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Abstract. The CSA-ES is an Evolution Strategy with Cumulative Step size Adap-
tation, where the step size is adapted measuring the length of a so-called cumu-
lative path. The cumulative path is a combination of the previous steps realized
by the algorithm, where the importance of each step decreases with time. This
article studies the CSA-ES on composites of strictly increasing functions with
affine linear functions through the investigation of its underlying Markov chains.
Rigorous results on the change and the variation of the step size are derived with
and without cumulation. The step-size diverges geometrically fast in most cases.
Furthermore, the influence of the cumulation parameter is studied.
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1 Introduction

Evolution strategies (ESs) are continuous stochastic optimization algorithms searching
for the minimum of a real valued function f : R

n → R. In the (1, λ)-ES, in each
iteration, λ new children are generated from a single parent point X ∈ R

n by adding a
random Gaussian vector to the parent,

X ∈ R
n �→ X + σN (0,C) .

Here, σ ∈ R
∗
+ is called step-size and C is a covariance matrix. The best of the λ

children, i.e. the one with the lowest f -value, becomes the parent of the next iteration.
To achieve reasonably fast convergence, step size and covariance matrix have to be
adapted throughout the iterations of the algorithm. In this paper, C is the identity and
we investigate the so-called Cumulative Step-size Adaptation (CSA), which is used to
adapt the step-size in the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[12,10]. In CSA, a cumulative path is introduced, which is a combination of all steps the
algorithm has made, where the importance of a step decreases exponentially with time.
Arnold and Beyer studied the behavior of CSA on sphere, cigar and ridge functions
[1,2,3,7] and on dynamical optimization problems where the optimum moves randomly
[5] or linearly [6]. Arnold also studied the behaviour of a (1, λ)-ES on linear functions
with linear constraint [4].

In this paper, we study the behaviour of the (1, λ)-CSA-ES on composites of strictly
increasing functions with affine linear functions, e.g. f : x �→ exp(x2 − 2). Because
the CSA-ES is invariant under translation, under change of an orthonormal basis (ro-
tation and reflection), and under strictly increasing transformations of the f -value, we
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investigate, w.l.o.g., f : x �→ x1. Linear functions model the situation when the current
parent is far (here infinitely far) from the optimum of a smooth function. To be far from
the optimum means that the distance to the optimum is large, relative to the step-size σ.
This situation is undesirable and threatens premature convergence. The situation should
be handled well, by increasing step widths, by any search algorithm (and is not handled
well by the (1, 2)-σSA-ES [9]). Solving linear functions is also very useful to prove
convergence independently of the initial state on more general function classes.

In Section 2 we introduce the (1, λ)-CSA-ES, and some of its characteristics on
linear functions. In Sections 3 and 4 we study ln(σt) without and with cumulation,
respectively. Section 5 presents an analysis of the variance of the logarithm of the step-
size and in Section 6 we summarize our results.

Notations. In this paper, we denote t the iteration or time index, n the search space
dimension, N (0, 1) a standard normal distribution, i.e. a normal distribution with mean
zero and standard deviation 1. The multivariate normal distribution with mean vector
zero and covariance matrix identity will be denotedN (0, In), the ith order statistic of λ
standard normal distributions Ni:λ, and Ψi:λ its distribution. If x = (x1, · · · , xn) ∈ R

n

is a vector, then [x]i will be its value on the ith dimension, that is [x]i = xi. A random
variable X distributed according to a law L will be denoted X ∼ L.

2 The (1, λ)-CSA-ES

We denote with Xt the parent at the tth iteration. From the parent point Xt, λ children
are generated:Y t,i = Xt+σtξt,i with i ∈ [[1, λ]], and ξt,i ∼ N (0, In), (ξt,i)i∈[[1,λ]]

i.i.d. Due to the (1, λ) selection scheme, from these children, the one minimizing the
function f is selected: Xt+1 = argmin{f(Y ),Y ∈ {Y t,1, ...,Y t,λ}}. This latter
equation implicitly defines the random variable ξ�t as

Xt+1 = Xt + σtξ
�
t . (1)

