
An Empirical Evaluation of O(1) Steepest

Descent for NK-Landscapes

Darrell Whitley, Wenxiang Chen, and Adele Howe

Colorado State University, Fort Collins, CO, USA

Abstract. New methods make it possible to do approximate steepest
descent in O(1) time per move for k-bounded pseudo-Boolean functions
using stochastic local search. It is also possible to use the average fit-
ness over the Hamming distance 2 neighborhood as a surrogate fitness
function and still retain the O(1) time per move. These are average com-
plexity results. In light of these new results, we examine three factors
that can influence both the computational cost and the effectiveness of
stochastic local search: 1) Fitness function: f(x) or a surrogate; 2) Local
optimum escape method: hard random or soft restarts; 3) Descent strat-
egy: next or steepest. We empirically assess these factors in a study of
local search for solving NK-landscape problems.

Keywords: Stochastic Local Search, NK-Landscapes, Surrogate
Fitness.

1 Introduction

The objective function for a number of combinatorial optimization problems, in-
cluding MAX-kSAT [10] and NK-Landscapes [5], can be expressed as k-bounded
pseudo-Boolean functions [7]. New results show that a form of approximate
steepest descent can be implemented that requires on average O(1) per move
for k-bounded pseudo-Boolean functions [9].

Let X represent the set of candidate solutions, where each solution is a binary
string of length N . Let z ∈ X be the current solution. Let the function N(z)
generate the neighbors of solution z under the Hamming distance 1 “bit-flip”
neighborhood. Thus, x ∈ N(z) denotes that x ∈ X is a neighbor of z. Typi-
cally, steepest descent Stochastic Local Search (SLS) requires O(N) time. Using
Walsh analysis it is possible to achieve an O(1) average time complexity for each
approximate steepest descent move [9].

The Walsh analysis makes it possible to compute the average fitness of the
neighborhood reachable via each of the potential next moves. Viewing the search
space as a tree rooted at the current solution z where x is a child of z such that
x ∈ N(z), it is also possible to compute neighborhood average of solutions reach-
able in two moves from vertex z via vertex x (i.e., these are the grandchildren
of z that are also children of x).

Avg(N(x)) = 1/N

N∑

i=1

f(yi) where yi ∈ N(x) and x ∈ N(z) (1)

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 92–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Empirical Evaluation of O(1) Steepest Descent for NK-Landscapes 93

Whitley and Chen [9] prove that approximate steepest descent using Avg(N(x))
as a surrogate function can execute in O(1) time.

In this paper we explore several decisions related to designing an effective local
search algorithm based on using Avg(N(x)). First, we explore whether there is
any advantage to using Avg(N(x)) as a surrogate fitness function over using
f(x). We hypothesize that more plateaus are found in NKq-landscapes, which
should favor the use of the Avg(N(x)) fitness function [1,8].

Second, a fundamental decision is what to do when a local optimum is encoun-
tered. One simple answer is to use a random restart. However, the proof of O(1)
complexity suggests that there is a significant advantage to using soft-restarts:
executing a small number of random moves to escape a local optimum, where
each move can be executed in O(1) time. The use of soft restarts transforms the
search into an Iterated Local Search algorithm [4]. Since a hard random restart
requires a complete O(N) reinitialization of the search, there is an advantage to
using random walks to escape local optima.

Finally, our new theoretical results now make it possible to perform both
steepest descent or next descent move selection in O(1) time. Given that there is
now no difference in cost, is there now an advantage to using steepest descent in
place of next descent?

Given the constant time O(1) move selection, we empirically evaluate the
impact of critical design decisions on performance for k-bounded pseudo-Boolean
NK-landscape and NKq-landscape problems. We control for runtime and assess
solution quality.

2 The Theoretical O(1) Result

This section briefly summarizes the theoretical results of Whitley and Chen [9].
Any discrete function f : {0, 1}N =⇒ R can be represented in the Walsh basis:

f(x) =

2n−1∑

i=0

wiψi(x)

where wi is a real-valued constant called a Walsh coefficient and ψi(x) = −1iT x

is a Walsh function that generates a sign. Alternatively, ψi(x) = −1bitcount(i∧x)

where bitcount(i∧ x) counts how many 1-bits are in the string produced by the
logical operation i ∧ x. The order of the ith Walsh function is bitcount(i).

