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Abstract. This paper analyses the behaviour of the (1, λ)-σSA-ES with
deterministic two-point rule when applied to a linear problem with a
single linear constraint. Equations that describe the single-step behaviour
of the strategy are derived and then used to predict the strategy’s multi-
step behaviour. The findings suggest that mutative self-adaptation will
result in convergence of the (1, λ)-ES to non-stationary points if the angle
between the gradient vector of the objective function and the normal
vector of the constraint plane is small. Comparisons with the behaviour of
evolution strategies that employ other step size adaptation mechanisms
are drawn.

1 Introduction

Step size adaptation mechanisms and constraint handling techniques are impor-
tant components of evolutionary algorithms (EAs) for constrained real valued
optimisation. Most step size adaptation mechanisms have been devised with un-
constrained optimisation in mind. Conversely, constraint handling techniques are
often designed without much thought to their impact on step size adaptation.
Schwefel [16] as early as the 1970s showed that a commonly employed step size
adaptation mechanism may result in convergence to non-stationary points in an
environment as simple as a linear problem with a single linear constraint.

An understanding of the interaction between step size adaptation mechanisms
and constraint handling techniques is crucial for the design of EAs for constrained
real valued optimisation. The Handbook of Evolutionary Computation [5, page
B2.4:11f] lists a small number of studies that consider the behaviour of evolution
strategies applied to simple constrained problems. Rechenberg [14] studies the
performance of the (1+1)-ES1 for the axis-aligned corridor model. Schwefel [16]
considers the performance of the (1, λ)-ES in the same environment. Beyer [6]
analyses the performance of the (1 + 1)-ES for a constrained, discus-like func-
tion. All of those have in common that the constraint planes are oriented such
that their normal vectors are perpendicular to the gradient vector of the ob-
jective function. In contrast, Schwefel’s work [16] suggests that convergence to

1 See [9] for an explanation of the (μ/ρ +, λ) terminology.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 82–91, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



On the Behaviour of the (1, λ)-σSA-ES for a Constrained Linear Problem 83

non-stationary points may occur in situations where the angle between those vec-
tors, which we refer to as the constraint angle, is small. Studying the behaviour
of EAs applied to a linear problem with a linear constraint of general orientation
is fundamental as owing to Taylor’s theorem, any smooth problem will appear in-
creasingly linear as the step size of the strategy decreases. Arnold and Brauer [3]
derive analytical results for the (1 + 1)-ES with success probability based step
size adaptation and provide a quantitative confirmation of Schwefel’s findings.
More recent work [2, 1] analyses the behaviour of the (1, λ)-ES with cumula-
tive step size adaptation for the constrained linear problem and compares two
constraint handling techniques. It is found that convergence to non-stationary
points in the face of small constraint angles is not unique to success probability
based step size adaptation mechanisms.

The goal of this paper is to study the behaviour of the (1, λ)-σSA-ES, i.e.,
the (1, λ)-ES that employs mutative self-adaptation [16, 13] for step size control,
when applied to a linear problem with a single linear constraint of general orien-
tation. We assume that constraints are handled by resampling infeasible offspring
candidate solutions. The work complements prior research that analyses the be-
haviour of mutative self-adaptation in unconstrained settings, including that by
Hansen [10] who considers unconstrained linear problems, Beyer [7, 8] who con-
siders spherically symmetric functions, and Meyer-Nieberg and Beyer [12] and
Arnold and MacLeod [4] who consider ridge functions.

The remainder of this paper is organised as follows. Section 2 briefly describes
the problem and the evolution strategy considered. Section 3 derives equations
describing the single-step behaviour of the strategy. Section 4 considers multiple
time steps and employs the balance criterion proposed by Lunacek and Whit-
ley [11] in order to predict whether the strategy converges to a non-stationary
point of the objective function. Section 5 concludes with a brief discussion of
the findings and contrasts them with corresponding results for other step size
adaptation mechanisms.

