classes, a large
variety of structures of problem cases can obstruct the analysis.

One possible way to simplify the analysis over a problem class is to characterize the
class by its easiest and hardest cases, and then analyze on these boundary cases. By the
well-known no free lunch theorem [14], we know that no single problem is intrinsically
harder than another, until an algorithm is involved into the consideration. Therefore,
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this paper studies the algorithm-dependent boundary case identification problem. Given
a metaheuristic algorithm, the identification of the boundary cases of a problem class
can not only help to study the performance of the algorithm over the problem class,
but also provide concrete cases to reveal the strength and weakness of the metaheuristic
algorithm.

For this purpose, we derive a general theorem for algorithm-dependent boundary
case identification, which gives a sufficient condition for identifying the easiest and
hardest cases of a problem class for an algorithm. We then prove that in the pseudo-
Boolean function class with a unique global optimum, the OneMax and the Trap prob-
lem are the easiest and the hardest case for the (1+1)-EA with mutation probability less
than 0.5, respectively.

There are a few previous studies concerning problem classes. The running time of
EAs on linear pseudo-Boolean function class, which is a relatively small problem class,
was analyzed in [5,8,9,3]. Yu and Zhou [17] provided a general idea on why EAs can
fail over a complex problem class; Fournier and Teytaud [6] provided a general lower
bound for the performance of EAs over problem classes with VC-dimension measured
complexity. However, these studies did not concern the boundary problem cases. Re-
cently, Doerr et al. [3] used the lower bound of running time of the (1+1)-EA with
mutation probability 1

n on the OneMax problem as that on the pseudo-Boolean func-
tion class with a unique global optimum by proving that the OneMax problem is the
easiest case for the (1+1)-EA in this class, comparing to which this paper derives a
more general result for the easiest case as well as the hardest case. Note that, the easiest
case derived in this paper has also been proved by Witt [13], but we give a different and
more compact proof.

The rest of this paper is organized as follows. Section 2 introduces some preliminar-
ies. Section 3 presents the main theorem, which is then used to identify the boundary
cases in the pseudo-Boolean function class for the (1+1)-EA in Section 4. Section 5
concludes.

2 Preliminaries

Most metaheuristic search algorithms generate solutions only based on their maintained
solutions, but not the historical ones, therefore, they can be modeled and analyzed as
Markov chains, e.g., [7,17]. In this paper, we only consider the algorithms that can
be modeled by Markov chains. A Markov chain {ξt}+∞

t=0 modeling the metaheuristic
algorithm is constructed by taking the algorithm’s state space X as the chain’s state
space, i.e. ξt ∈ X . Let X ∗ ⊂ X denote the set of all optimal states. The goal of the
algorithm is to reachX ∗ from an arbitrary initial state. Thus, the process of an algorithm
seeking X ∗ can be analyzed by studying the corresponding Markov chain.

A Markov chain {ξt}+∞
t=0 is a random process, where, for all t ≥ 0, ξt is defined in

the state space X and ξt+1 depends only on ξt. Let X ∗ ⊂ X be the target space. A
Markov chain {ξt}+∞

t=0 is said to be absorbing, if ∀t ≥ 0 : P (ξt+1 ∈ X ∗|ξt ∈ X ∗) = 1.
Given a Markov chain {ξt}+∞

t=0 , and ξt̃ = x for arbitrary t̃ ≥ 0, we define τt̃ as a
random variable such that τt̃ = min{t|ξt̃+t ∈ X ∗, t ≥ 0}. That is, τt̃ is the number of
steps needed to reach the target space for the first time from t̃. The mathematical ex-
pectation of τt̃, E[[τt̃|ξt̃ = x]] =

∑∞
i=0 iP (τt̃ = i), is called the conditional first hitting
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time (CFHT) of the Markov chain from t̃ and ξt̃ = x. If ξt̃ is drawn from a distribution
πt̃, the expectation of the CFHT over πt̃, E[[τt̃|ξt̃ ∼ πt̃]] =

∑
x∈X πt̃(x)E[[τt̃|ξt̃ = x]],

is called the distribution-conditional first hitting time (DCFHT) of the Markov chain
from t̃ and ξt̃ ∼ πt̃. If t̃ = 0, E[[τ0|ξ0 ∼ π0]] is also called the expected running time of
the corresponding algorithm.

Switch analysis is a recently proposed approach [16] that compares two Markov
chains for their first hitting time. By modeling EAs as Markov chains, it has been used
to derive running time bounds of EAs [16] and investigate if one EA runs faster than
another EA for a problem [15,16].