Normally generating the Walsh coefficients requires that the entire search
space be enumerated. However, Rana et al. [6] show for the MAX-kSAT prob-
lem that if a function is composed of subfunctions, each of which is a function
over k Boolean variables, then the order of nonzero Walsh coefficients of the
corresponding subfunction fj is also bounded by 2k. This result holds for all
k-bounded pseudo-Boolean functions, including NK-Landscapes [2,3,7].

We will use a vector denoted by w′ to store the Walsh coefficients, which will
include the sign relative to solution x such that : w′

i(x) = wiψi(x).

94 D. Whitley, W. Chen, and A. Howe

We assume the Walsh coefficients and their signs have been computed for
some initial solution x. We will use b to index all of the Walsh coefficients in
vector w′(x). Let p be a string with exactly one bit set to 1. Let p ⊂ b denote
that bit p has value 1 in string b (i.e., p∧ b = p). We can then compute the sum
of all of the components in w′ that are affected when local search flips bit p.

Sp(x) =
∑

∀b, p⊂b

w′
b(x)

Let yp ∈ N(x) be the neighbor of string x generated by flipping bit p. Then
f(yp) = f(x)− 2(Sp(x)) for all yp ∈ N(x). Assuming yi ∈ N(x) and yj ∈ N(x),
then f(x) can be viewed as a constant in the local neighborhood and

Si(x) > Sj(x) ⇐⇒ f(yi) < f(yj)

and thus selecting the maximal Si(x) yields the minimal neighbor of f(x) [9].
If bit p is flipped, we must update element Sq by flipping the sign of the Walsh

coefficients that are jointly indexed by p.

Sq(yp) = Sq(x) − 2
∑

∀b,(p∧q)⊂b

w′
b(x)

∀b, if (p ⊂ b) then w′
b(yp) = −w′

b(x) else w′
b(yp) = w′

b(x)

The vector S needs to be initialized after the first local search move. After that,
only select elements of the vector S must be updated after a bit flip.

Whitley and Chen show that on average the expected number of elements in
the vector S that must be updated is O(1). The proof assumes those variables
that appear more than T times across all subfunctions become Tabu after 1 flip,
where T is a constant. All other variables can be flipped. A variable that is Tabu
remains Tabu for N bit flips. The exact number of the updates is k(k− 1)+1 =
O(1) when T is equal to the expected number of times a variable would appear in
a randomly generated subfunction of an NK-landscape. However, empirical data
suggest that no Tabu mechanism is necessary: during local search the waiting
time between bit flips for variables that appear more than T times across all
subfunctions is ≥ N .

For constant time steepest descent, it also must be true that there cannot be
too many unexploited improving moves. For example, assume that search starts
from an extremum, and every move is an improving move. To do true steepest
descent, we must use a priority queue in the form of a heap to select the best
improving move, which results in O(lg N) time to select the best improving
move. However, in practice, there are typically few improving moves. We can
implement approximate steepest descent as follows: assume that a threshold M
is selected. We will store the location of improving moves in a buffer B. Let |B|
denote the number of elements stored in B. If |B| ≤ M , then we will scan B
and select the steepest descent improving move. If |B| > M , then we sample M
moves from B (a form of “tournament selection”) and select the best improving
move from sample M . This yields an approximation to the steepest descent

An Empirical Evaluation of O(1) Steepest Descent for NK-Landscapes 95

improving move. In practice, we implemented true steepest descent because the
number of improving moves is typically small [9].
Avg(N(x)) (see equation 1) can also be computed in O(1) time on average.

Let ϕ′
p,j sum all Walsh coefficients of order j that reference bit p.

ϕ′
p,j(x) =

∑

∀b,bitcount(b)=j,p⊂b

w′
b(x)

We can now define the update for the vector S as follows, for yp ∈ N(x):

Si(x) =

k∑

j=1

ϕ′
i,j(x) and Si(yp) = Si(x) − 2

∑

∀b,(p∧i)⊂b

w′
b(x) (2)

We next define a new vector Z that computes a parallel result

Zi(x) =
k∑

j=1

jϕ′
i,j(x) and Zi(yp) = Zi(x)− 2

∑

∀b,(p∧i)⊂b

bitcount(b)(w′
b(x)) (3)

where bitcount(b) is a lookup table that stores the order of Walsh coefficient w′
b.