2 Problem and Algorithm

As in [3, 2, 1], throughout this paper we consider the problem of maximising2 a
linear function f : Rn → R, n ≥ 2, with a single linear constraint. We assume
that the gradient vector of the objective function forms an acute angle with
the normal vector of the constraint plane. Without loss of generality, we choose
a Euclidean coordinate system with its origin located on the constraint plane,
and with its axes oriented such that the x1-axis coincides with the gradient
direction ∇f , and the x2-axis lies in the two-dimensional plane spanned by
the gradient vector and the normal vector of the constraint plane. The angle
between those two vectors is referred to as the constraint angle and denoted
by θ as illustrated in Fig. 1. Constraint angles of interest are in the open interval
(0, π/2). The unit normal vector of the constraint plane expressed in the chosen

2 Strictly speaking, the task is one of amelioration rather than maximisation, as a
finite maximum does not exist. We do not make that distinction here.
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Fig. 1. Linear objective function with a single linear constraint. The subspace spanned
by the x1- and x2-axes is shown. The shaded area is the feasible region. The parental
candidate solution x of the (1, λ)-ES is at a distance g(x) from the constraint plane.

coordinate system is n = 〈cos θ, sin θ, 0, . . . , 0〉. The signed distance of a point
x = 〈x1, x2, . . . , xn〉 ∈ R

n from the constraint plane is thus g(x) = −n · x =
−x1 cos θ − x2 sin θ, resulting in the optimisation problem

maximise f(x) = x1

subject to g(x) = −x1 cos θ − x2 sin θ ≥ 0 .

Notice that due to the choice of coordinate system, variables x3, x4, . . . , xn enter
neither the objective function nor the constraint inequality.

Assuming a feasible initial candidate solution x ∈ R
n and initial step size

parameter σ > 0, the (1, λ)-σSA-ES generates a sequence of further candidate
solutions by iterating the following three steps [16]:

1. Generate λ feasible offspring candidate solutions y(i) = x + σz(i), i =
1, . . . , λ, where the z(i) ∈ R

n are vectors with components drawn indepen-
dently from normal distributions with mean zero and offspring dependent
standard deviation ξi.

2. Evaluate f(x(i)) for i = 1 . . . , λ and let (1;λ) denote index of the offspring
candidate solution with the largest objective function value.

3. Replace the parental candidate solution and update the step size parameter
according to

x← y(1;λ)

σ ← σξ1;λ .

Vectors z(i) are referred to as mutation vectors, step size parameter σ is referred
to as the mutation strength, and the ξi are referred to as step size modifiers.
Notice that Step 1 may require generating more than λ offspring as infeasible
candidate solutions are rejected immediately. However, for the problem under
consideration on average no more than 2λ offspring need to be sampled per
iteration.

The expected length of mutation vector z(i) is proportional to step size modi-
fier ξi. The underlying proposition of mutative self-adaptation is that if offspring
candidate solutions are generated with differing expected lengths of their mu-
tation vectors, then selection of appropriate step sizes becomes a by-product of
evolution. Common choices for the distribution of the ξi include [15]:
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log-normal: ξi = exp(τN (0, 1)) where N (0, 1) denotes a standard normally dis-
tributed random variate sampled anew for each i

two-point: ξi = β > 1 with probability one half and ξi = 1/β otherwise

deterministic two-point: ξi = β > 1 if 1 ≤ i ≤ λ/2 and ξi = 1/β otherwise.

Constants τ (for log-normal) and β (for two-point and deterministic two-point)
need to be chosen large enough to result in meaningful differences between the
distributions of the offspring they control while being small enough not to ren-
der step size control excessively noisy. Rechenberg [15] recommends β = 1.3 for
the two-point rule. As shown in the context of spherically symmetric functions,
the log-normal and two-point operators can be made to behave very similarly if
the parameters τ and β are chosen appropriately [8]. For simplicity, in this paper
only the deterministic two-point operator is considered.

If the (1, λ)-ES is run on the constrained linear problem described above and
the mutation strength σ is held constant, then the distance of the parental candi-
date solution from the constraint plane will assume a time-invariant distribution.
Largermutation strengths will result in faster progress. If the mutation strength is
not fixed but instead allowed to vary under the control of some step size adaptation
mechanism, then step sizes will either increase or decrease indefinitely. Decreasing
step sizes result in convergence to a non-stationary point; increasing step sizes re-
sult in continually accelerating progress and are thus desirable.