Theorem 1 (Switch Analysis [16]). Given two absorbing Markov chains {ξt}+∞
t=0 (ξt ∈

X ) and {ξ′t}+∞
t=0 (ξ

′
t ∈ Y), let X ∗ and Y∗ denote the optimal state space of ξt and ξ′t,

respectively, let τ and τ ′ denote the hitting events of ξt and ξ′t, respectively, let πt denote
the distribution of ξt. Let {ρt}+∞

t=0 be a series of numbers whose sum converges to ρ. If
there exists a mapping φ : X → Y , φ(x) ∈ Y∗ if and only if x ∈ X ∗; and it satisfies
that E[[τ0|ξ0 ∼ π0]] is finite, and for all t ≥ 0,

∑

x∈X ,y∈Y πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′t+1|ξ′t+1 = y]]

≤ (≥)
∑

y1,y2∈Y π′
t(y1)P (ξ′t+1 = y2|ξ′t = y1)E[[τ

′
t+1|ξ′t+1 = y2]] + ρt,

(1)

where φ−1(y) = {x ∈ X|φ(x) = y} and π′
t(y) = πt(φ

−1(y)), it will hold that

E[[τ0|ξ0 ∼ π0]] ≤ (≥)E[[τ ′0|ξ′0 ∼ π′
0]] + ρ.

3 A Theorem for Boundary Problem Identification

We assume that the studied problem class is homogeneous, as in Definition 1, which
means that all the problem cases in the class have the same solution space and the
same optimal solutions when fixing the problem dimensionality. At the first glance, the
requirement of the same optimal solutions is a strong restriction. However, since most
metaheuristic algorithms do not rely on the meaning of the solution, in the analysis
we can commonly switch the optimal solutions. For example, the solution 10011 in a
binary space can be shifted as 11111 if we switch the meaning of 1 and 0 for the 2nd
and the 3rd bits.

Definition 1 (Homogeneous Problem Class). A problem class is homogeneous if, for
each problem dimensionality, all the problem cases have the same solution space and
the same optimal solutions.

To characterize the algorithm-dependent structure of the problem cases, we partition
the state space according to the CFHT of a given algorithm, as in Definition 2. We also
define a jumping probability in Definition 3.

Definition 2 (CFHT-Partition). For a Markov chain {ξt}+∞
t=0 with state space X , the

CFHT-Partition at time t is a partition of X into non-empty spaces {X t
0 ,X t

1 , . . . ,X t
m}

such that ∀x, y ∈ X t
i ,E[[τt+1|ξt+1 = x]] = E[[τt+1|ξt+1 = y]] andE[[τt+1|ξt+1 ∈ X t

m]]
> . . . > E[[τt+1|ξt+1 ∈ X t

1 ]] > E[[τt+1|ξt+1 ∈ X t
0 ]] = 0.
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Definition 3. For a Markov chain {ξt}+∞
t=0 with the state space X , P t

ξ (x,X ′) is the
probability of jumping from state x to state space X ′ ⊆ X in one step at time t.

We then derive Theorem 2, which is a general sufficient condition for identifying the
easiest and the hardest problem cases. Note that, the easiest (hardest) problem case of a
problem class for an algorithm means that the expected running time of the algorithm
on the problem case is the smallest (largest).

Theorem 2. Given a homogeneous problem class F and an algorithm A, with dimen-
sionality n, let {ξ′t}+∞

t=0 modelA running on a problem f∗ ∈ Fn, of which {X t
0 ,X t

1 , . . . ,
X t

m} is the CFHT-Partition at time t. If for all problem f ∈ Fn − {f∗}, for all t ≥ 0,
and for all x ∈ X −X t

0 , denoting {ξt}+∞
t=0 as the chain modeling A running on f , there

exists an integer k ∈ [0,m],

∀j ≤ k, P t
ξ (x,X t

j ) ≤ (≥)P t
ξ′ (x,X t

j ), ∀j > k, P t
ξ (x,X t

j ) ≥ (≤)P t
ξ′(x,X t

j ), (2)

then f∗ is the easiest (hardest) case in Fn for the algorithm A.

Proof. We use the switch analysis approach to show the easiest problem case identifi-
cation of this theorem by proving that the expected running time of the algorithm A on
the problem f∗ is at most as large as that on any other problem. The hardest case iden-
tification can be proved similarly. Note that both Markov chains {ξt}+∞

t=0 and {ξ′t}+∞
t=0

can be transformed to be absorbing by letting them always stay at the optimal state once
an optimal state has been found, and this transformation does not affect their running
time by the definition of CFHT/DCFHT.