In order to adapt the step-size, the cumulative path is defined as

pt+1 = (1− c)pt +
√
c(2− c) ξ�t (2)

with 0 < c ≤ 1. The constant 1/c represents the life span of the information contained
in pt, as after 1/c generations pt is multiplied by a factor that approaches 1/e ≈ 0.37
for c → 0 from below (indeed (1−c)1/c ≤ exp(−1)). The typical value for c is between
1/

√
n and 1/n. We will consider that p0 ∼ N (0, In) as it makes the algorithm easier

to analyze.
The normalization constant

√
c(2− c) in front of ξ�t in Eq. (2) is chosen so that

under random selection and if pt is distributed according to N (0, In) then also pt+1

follows N (0, In). Hence the length of the path can be compared to the expected length
of ‖N (0, In)‖ representing the expected length under random selection.

The step-size update rule increases the step-size if the length of the path is larger than
the length under random selection and decreases it if the length is shorter than under
random selection:
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σt+1 = σt exp

(
c

dσ

( ‖pt+1‖
E(‖N (0, In)‖) − 1

))

where the damping parameter dσ determines how much the step-size can change and
is set to dσ = 1. A simplification of the update considers the squared length of the
path [5]:

σt+1 = σt exp

(
c

2dσ

(‖pt+1‖2
n

− 1

))
. (3)

This rule is easier to analyse and we will use it throughout the paper.

Preliminary results on linear functions. Selection on the linear function, f(x) = [x]1,
is determined by [Xt]1 + σt [ξ

�
t ]1 ≤ [Xt]1 + σt

[
ξt,i
]
1

for all i which is equivalent to
[ξ�t ]1 ≤ [ξt,i

]
1

for all i where by definition
[
ξt,i
]
1

is distributed according to N (0, 1).
Therefore the first coordinate of the selected step is distributed according to N1:λ and
all others coordinates are distributed according to N (0, 1), i.e. selection does not bias
the distribution along the coordinates 2, . . . , n. Overall we have the following result.

Lemma 1. On the linear function f(x) = x1, the selected steps (ξ�t )t∈N of the (1, λ)-
ES are i.i.d. and distributed according to the vector ξ := (N1:λ,N2, . . . ,Nn) where
Ni ∼ N (0, 1) for i ≥ 2.

Because the selected steps ξ�t are i.i.d. the path defined in Eq. 2 is an autonomous
Markov chain, that we will denote P = (pt)t∈N. Note that if the distribution of the
selected step depended on (Xt, σt) as it is generally the case on non-linear functions,
then the path alone would not be a Markov Chain, however (Xt, σt,pt) would be an
autonomous Markov Chain. In order to study whether the (1, λ)-CSA-ES diverges geo-
metrically, we investigate the log of the step-size change, whose formula can be imme-
diately deduced from Eq. 3:

ln

(
σt+1

σt

)
=

c

2dσ

(‖pt+1‖2
n

− 1

)
(4)

By summing up this equation from 0 to t− 1 we obtain

1

t
ln

(
σt

σ0

)
=

c

2dσ

(
1

t

t∑

k=1

‖pk‖2
n

− 1

)

. (5)

We are interested to know whether 1
t ln(σt/σ0) converges to a constant. In case this

constant is positive this will prove that the (1, λ)-CSA-ES diverges geometrically. We
recognize thanks to (5) that this quantity is equal to the sum of t terms divided by t that
suggests the use of the law of large numbers to prove convergence of (5). We will start
by investigating the case without cumulation c = 1 (Section 3) and then the case with
cumulation (Section 4).
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3 Divergence Rate of (1, λ)-CSA-ES without Cumulation

In this section we study the (1, λ)-CSA-ES without cumulation, i.e. c = 1. In this case,
the path always equals to the selected step, i.e. for all t, we have pt+1 = ξ�t . We have
proven in Lemma 1 that ξ�t are i.i.d. according to ξ. This allows us to use the standard
law of large numbers to find the limit of 1

t ln(σt/σ0) as well as compute the expected
log-step-size change.