3 Single-Step Behaviour

Let δ = g(x)/σ denote the normalised distance of the parental candidate so-
lution x from the constraint plane. As infeasible offspring are resampled, the
probability distribution of the z1- and z2-components of mutation vectors of
feasible offspring candidate solutions generated with step size modifier ξ is a
truncated normal distribution with joint density

p1,2(x, y | ξ) =
⎧
⎨

⎩

1

2πξ2Φ(δ/ξ)
e−

1
2 (x

2+y2)/ξ2 if δ ≥ x cos θ + y sin θ

0 otherwise
(1)

where Φ(x) is the cumulative distribution function of the standard normal dis-
tribution. The normalising term Φ(δ/ξ) equals the probability that a randomly
generated offspring candidate solution is feasible. The marginal density of the
z1-component is

p1(x | ξ) =
∫ ∞

−∞
p1,2(x, y | ξ) dy

=
1√

2πξΦ(δ/ξ)
e−

1
2 (x/ξ)

2

Φ

(
δ − x cos θ

ξ sin θ

)

. (2)

We write P1(x | ξ, δ) for the corresponding cumulative distribution function. The
density of the z2-component conditional on the value of the z1-component is

p2(y | z1 = x, ξ) =
p1,2(x, y | ξ)
p1(x | ξ) . (3)
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Integration of the probability density yields

P2(y | z1 = x, ξ) =

⎧
⎨

⎩

Φ(y/ξ)

Φ((δ − x cos θ)/(ξ sin θ))
if y <

δ − x cos θ

sin θ

1 otherwise

(4)

for the conditional cumulative distribution function of the z2-component.
An important quantity to consider is the probability P+ that the offspring

candidate solution that is selected to replace the parent is one generated with
step size modifier ξ = β (as opposed to ξ = 1/β). That probability is of course
also the probability that the step size of the strategy increases in the present
step. As selection is based purely on the z1-components of the mutation vectors,
the cumulative distribution function of the z1-component of the best of the λ/2
offspring candidate solutions generated with step size modifier ξ is

Qξ(x) = P
λ/2
1 (x | ξ) .

The corresponding probability density function is

qξ(x) =
d

dx
Qξ(x) =

λ

2
p1(x | ξ)Pλ/2−1

1 (x | ξ) .

Probability P+ is obtained by integrating the probability that the best offspring
candidate solution generated with step size modifier β is superior to the best
one generated with step size modifier 1/β and thus equals

P+ =

∫ ∞

−∞
qβ(x)Q1/β(x) dx . (5)

Figure 2 illustrates how this probability depends on the normalised parental
distance from the constraint plane and on the magnitude of the step size modifier.
The plots have been generated from Eq. (5) and are for β = 1.3 in the left hand
graph and for θ = π/8 in the right hand one. If the parental candidate solution
is far from the constraint plane, then the probability of generating an infeasible
candidate solution that needs to be resampled is small and P+ is independent
of the constraint angle and exceeds one half. With decreasing distance from the
constraint plane, P+ decreases. Depending on the values of λ and θ it may either
decrease below one half or remain above. Larger values of λ generally result in
larger values of P+. The curves in the right hand graph are monotonic and start
at a value of one half for β = 1, suggesting that the choice of the step size
modifier does not impact whether P+ exceeds one half or not.

4 Multi-Step Behaviour

The results derived up to this point depend on the normalised distance δ of the
parental candidate solution from the constraint plane. Assuming for now that
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Fig. 2. Probability P+ that a candidate solution generated with mutation strength
modifier ξ = β is selected as the next parental candidate solution plotted against the
normalised parental distance δ from the constraint plane and against the magnitude
of the step size modifier β

the mutation strength is fixed, if the strategy is iterated the normalised distance
from the constraint plane evolves according to

δ(t+1) = δ(t) − z
(1;λ)
1 cos θ − z

(1;λ)
2 sin θ (6)

where superscripts on δ denote time and those on z1 and z2 indicate the offspring
candidate solution selected to replace the parent. The cumulative distribution
function of δ(t+1) conditional on δ(t) = δ is obtained using Eq. (6) by integrating
the probability that δ(t+1) < y, yielding