The two chains {ξt}+∞
t=0 and {ξ′t}+∞

t=0 have the same state space X and the same opti-
mal state space X ∗, since the studied problem class is homogeneous. For the clearness
of the proof, we denote the state space and the optimal space of {ξ′t}+∞

t=0 by Y and
Y∗, respectively. Obviously, Y = X and Y∗ = X ∗. Then, we construct the mapping
φ : X → Y as that ∀x ∈ X : φ(x) = x. It is obvious that φ(x) ∈ Y∗ iff x ∈ X ∗.

Then, we investigate Eq. 1 in switch analysis. For an optimal state x ∈ X ∗ = X t
0 ,

since φ(x) = x and both Markov chains are absorbing, we have

∑

y∈Y P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]] (3)

=
∑

y∈Y P (ξ′t+1 = y | ξ′t = φ(x))E[[τ ′t+1 | ξ′t+1 = y]] = 0.

For a non-optimal state x ∈ X t
i (i ≥ 1), since φ(x) = x, we have

∑

y∈Y
P (ξ′t+1 = y|ξ′t = φ(x))E[[τ ′

t+1|ξ′t+1 = y]] =
m∑

j=0

P t
ξ′ (x,X t

j )E[[τ
′
t+1|ξ′t+1 ∈ X t

j ]];

∑

y∈Y
P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′

t+1|ξ′t+1 = y]] =
m∑

j=0

P t
ξ (x,X t

j )E[[τ
′
t+1|ξ′t+1 ∈ X t

j ]].

By comparing the above two equalities, since the condition Eq. 2 holds, and further-
more, E[[τ ′t+1|ξ′t+1 ∈ X t

j ]] increases with j, we have
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∑

y∈Y P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′t+1|ξ′t+1 = y]] (4)

≥
∑

y∈Y P (ξ′t+1 = y|ξ′t = φ(x))E[[τ ′t+1|ξ′t+1 = y]].

Then, by combining Eq. 3 with Eq. 4, we have for all t ≥ 0,
∑

x∈X ,y∈Y πt(x)P (ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′t+1|ξ′t+1 = y]]

≥
∑

x∈X ,y∈Y πt(x)P (ξ′t+1 = y|ξ′t = φ(x))E[[τ ′t+1|ξ′t+1 = y]]

=
∑

y1,y2∈Y
π′
t(y1)P (ξ′t+1 = y2|ξ′t = y1)E[[τ

′
t+1|ξ′t+1 = y2]]. (by π′

t(y) = πt(φ
−1(y)))

Thus, Eq. 1 holds with ρt = 0. By switch analysis, E[[τ0|ξ0 ∼ π0]] ≥ E[[τ ′0|ξ′0 ∼ π′
0]].

Since π0 = π′
0, we have E[[τ0|ξ0 ∼ π0]] ≥ E[[τ ′0|ξ′0 ∼ π0]]. The two sides of this in-

equality are the expected running time of A on a problem f ∈ Fn − {f∗} and that on
the problem f∗, respectively. This inequality holds for each f ∈ Fn − {f∗} and f∗.
Thus, f∗ is the easiest problem in Fn for the algorithm A. �

4 Pseudo-Boolean Function Class and (1+1)-EA

In this section, we use the proved theorem to identify the easiest and the hardest function
in the pseudo-Boolean function class with a unique global optimum for the (1+1)-EA
with mutation probability less than 0.5.

The pseudo-Boolean function class in Definition 4 is a large function class which
only requires the solution space to be {0, 1}n and the objective space to be R. The
pseudo-Boolean function class with a unique global optimum is a subset of the pseudo-
Boolean function class, where each function has a unique global optimum. Here, we
consider maximization problems since minimizing f is equivalent to maximizing −f .
The OneMax problem in Definition 5 is to maximize the number of 1 bits of a solution.
The Trap problem in Definition 6 is to maximize the number of 0 bits of a solution
except the global optimum 1n.

Definition 4 (Pseudo-Boolean Function Class). A function in the pseudo-Boolean
function class has the form: f : {0, 1}n → R.