Proposition 1. Let Δσ := 1
2dσn

(
E
(N 2

1:λ

)− 1
)
. On linear functions, the (1, λ)-CSA-

ES without cumulation satisfies (i) almost surely limt→∞ 1
t ln (σt/σ0) = Δσ, and (ii)

for all t ∈ N, E(ln(σt+1/σt)) = Δσ .

Proof. We have identified in Lemma 1 that the first coordinate of ξ�t is distributed
according to N1:λ and the other coordinates according to N (0, 1), hence E

(‖ξ�t ‖2
)

= E

(
[ξ�t ]1

2
)
+
∑n

i=2 E

(
[ξ�t ]

2
i

)
= E

(N 2
1:λ

)
+ n− 1. Therefore E

(‖ξ�t ‖2
)
/n− 1 =

(E
(N 2

1:λ

) − 1)/n. By applying this to Eq. (4), we deduce that E(ln(σt+1/σt) =
1/(2dσn)(E(N 2

1:λ) − 1). Furthermore, as E(N 2
1:λ) ≤ E((λN (0, 1))2) = λ2 < ∞,

we have E(‖ξ�t ‖2) < ∞. The sequence (‖ξ�t ‖2)t∈N being i.i.d according to Lemma 1,
and being integrable as we just showed, we can apply the strong law of large numbers
on Eq. (5). We obtain

1

t
ln

(
σt

σ0

)
=

1

2dσ

(
1

t

t−1∑

k=0

‖ξ�k‖2
n

− 1

)

a.s.−→
t→∞

1

2dσ

(
E
(‖ξ�· ‖2

)

n
− 1

)

=
1

2dσn

(
E
(N 2

1:λ

)− 1
)

�

The proposition reveals that the sign of

(
E
(N 2

1:λ

)− 1
)

determines whether the step-
size diverges to infinity. In the following, we show that E

(N 2
1:λ

)
increases in λ for

λ ≥ 2 and that the (1, λ)-ES diverges for λ ≥ 3. For λ = 1 and λ = 2, the step-size
follows a random walk on the log-scale.

Lemma 2. Let (Ni)i∈[[1,λ]] be independent random variables, distributed according to
N (0, 1), and Ni:λ the ith order statistic of (Ni)i∈[[1,λ]]. Then E

(N 2
1:1

)
= E

(N 2
1:2

)
=

1. In addition, for all λ ≥ 2, E
(N 2

1:λ+1

)
> E

(N 2
1:λ

)
.

Proof. (see [8] for the full proof) The idea of the proof is to use the symmetry of the
normal distribution to show that for two random variables U ∼ Ψ1:λ+1 and V ∼ Ψ1:λ,
for every event E1 where U2 < V 2, there exists another event E2 counterbalancing the
effect of E1, i.e

∫
E2

(u2 − v2)fU,V (u, v) du dv =
∫
E1

(v2 − u2)fU,V (u, v) du dv, with

fU,V the joint density of the couple (U, V ). We then have E
(N 2

1:λ+1

) ≥ E
(N 2

1:λ

)
. As

there is a non-negligible set of events E3, distinct of E1 and E2, where U2 > V 2, we
have E(N 2

1:λ+1) > E(N 2
1:λ).

For λ = 1, N1:1 ∼ N (0, 1) so E(N 2
1:1) = 1. For λ = 2 we have E(N 2

1:2 + N 2
2:2) =

2E(N (0, 1)2) = 2, and since the normal distribution is symmetric E(N 2
1:2) = E(N 2

2:2),
hence E(N 2

1:2) = 1. �
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We can now link Proposition 1 and Lemma 2 into the following theorem:

Theorem 1. On linear functions, for λ ≥ 3, the step-size of the (1, λ)-CSA-ES without
cumulation (c = 1) diverges geometrically almost surely and in expectation at the rate
1/(2dσn)(E(N 2

1:λ)− 1), i.e.