P
(t+1)
δ (y | δ(t) = δ) = Prob

[
δ(t+1) < y

∣
∣
∣ δ(t) = δ

]

=

∫ ∞

−∞
qβ(x)Q1/β(x)

[

1− P2

(
δ − y − x cos θ

sin θ

∣
∣
∣
∣ z1 = x, ξ = β

)]

dx

+

∫ ∞

−∞
q1/β(x)Qβ(x)

[

1− P2

(
δ − y − x cos θ

sin θ

∣
∣
∣
∣ z1 = x, ξ = 1/β

)]

dx

where conditional probability P2(·|·) is given in Eq. (4). Computing the derivative

with respect to y yields conditional probability density p
(t+1)
δ (y | δ(t) = δ).

For fixed mutation strength σ, the distance δ of the parental candidate solution
from the constraint plane assumes a time-invariant limit distribution the density
of which satisfies the evolution equation

pδ(y) =

∫ ∞

0

pδ(x)pδ(y|x) dx (7)

where the conditional density is that derived above. An approximation to the sta-
tionary limit distribution can be derived using the approach pursued by Beyer [8]
in a different context: Expand the unknown distribution at time step t into a
Gram-Charlier series with unknown cumulants. Then determine cumulants at



88 D.V. Arnold

time step t+1 using Eq. (7). Considering cumulants up to the kth and imposing
equality constraints on the cumulants yields a system of k equations in the k
unknown cumulants. In the simplest case, only a single cumulant (the mean) is
considered, and the equality constraint is

E
[
δ(t+1)

∣
∣
∣ δ(t) = δ

]
= δ (8)

which can be solved for the approximate average distance δ of the parental
candidate solution from the constraint plane.

The expected distance from the constraint plane after a time step conditional
on that distance before the time step is

E
[
δ(t+1)

∣
∣
∣ δ(t) = δ

]
=

∫ ∞

0

yp
(t+1)
δ (y | δ(t) = δ) dy

=
1

sin θ

∫ ∞

−∞
qβ(x)Q1/β(x)

∫ ∞

0

yp2

(
δ − y − x cos θ

sin θ

∣
∣
∣
∣ z1 = x, ξ = β

)

dy dx

+
1

sin θ

∫ ∞

−∞
q1/β(x)Qβ(x)

∫ ∞

0

yp2

(
δ − y − x cos θ

sin θ

∣
∣
∣
∣ z1 = x, ξ = 1/β

)

dy dx

where the conditional density p2(·|·) is given in Eq. (3). Solving the inner integrals
yields expression

E
[
δ(t+1)

∣
∣
∣ δ(t) = δ

]
=

∫ ∞

−∞
γβ(x)qβ(x)Q1/β(x) dx

+

∫ ∞

−∞
γ1/β(x)q1/β(x)Qβ(x) dx (9)

with

γξ(x) = δ − x cos θ +
ξ sin θ√

2π

exp(−((δ − x cos θ)/(ξ sin θ))2/2)

Φ((δ − x cos θ)/(ξ sin θ))

for the expected distance from the constraint plane after a time step conditional
on that distance before the time step.

Figure 3 illustrates how the average normalised distance from the constraint
plane and the probability P+ that an offspring candidate solution generated with
the larger step size modifier replaces the parent depend on the constraint angle.
The curves have been obtained by using Eq. (9) in Eq. (8) for β = 1.3, solving
for δ, and using the result in Eq. (5). The dots mark measurements made in
runs of the (1, λ)-ES with fixed step size. The average distance at which the
constraint plane is tracked decreases with decreasing constraint angle and with
increasing λ. The probability that an offspring candidate solution generated with
step size modifier ξ = β is selected to replace the parental candidate solution
decreases with decreasing constraint angle and with decreasing λ. It exceeds
one half for large constraint angles, but is below one half for small ones. The
accuracy of the predictions made based on the simple stationarity requirement
that considers the mean of the distribution only appears visually good for small
constraint angles.
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Fig. 3. Average normalised distance δ of the parental candidate solution from the
constraint plane and probability P+ of a candidate solution generated with step size
modifier ξ = β being selected to replace the parent plotted against constraint angle θ

If the mutation strength is not fixed but instead under the control of mutative
self-adaptation, then, depending on the number of offspring λ generated per time
step and the constraint angle θ, the strategy will either systematically reduce its
step size and converge to a non-stationary point, or it will increase the step size
and diverge. Clearly, for the constrained linear problem, which does not have
a finite optimum, the latter is desirable. In order to establish whether conver-
gence or divergence occurs, we employ the simple balance criterion proposed by
Lunacek and Whitley [11] in the context of ridge functions. Specifically, we con-
sider the probability P+ that the mutation strength increases in the strategy’s
stationary state for fixed step size. If that probability exceeds one half, then
divergence will occur; if it is below one half, then the strategy will converge.