Whitley and Chen [9] prove that for any k-bounded pseudo-Boolean function,
when flipping bit p and moving from solution z to solutions x ∈ N(z):

Avg(N(x)) = Avg(N(z))− 2Sp(z) +
4

N
Zp(z) (4)

Note that the vector S and Z are updated using exactly the same Walsh coeffi-
cients. Thus the cost of updating vector Z is the same as the cost of updating
the vector S and the same O(1) average time complexity holds for computing
the approximate steepest descent move for Avg(N(x)).

3 Implementation Details

Algorithm 1, which we refer to as Walsh-LS, outlines the inputs which define 1)
the fitness function to use (eval), 2) the descent method to use (descMeth), and
3) the escape scheme to use when a local optimum is reached (escape). Algorithm
2 implements the Update of the S, Z and w vectors.

Descent decides on the bit to be flipped. Improving moves are stored in
the buffer. For the current experiments we implemented true steepest descent in
which the index of the best improving bit is returned as bestI, with ties being
broken randomly. For next descent, the first bit in buffer is returned.

Escape Method is triggered when the algorithm reaches a local optimum.
If escape is random walk then 10 bits are randomly flipped. Each bit flip requires
an update to the S vector; the cost on average is still O(1). If escape is random
restart then the S vector must be reinitialized at O(N) cost.

96 D. Whitley, W. Chen, and A. Howe

Algorithm 1. Sol ←Walsh-LS(eval, descMeth, escape)

1 bsfSol ← curSol ← Init() ; // current and best-so-far solutions

2 s, z, buffer ←WalshAnalysis(f, curSol) ;
3 while Termination criterion not met do
4 improve, bestI ← Descent(buffer, descMeth) ;
5 if improve == True then
6 w, s, z, buffer ← Update(w, s, z, buffer, bestI, eval);

7 curSol ← Flip(curSol, bestI) ; // flips the bestIth bit of curSol

8 else // local optimum: perturbs current solution

9 bsfSol ← Select(curSol, bsfSol) ; // select sol with better fitness

10 curSol ← Escape Method(curSol, escape) ;
11 for i in DifferentBit(bsfSol, curSol) do // for each different bit

12 w, s, z, buffer ← Update(w, s, z, buffer, i, eval);

13 bsfSol ← Select(curSol, bsfSol) ;
14 return bsfSol

3.1 Experiment Design

Our experiments explore how the use of the surrogate fitness function inter-
acts with the Descent and Escape methods. Based on our understanding of the
surrogate fitness function, we posit two hypotheses.

1. The low complexity and the lookahead nature of the surrogate will support
superior performance on problems where plateaus frequently appear in the

Algorithm 2. w, s, z, buffer ← Update(w, s, z, buffer, p, eval)

1 s[p] ← -s[p];
2 for each q interacts with p do // update s vector

3 for each w[i] touching both p and q do
4 s[q] ← s[q] - 2 * w[i];

5 if eval is f(x) then
6 for each s[i] touching p do // update buffer
7 if s[i] is an improving move then buffer ← append(buffer, i);

8 else // eval is Avg(N(f))
9 z[p] ← -z[p];

10 for each q interacts with p do // update z vector

11 for each w[i] touching both p and q do
12 z[q] ← z[q] - 2 * Order(w[i]) * w[i];

13 for each z[i] touching p do // update buffer
14 if z[i] is an improving move then buffer ← append(buffer, i);

15 For each w[i] touching p do w[i] ← -w[i] \\ update Walsh coefficients

An Empirical Evaluation of O(1) Steepest Descent for NK-Landscapes 97

fitness landscape, as is the case for NKq-landscapes. Because of the low
complexity of evaluating the possible moves, the effect may be independent of
descent method, but because different descents may lead to different portions
of the search space, it would not be surprising to find an interaction effect.

2. Performing an O(1) cost random walk upon reaching a local optimum should
provide an advantage over an O(N) cost hard random restart. This effect
should become more pronounced as the problem size increases.

We chose NKq-landscapes with q=2 to increase the occurrence of plateaus. We
limited the values of K to 2, 4 and 8 and N to 50, 100, 200 and 500 for two
reasons. First, using the fast Walsh update is only advantageous when N �
2k. Second, for K > 8 the random nature of the subfunctions used in NK-
landscapes makes such problems become increasingly random and disordered
as K increases. We randomly generated 24 problems, one for each combination
of problem type, K and N value. Each combination of factors was run for 30
trials on each problem. The computational platform was Fedora 16 using Xeon
Processor E5450 at 3.00GHz. All algorithms are implemented in Python 2.7.2.