1

t
ln

(
σt

σ0

)
a.s.−→
t→∞ E

(
ln

(
σt+1

σt

))
=

1

2dσn

(
E
(N 2

1:λ

)− 1
)

. (6)

For λ = 1 and λ = 2, without cumulation, the logarithm of the step-size does an
additive unbiased random walk i.e. lnσt+1 = lnσt + Wt where E[Wt] = 0. More
precisely Wt ∼ 1/(2dσ)(χ

2
n/n−1) for λ = 1, and Wt ∼ 1/(2dσ)((N 2

1:2+χ2
n−1)/n−

1) for λ = 2, where χ2
k stands for the chi-squared distribution with k degree of freedom.

Proof. For λ > 2, from Lemma 2 we know that E(N 2
1:λ) > E(N 2

1:2) = 1. Therefore
E(N 2

1:λ) − 1 > 0, hence Eq. (6) is strictly positive, and with Proposition 1 we get that
the step-size diverges geometrically almost surely at the rate 1/(2dσ)(E(N 2

1:λ)− 1).
With Eq. 4 we have ln(σt+1) = ln(σt) + Wt, with Wt = 1/(2dσ)(‖ξ�t ‖2/n − 1).
For λ = 1 and λ = 2, according to Lemma 2, E(Wt) = 0. Hence ln(σt) does an
additive unbiased random walk. Furthermore ‖ξ‖2 = N 2

1:λ +χ2
n−1, so for λ = 1, since

N1:1 = N (0, 1), ‖ξ‖2 = χ2
n. �


In [8] we extend this result on the step-size to |[Xt]1|, which diverges geometrically
almost surely at the same rate.

4 Divergence Rate of (1, λ)-CSA-ES with Cumulation

We are now investigating the (1, λ)-CSA-ES with cumulation, i.e. 0 < c < 1. The path
P is then a Markov chain and contrary to the case where c = 1 we cannot apply a
LLN for independent variables to Eq. (5) in order to prove the almost sure geometric
divergence. However LLN for Markov chains exist as well, provided the Markov chain
satisfies some stability properties: in particular, if the Markov chain P is ϕ-irreducible,
that is, there exists a measure ϕ such that every Borel set A of Rn with ϕ(A) > 0 has
a positive probability to be reached in a finite number of steps by P starting from any
p0 ∈ R

n. In addition, the chain P needs to be (i) positive, that is the chain admits
an invariant probability measure π, i.e., for any borelian A, π(A) =

∫
Rn P (x,A)π(A)

with P (x,A) being the probability to transition in one time step from x into A, and (ii)
Harris recurrent which means for any borelian A such that ϕ(A) > 0, the chain P visits
A an infinite number of times with probability one. Under those conditions, P satisfies
a LLN, more precisely:

Lemma 3. [11, 17.0.1] Suppose that P is a positive Harris chain with invariant prob-
ability measure π, and let g be a π-integrable function such that
π(|g|) = ∫

Rn |g(x)|π(dx) < ∞. Then 1/t
∑t

k=1 g(pk)
a.s−→

t→∞ π(g).

The path P satisfies the conditions of Lemma 3 and exhibits an invariant measure [8].
By a recurrence on Eq. (2) we see that the path follows the following equation
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pt = (1− c)tp0 +
√
c(2− c)

t−1∑

k=0

(1− c)k ξ�t−1−k︸ ︷︷ ︸
i.i.d.

. (7)

For i �= 1, [ξ�t ]i ∼ N (0, 1) and, as also [p0]i ∼ N (0, 1), by recurrence [pt]i ∼
N (0, 1) for all t ∈ N. For i = 1 with cumulation (c < 1), the influence of [p0]1
vanishes with (1 − c)t. Furthermore, as from Lemma 1 the sequence ([ξ�t ]1])t∈N is
independent, we get by applying the Kolgomorov’s three series theorem that the series∑t−1

k=0(1 − c)k
[
ξ�t−1−k

]
1

converges almost surely. Therefore, the first component of

the path becomes distributed as the random variable [p∞]1 =
√

c(2− c)
∑∞

k=0(1 −
c)k[ξ�k]1 (by re-indexing the variable ξ�t−1−k in ξ�k, as the sequence (ξ�t )t∈N is i.i.d.).

We now obtain geometric divergence of the step-size and get an explicit estimate of
the expression of the divergence rate.