Definition 5 (OneMax Problem). OneMax Problem of size n is to find an n bits binary
string x∗ such that x∗ = argmaxx∈{0,1}n{f(x)|f(x) = ∑n

i=1 xi}.
Definition 6 (Trap Problem). Trap Problem of size n is to find an n bits binary string
x∗ such that x∗ = argmaxx∈{0,1}n{f(x)|f(x) = ∑n

i=1(1− xi) + (n+ 1)
∏n

i=1 xi}.
The (1+1)-EA [4] in Algorithm 1 is a randomized heuristic algorithm for maximizing
pseudo-Boolean functions, which is often involved in theoretical analysis of EAs.

Algorithm 1 ((1+1)-EA). Given solution length n and objective function f , (1+1)-EA
consists of the following steps:
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1. x := randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ := flip each bit of x with probability p;
4. if f(x′) ≥ f(x)
5. x := x′;

where p ∈ (0, 1) is the mutation probability.

For a pseudo-Boolean function with a unique global optimum, we assume without loss
of generality that the optimal solution is 1n. This is because the (1+1)-EA treats the bits
0 and 1 symmetrically, and thus the 0 bits in an optimal solution can be interpreted as 1
bits without affecting the behavior of the (1+1)-EA. The optimization time of the (1+1)-
EA for maximizing a pseudo-Boolean function is computed as the number of iterations
until a global optimum has been found for the first time.

Theorem 3. In the pseudo-Boolean function class with a unique global optimum, the
OneMax and the Trap problem are the easiest and the hardest problem case for the
(1+1)-EA with 0 < p < 0.5, respectively.

Before proving Theorem 3, we first prove the order of the CFHT of the (1+1)-EA on the
OneMax problem in Lemma 1 as well as that on the Trap problem in Lemma 2. Since
the bits of the OneMax problem are independent and their weights are same, it is not
hard to see that the CFHT E[[τ ′t |ξ′t = x]] of the (1+1)-EA on the OneMax problem only
depends on the number of 1 bits of the solution x, i.e., ‖x‖. Thus, we denote E(j) as
the CFHT E[[τ ′t |ξ′t = x]] with ‖x‖ = n − j. Then, it is obvious that E(0) = 0, which
implies the optimal solution.

Lemma 1. For 0 < p < 0.5, it holds that E(0) < E(1) < E(2) < . . . < E(n).

Proof. We prove ∀ 0 ≤ j < n : E(j) < E(j + 1) inductively on j.
(a) Initialization is to prove E(0) < E(1). Since E(1) = 1 + p(1 − p)n−1

E(0) +
(1− p(1− p)n−1)E(1), we have E(1) = 1/(p(1− p)n−1) > 0 = E(0).

(b) Inductive Hypothesis assumes that

∀ 0 ≤ j < K(K ≤ n− 1) : E(j) < E(j + 1).

Then, we consider j = K . Let x and x′ be a solution with K + 1 number of 0 bits and
that with K number of 0 bits, respectively. Then, we have E(K + 1) = E[[τ ′t |ξ′t = x]]
and E(K) = E[[τ ′t |ξ′t = x′]]. For a Boolean string of length n− 1 with K number of 0
bits, we denote Pi (0 ≤ i ≤ n− 1) as the probability that the number of 0 bits changes
to be i after bit-wise mutation on this string with mutation probability p.

For the solution x, we divide the mutation on x into two parts: mutation on one 0 bit
and mutation on the n− 1 remaining bits. The n− 1 remaining bits contain K number
of 0 bits since n − ‖x‖ = K + 1. Then, by considering the mutation and selection
behavior of the (1+1)-EA on the OneMax problem, we have

E(K + 1) = 1 + p · (
∑K+1

i=0
PiE(i) +

∑n−1

i=K+2
PiE(K + 1))

+ (1− p) · (
∑K

i=0
PiE(i+ 1) +

∑n−1

i=K+1
PiE(K + 1)),
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where the term p is the probability that the 0 bit in the first mutation part is flipped.
For the solution x′, we also divide the mutation on x′ into two parts: mutation on one

1 bit and mutation on the n − 1 remaining bits. The n− 1 remaining bits also contain
K number of 0 bits since n− ‖x′‖ = K . Then, we have

E(K) = 1 + p · (
∑K−1

i=0
PiE(i + 1) +

∑n−1

i=K
PiE(K))

+ (1 − p) · (
∑K

i=0
PiE(i) +

∑n−1

i=K+1
PiE(K)),

where the term p is the probability that the 1 bit in the first mutation part is flipped.
From the above two equalities, we have

E(K + 1)− E(K)