Figure 4 illustrates how the minimum number of offspring required to avoid
convergence to a non-stationary point depends on the constraint angle. The
solid lines in both plots have been obtained by using Eq. (8) with β = 1.3 to
determine the stationary δ, using Eq. (5) to obtain the corresponding P+, and
then determining the smallest λ such that P+ exceeds one half. The points in
the left hand graph mark measurements made in runs of the (1, λ)-σSA-ES.
For each combination of λ and θ values considered, 100 runs of the strategy
(initialised with the parental candidate solution on the constraint plane and
σ = 1) were conducted until the mutation strength reached a value of either
10−20 (which is taken to be indicative of convergence) or 1020 (which is taken
to be indicative of divergence). If at least 90 of the 100 runs yielded the same
result, the location was marked with × (indicating convergence) or + (indicating
divergence). The quality of the predictions made on the basis of the simple
stationarity and balance criteria is excellent.

The right hand graph in Fig. 4 contrasts results for the (1, λ)-σSA-ES with
corresponding results for the (1 + 1)-ES with 1/5th-success rule [3] and the
(1, λ)-ES with cumulative step size adaptation [2]. The latter curves correspond
to, from top to bottom, values of the cumulation parameter of c = 0.5, 0.05,
and 0.005. In contrast to the (1+1)-ES, the (1, λ)-σSA-ES is capable of avoiding
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Fig. 4. Number of offspring λ per time step required to avoid convergence plotted
against the constraint angle θ. The identical solid curve in both plots represents results
for the (1, λ)-σSA-ES. The dashed lines in the right hand graph represent results for
the (1, λ)-ES with cumulative step size adaptation and several values of the cumulation
parameter. The vertical line in the right hand graph marks the constraint angle below
which the (1 + 1)-ES converges to a non-stationary point.

convergence for any value of θ. However, the number of offspring per time step
that is needed becomes very large as constraint angles become increasingly acute.
(The plots suggest that the value of λ required is inversely proportional to θ.)
In comparison, the (1, λ)-ES with cumulative step size adaptation manages to
avoid convergence using significantly smaller values of λ.

5 Discussion and Future Work

To conclude, we have analysed the behaviour of the (1, λ)-σSA-ES for a linear
problem with a single linear constraint of general orientation. A simple station-
arity requirement has been used to approximate the average distance of the
strategy from the constraint plane if the step size is fixed. The balance con-
dition proposed by Lunacek and Whitley [11] has then been used to establish
whether the adaptive strategy will converge to a non-stationary point or diverge.
It has been found that divergence, which is the desirable behaviour, for increas-
ingly acute constraint angles requires increasingly larger numbers of offspring
generated per time step. Compared to the (1, λ)-ES with cumulative step size
adaptation, for a given value of the constraint angle, the number of offspring
required by the (1, λ)-σSA-ES is much higher.

There are multiple opportunities for further improving the understanding of
the interaction of step size adaptation mechanisms and constraint handling tech-
niques using the approach pursued here. Obvious extensions include consider-
ing the log-normal and two-point rules in place of the deterministic two-point
rule, but differences are likely to be quantitative rather than qualitative. Re-
garding the (μ/μ, λ)-σSA-ES, it may be expected that the bias toward larger
step sizes that results from the arithmetic averaging of mutation strengths has a
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beneficial impact on the performance of the strategy, but the magnitude of that
effect remains to be seen. Further future work includes the consideration of other
constraint handling approaches, such as the simple repair mechanism previously
considered for the (1, λ)-ES with cumulative step size adaptation [1], and of
further constrained test problems.
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