Theorem 2. The step-size of the (1, λ)-CSA-ES with λ ≥ 2 diverges geometrically fast
if c < 1 or λ ≥ 3. Almost surely and in expectation we have for 0 < c ≤ 1,

1

t
ln

(
σt

σ0

)
−→
t→∞

1

2dσn

(
2(1− c)E (N1:λ)

2
+ c

(
E
(N 2

1:λ

)− 1
))

︸ ︷︷ ︸
>0 for λ≥3 and for λ=2 and c<1

. (8)

Proof. For proving almost sure convergence of ln(σt/σ0)/t we need to use the LLN for
Markov chain. We refer to [8] for the proof that P satisfies the right assumptions. We
now focus on the convergence in expectation. From Eq. (4) we have E(ln(σt+1/σt)) =

c/(2dσ)(E(‖pt+1‖2)/n− 1), so E(‖pt+1‖2) = E(
∑n

i=1

[
pt+1

]2
i
) is the term we have

to analyse. From Eq. (7) and its conclusions we get that for j �= 1 [pt]j ∼ N (0, 1), so

E(
∑n

j=1

[
pt+1

]2
j
) = E(

[
pt+1

]2
1
) + (n − 1). When t goes to infinity, the influence of

[p0]1 in this equation goes to 0 with (1 − c)t+1, so we can remove it when taking the
limit:

lim
t→∞E

([
pt+1

]2
1

)
= lim

t→∞E

((√
c(2− c)

t∑

i=0

(1 − c)i
[
ξ�t−i

]
1

)2)
(9)

We will now develop the sum with the square, such that we have either a product[
ξ�t−i

]
1

[
ξ�t−j

]
1

with i �= j, or
[
ξ�t−j

]2
1
. This way, we can separate the variables by

using Lemma 1 with the independence of ξ�i over time. To do so, we use the develop-
ment formula (

∑n
i=1 an)

2 = 2
∑n

i=1

∑n
j=i+1 aiaj +

∑n
i=1 a

2
i . We take the limit of

E(
[
pt+1

]2
1
) and find that it is equal to

lim
t→∞ c(2−c)

⎛

⎜
⎜
⎜
⎝
2

t∑

i=0

t∑

j=i+1

(1−c)i+j
E

([
ξ�t−i

]
1

[
ξ�t−j

]
1

)

︸ ︷︷ ︸
=E[ξ�

t−i]1E[ξ
�
t−j]1=E[N1:λ]2

+

t∑

i=0

(1−c)2i E
([

ξ�t−i

]2
1

)

︸ ︷︷ ︸
=E[N 2

1:λ]

⎞

⎟
⎟
⎟
⎠

(10)
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Now the expected value does not depend on i or j, so what is left is to calculate∑t
i=0

∑t
j=i+1(1 − c)i+j and

∑t
i=0(1 − c)2i. We have

∑t
i=0

∑t
j=i+1(1 − c)i+j =

∑t
i=0(1−c)2i+1 1−(1−c)t−i

1−(1−c) and when we separates this sum in two, the right hand side

goes to 0 for t → ∞. Therefore, the left hand side converges to limt→∞
∑t

i=0(1 −
c)2i+1/c, which is equal to limt→∞(1 − c)/c

∑t
i=0(1 − c)2i. And

∑t
i=0(1 − c)2i is

equal to (1 − (1 − c)2t+2)/(1 − (1 − c)2), which converges to 1/(c(2 − c)). So, by

inserting this in Eq. (10) we get that E
([

pt+1

]2
1

)
−→
t→∞ 2 1−c

c E (N1:λ)
2 + E

(N 2
1:λ

)
,

which gives us the right hand side of Eq. (8).
By summing E(ln(σi+1/σi)) for i = 0, . . . , t − 1 and dividing by t we have the

Cesaro mean 1/tE(ln(σt/σ0)) that converges to the same value that E(ln(σt+1/σt))
converges to when t goes to infinity. Therefore we have in expectation Eq. (8).