= p · (
∑K−1

i=0
Pi(E(i)− E(i + 1)) +

∑n−1

i=K+1
Pi(E(K + 1)− E(K))

)

+ (1 − p) · (
∑K

i=0
Pi(E(i + 1)− E(i)) +

∑n−1

i=K+1
Pi(E(K + 1)− E(K))

)

= (1− 2p) · (
∑K−1

i=0
Pi(E(i + 1)− E(i))

)

+
(
(1 − p)PK +

∑n−1

i=K+1
Pi

) · (E(K + 1)− E(K)
)

>
(
(1− p)PK +

∑n−1

i=K+1
Pi

) · (E(K + 1)− E(K)
)
,

where the inequality is by 0 < p < 0.5 and inductive hypothesis.
Since (1− p)PK +

∑n−1
i=K+1 Pi < 1, we have E(K + 1) > E(K). �

For the Trap problem, it is not hard to see that the CFHT E[[τ ′t |ξ′t = x]] of the (1+1)-EA
on the Trap problem also only depends on the number of 1 bits of the solution x. Thus,
we denote E′(j) as the CFHT E[[τ ′t |ξ′t = x]] with ‖x‖ = n− j. Then, it is obvious that
E
′(0) = 0, which implies the optimal solution.

Lemma 2. For 0 < p < 0.5, it holds that E′(0) < E
′(1) < E

′(2) < . . . < E
′(n).

Proof. First, E′(0) < E
′(1) trivially holds, since E

′(0) = 0 and E
′(1) > 0. Then, we

prove ∀ 0 < j < n : E′(j) < E
′(j + 1) inductively on j.

(a) Initialization is to prove E′(n− 1) < E
′(n). For E′(n), since only the offspring

0n or 1n will be accepted, we have E
′(n) = 1 + pnE′(0) + (1 − pn)E′(n), then,

E
′(n) = 1/pn. For E′(n − 1), since the accepted offsprings are 0n, the solutions with

n − 1 number of 0 bits and 1n, we have E
′(n − 1) = 1 + pn−1(1 − p)E′(0) + p(1 −

p)n−1
E
′(n) + (1 − pn−1(1 − p) − p(1 − p)n−1)E′(n − 1), then, E′(n − 1) = (1 +

(1− p)n−1/pn−1)/(pn−1(1− p) + p(1− p)n−1). Thus, we have

E
′(n)

E′(n− 1)
=

pn−1(1 − p) + p(1− p)n−1

pn + (1− p)n−1p
> 1,

where the inequality is by 0 < p < 0.5.
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(b) Inductive Hypothesis assumes that

∀ K < j ≤ n− 1(K ≥ 1) : E′(j) < E
′(j + 1).

Then, we consider j = K . When comparing E
′(K + 1) with E

′(K), we use the same
analysis method as that in the proof of Lemma 1. By additionally considering the selec-
tion behavior of the (1+1)-EA on the Trap problem which is different from that on the
OneMax problem, we can get

E
′(K + 1) = 1 + p · (P0E

′(0) +
∑K

i=1
PiE

′(K + 1) +
∑n−1

i=K+1
PiE

′(i))

+ (1 − p) · (
∑K−1

i=0
PiE

′(K + 1) +
∑n−1

i=K
PiE

′(i+ 1)),

and

E
′(K) = 1 + p · (

∑K−2

i=0
PiE

′(K) +
∑n−1

i=K−1
PiE

′(i + 1))

+ (1− p) · (P0E
′(0) +

∑K−1

i=1
PiE

′(K) +
∑n−1

i=K
PiE

′(i)).

From the above two equalities, we have

E
′(K + 1)− E

′(K) = p · (P0(E
′(0)− E

′(K)) +
∑K−1

i=1
Pi(E

′(K + 1)− E
′(K))

+
∑n−1

i=K+1
Pi(E

′(i)− E
′(i + 1))

)
+ (1− p) · (P0(E

′(K + 1)− E
′(0))

+
∑K

i=1
Pi(E

′(K + 1)− E
′(K)) +

∑n−1

i=K+1
Pi(E

′(i + 1)− E
′(i))

)

= P0 ·
(
(1− p)E′(K + 1)− pE′(K)

)
+
(∑K−1

i=1
Pi + (1− p)PK

)

· (E′(K + 1)− E
′(K)

)
+ (1− 2p) · (

∑n−1

i=K+1
Pi(E

′(i+ 1)− E
′(i))

)

>
(∑K−1

i=1
Pi + (1− p)PK + pP0

) · (E′(K + 1)− E
′(K)

)
,

where the inequality is by 0 < p < 0.5 and inductive hypothesis.
Since

∑K−1
i=1 Pi + (1 − p)PK + pP0 < 1, we have E′(K + 1) > E

′(K). �

Proof of Theorem 3. The pseudo-Boolean function class with a unique global op-
timum is homogeneous, since for each dimensionality n, the solution space and the
optimal solution for any function are {0, 1}n and 1n, respectively. By the behavior of
the (1+1)-EA, it is easy to see that the (1+1)-EA can be modeled as a Markov chain.