According to Lemma 2, for λ = 2, E(N 2
1:2) = 1, so the RHS of Eq. (8) is equal to

(1− c)/(dσn)E(N1:2)
2. The expected value of N1:2 is strictly negative, so the previous

expression is strictly positive. Furthermore, according to Lemma 2, E(N 2
1:λ) increases

with λ, as does E(N1:2)
2. Therefore we have geometric divergence for λ ≥ 2. �


From Eq. (1) we see that the behavior of the step-size and of (Xt)t∈N are directly re-
lated. Geometric divergence of the step-size, as shown in Theorem 2, means that also the
movements in search space and the improvements on affine linear functions f increase
geometrically fast. Therefore, as we showed in Theorem 2 geometric divergence for the
step-size when λ ≥ 2 and c < 1, or when λ ≥ 3, we expect geometric divergence on the
first dimension of (Xt)t∈N (the first dimension being the only dimension with selec-
tion pressure). Analyzing (Xt)t∈N with cumulation requires to study a double Markov
chain, which is left to possible future research.

5 Study of the Variations of ln (σt+1/σt)

The proof of Theorem 2 shows that the step size increase converges to the right hand
side of Eq. (8), for t → ∞. When the dimension increases this increment goes to
zero, which also suggests that it becomes more likely that σt+1 is smaller than σt. To
analyze this behavior, we study the variance of ln (σt+1/σt) as a function of c and the
dimension.

Theorem 3. The variance of ln (σt+1/σt) equals to

Var

(
ln

(
σt+1

σt

))
=

c2

4d2σn
2

(
E

([
pt+1

]4
1

)
− E

([
pt+1

]2
1

)2
+ 2(n− 1)

)
. (11)

Furthermore, E
([

pt+1

]2
1

)
−→
t→∞ E

(N 2
1:λ

)
+ 2−2c

c E (N1:λ)
2 and with a = 1− c

lim
t→∞E

([
pt+1

]4
1

)
=

(1 − a2)2

1− a4
(k4 + k31 + k22 + k211 + k1111) , (12)

where k4=E
(N 4

1:λ

)
, k31 = 4

a(1+a+2a2)
1−a3 E

(N 3
1:λ

)
E (N1:λ), k22 = 6 a2

1−a2E
(N 2

1:λ

)2
,

k211=12a3(1+2a+3a2)
(1−a2)(1−a3) E

(N 2
1:λ

)
E(N1:λ)

2 and k1111 = 24 a6

(1−a)(1−a2)(1−a3)E (N1:λ)
4.
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Proof.

Var

(
ln

(
σt+1

σt

))
= Var

(
c

2dσ

(‖pt+1‖2
n

− 1

))
=

c2

4d2σn
2

Var
(‖pt+1‖2

)

︸ ︷︷ ︸
E(‖pt+1‖4)−E(‖pt+1‖2)2

(13)
The first part of Var(‖pt+1‖2), E(‖pt+1‖4), is equal to E((

∑n
i=1

[
pt+1

]2
i
)2). We de-

velop it along the dimensions such that we can use the independence of [pt+1]i with

[pt+1]j for i �= j, to get E(2
∑n

i=1

∑n
j=i+1

[
pt+1

]2
i

[
pt+1

]2
j
+
∑n

i=1

[
pt+1

]4
i
). For i �=

1
[
pt+1

]
i

is distributed according to a standard normal distribution, so E

([
pt+1

]2
i

)
=

1 and E

([
pt+1

]4
i

)
= 3.

E
(‖pt+1‖4

)
= 2

n∑

i=1

n∑

j=i+1

E

([
pt+1

]2
i

)
E

([
pt+1

]2
j

)
+

n∑

i=1

E

([
pt+1

]4
i

)

=

⎛

⎝2

n∑

i=2

n∑

j=i+1

1

⎞

⎠+ 2

n∑

j=2

E

([
pt+1

]2
1

)
+

(
n∑

i=2

3

)

+ E

([
pt+1

]4
1

)

=

(

2

n∑

i=2

(n− i)

)

+ 2(n− 1)E
([

pt+1

]2
1

)
+ 3(n− 1) + E

([
pt+1

]4
1

)

= E

([
pt+1

]4
1

)
+ 2(n− 1)E

([
pt+1

]2
1

)
+ (n− 1)(n+ 1)

The other part left is E(‖pt+1‖2)2, which we develop along the dimensions to get

E(
∑n

i=1

[
pt+1

]2
i
)2 = (E(

[
pt+1

]2
1
)+ (n− 1))2, which equals to E(

[
pt+1

]2
1
)2 +2(n−

1)E(
[
pt+1

]2
1
) + (n− 1)2. So by subtracting both parts we get

E(‖pt+1‖4)−E(‖pt+1‖2)2 = E(
[
pt+1

]4
1
)−E(

[
pt+1

]2
1
)2+2(n− 1), which we insert

into Eq. (13) to get Eq. (11).
The development of E(

[
pt+1

]2
1
) is the same than the one done in the proof of Theo-

rem 2. We refer to [8] for the development of E(
[
pt+1

]4
1
), since limits of space in the

paper prevents us to present it here. �

Figure 1 shows the time evolution of ln(σt/σ0) for 5001 runs and c = 1 (left) and

c = 1/
√
n (right). By comparing Figure 1a and Figure 1b we observe smaller variations

of ln(σt/σ0) with the smaller value of c.
Figure 2 shows the relative standard deviation of ln (σt+1/σt) (i.e. the standard de-

viation divided by its expected value). Lowering c, as shown in the left, decreases the
relative standard deviation. To get a value below one, c must be smaller for larger di-
mension. In agreement with Theorem 3, In Figure 2, right, the relative standard de-
viation increases like

√
n with the dimension for constant c (three increasing curves).

A careful study [8] of the variance equation of Theorem 3 shows that for the choice
of c = 1/(1 + nα), if α > 1/3 the relative standard deviation converges to 0 with
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number of iterations

(a) Without cumulation (c = 1)
number of iterations

(b) With cumulation (c = 1/
√
20)

Fig. 1. ln(σt/σ0) against t. The different curves represent the quantiles of a set of 5.103 + 1
samples, more precisely the 10i-quantile and the 1 − 10−i-quantile for i from 1 to 4; and the
median. We have n = 20 and λ = 8.

Fig. 2. Standard deviation of ln (σt+1/σt) relatively to its expectation. Here λ = 8. The curves
were plotted using Eq. (11) and Eq. (12). On the left, curves for (right to left) n = 2, 20, 200
and 2000. On the right, different curves for (top to bottom) c = 1, 0.5, 0.2, 1/(1 + n1/4),
1/(1 + n1/3), 1/(1 + n1/2) and 1/(1 + n).

√
(n2α + n)/n3α. Taking α = 1/3 is a critical value where the relative standard devi-

ation converges to 1/(
√
2E(N1:λ)

2). On the other hand, lower values of α makes the
relative standard deviation diverge with n(1−3α)/2.

6 Summary

We investigate throughout this paper the (1, λ)-CSA-ES on affine linear functions com-
posed with strictly increasing transformations. We find, in Theorem 2, the limit distri-
bution for ln(σt/σ0)/t and rigorously prove the desired behaviour of σ with λ ≥ 3 for
any c, and with λ = 2 and cumulation (0 < c < 1): the step-size diverges geometrically
fast. In contrast, without cumulation (c = 1) and with λ = 2, a random walk on ln(σ)
occurs, like for the (1, 2)-σSA-ES [9] (and also for the same symmetry reason). We de-
rive an expression for the variance of the step-size increment. On linear functions when
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c = 1/nα, for α ≥ 0 (α = 0 meaning c constant) and for n → ∞ the standard de-
viation is about

√
(n2α + n)/n3α times larger than the step-size increment. From this

follows that keeping c < 1/n1/3 ensures that the standard deviation of ln(σt+1/σt)
becomes negligible compared to ln(σt+1/σt) when the dimensions goes to infinity.
That means, the signal to noise ratio goes to zero, giving the algorithm strong stability.
The result confirms that even the largest default cumulation parameter c = 1/

√
n is a

stable choice.
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