Let the OneMax problem correspond to f∗ in Theorem 2. Then for the parameter m
and X t

i in Theorem 2, we have m = n and X t
i = {x|‖x‖ = n − i} (0 ≤ i ≤ n) by

Lemma 1. For any non-optimal solution x ∈ X t
k (k > 0), we denote P (j) (0 ≤ j ≤ n)

as the probability that the offspring generated by bit-wise mutation on x has j number
of 0 bits. For {ξ′t}+∞

t=0 , since only the offspring solution with no more 0 bits will be
accepted, we have

∀ 0 ≤ j ≤ k − 1 : P t
ξ′(x,X t

j ) = P (j); P t
ξ′(x,X t

k) =
∑n

j=k
P (j);

∀ k + 1 ≤ j ≤ n : P t
ξ′(x,X t

j ) = 0.
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For {ξt}+∞
t=0 , since the offspring solution with less 0 bits may be rejected and that with

more 0 bits may be accepted, we have

P t
ξ (x,X t

0) = P (0); ∀ 1 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≤ P (j);

∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≥ 0.

Thus, if P t
ξ′(x,X t

k) ≥ P t
ξ (x,X t

k), we have

∀ 0 ≤ j ≤ k : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j ), ∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j );

otherwise, we have

∀ 0 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j ), ∀ k ≤ j ≤ n : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j ).

Note that the above two formulas hold for all t ≥ 0, since the (1+1)-EA uses time-
invariant operators. Therefore, by Theorem 2, we get that the OneMax problem is the
easiest in the pseudo-Boolean function class with a unique global optimum for the
(1+1)-EA with p < 0.5.

Let the Trap problem correspond to f∗. By Lemma 2, we have m = n and X t
i =

{x|‖x‖ = n− i} (1 ≤ i ≤ n). For any non-optimal solution x ∈ X t
k (k > 0), we also

denote P (j) (0 ≤ j ≤ n) as the probability that the offspring generated by bit-wise
mutation on x has j number of 0 bits. For {ξ′t}+∞

t=0 , since only the optimal solution and
the offspring solutions with no less 0 bits will be accepted, we have

P t
ξ′ (x,X t

0) = P (0); ∀ 1 ≤ j ≤ k − 1 : P t
ξ′(x,X t

j ) = 0;

P t
ξ′ (x,X t

k) =
∑k

j=1
P (j); ∀ k + 1 ≤ j ≤ n : P t

ξ′(x,X t
j ) = P (j).

For {ξt}+∞
t=0 , since the offspring solution with less 0 bits may be accepted and that with

more 0 bits may be rejected, we have

P t
ξ (x,X t

0) = P (0); ∀ 1 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≥ 0;

∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≤ P (j).

Thus, if P t
ξ′(x,X t

k) ≥ P t
ξ (x,X t

k), we have

∀ 0 ≤ j ≤ k − 1 : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j ), ∀ k ≤ j ≤ n : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j );

otherwise, we have

∀ 0 ≤ j ≤ k : P t
ξ (x,X t

j ) ≥ P t
ξ′(x,X t

j ), ∀ k + 1 ≤ j ≤ n : P t
ξ (x,X t

j ) ≤ P t
ξ′(x,X t

j ).

By Theorem 2, we get that the Trap problem is the hardest in the pseudo-Boolean func-
tion class with a unique global optimum for the (1+1)-EA with p < 0.5. �
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5 Conclusion

In this paper, we derive a theorem to identify the easiest and the hardest problem cases of
a problem class for an algorithm. Using the theorem, we prove that the OneMax and the
Trap problem are the easiest and the hardest function in the pseudo-Boolean function
class with a unique global optimum for the (1+1)-EA with mutation probability less
than 0.5, respectively, which much extends the previous knowledge [3]. In the future,
we will apply this theorem for more problem classes and more algorithms.
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