To control for the amount of computation done in each configuration, we
counted the number of times that Update is executed and terminated a trial
when the number is 100×N . Normally the number of fitness evaluations would
be counted. However, Walsh-LS requires only partial fitness evaluation (line 6
and line 12 in Algorithm 1) and we count only the updates that need to be
recomputed. This gives a clear advantage to random walk over random restart
as an escape mechanism. A single random restart uses N updates because O(N)
of the elements stored in vector S must be updated. A random walk of length
10 does 10 updates to the S vector.

3.2 Solution Quality

Without a baseline, it can be difficult to know whether differences in performance
are meaningful. Observed quality may be near optimal (producing a floor effect)
or far away, suggesting considerable room for improvement. In addition, observed
differences may be small or mitigated by variance in results across trials. To
establish a “best” solution, we run SLS with steepest descent and random walk
for both fitness functions 50 times longer than in the normal experiments and
harvest the overall Best solution. Then we normalize solution quality to the

value (f(x)−Best
Best) for each problem instance.

Figure 1 shows the normalized quality of solutions. Some results are within
a fraction of the baseline solution while other are 6 times worse. The variance
in solution quality was approximately 10 times greater on NKq-landscapes com-
pared to NK-landscapes. For each combination of K and NK/NKq instances, we
ran two-way ANOVAs with problem size N and algorithm as the independent
variables and solution quality as the dependent. All main effects and interaction
effects were significant at p < .00001 level, which indicates distinctions between
algorithms’ performance that varies with problem size.

98 D. Whitley, W. Chen, and A. Howe

100 200 300 400 500

0.
00

0.
05

0.
10

0.
15

0.
20

NK (K=4)
N

or
m

al
iz

ed
 S

ol
ut

io
ns

●

●

●
●

100 200 300 400 500

0.
00

0.
05

0.
10

0.
15

0.
20

NK (K=8)

●

●

●

●

● f−steep−walk
Avg−steep−walk
f−steep−rest
Avg−steep−rest
f−next−walk
Avg−next−walk
f−next−rest
Avg−next−rest

100 200 300 400 500

0
1

2
3

4
5

6

NKQ (K=4)

Number of Variables

N
or

m
al

iz
ed

 S
ol

ut
io

ns

●
● ●

●

100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

NKQ (K=8)

Number of Variables

●

●
●

●

Fig. 1. Normalized Solutions, averaged across trials, found by Walsh-LS across factors.
Upper graphs show NK-landscape problems; lower show NKq-landscape problems.

In Figure 1, dashed lines are for configurations that employed a random walk;
solid lines employed hard random restarts. As expected, hard random restarts
produced poorer results compared to the soft-restarts using a random walk to es-
cape local minima, and the effect appears independent of other design decisions.
Table 1 shows that Walsh-LS with random walk visits more local optima and
usually visits more distinct local optima than Local Search with random restart.
Even short random walks are not simply returning back where they started. The
ratio of distinct local optima to total local optima suggests that a walk length
of 20 might be better than a walk length of 10.

Tables 2 and 3 show means and standard deviations of fitness evaluations.
We ran Wilcoxon rank-sum tests for two values of N and two values of K using
only random walk for escape and comparing f to Avg in each case. For NK
landscapes, statistical tests indicate that in all cases but one the differences are
not significant (at the p=0.05 level) when using Avg(N(x)) vs. f(x). But for
N = 100 and K=8 we find p=0.007 for the steepest descent case.

An Empirical Evaluation of O(1) Steepest Descent for NK-Landscapes 99

Table 1. The number of local optima visited by Walsh-LS with steepest descent for
problems with N = 100, K = 2 and q = 2. The “Total” rows indicate the number of
local optima encountered; “Distinct” rows show the number of those that are unique.
We used a Walk Length of 10 in all experiments, but present various Walk Lengths
here to show the impact on the number of optima visited.

Walsh-LS Walk Length
Problem Eval # of Locals random restarts 10 20 30 40 50

NK-Landscape
f(x)

Total 326 619 460 387 344 322
Distinct 326 219 422 385 343 322

Avg(N(x))
Total 324 622 465 383 345 322

Distinct 324 234 431 382 345 322

NKq-Landscape
f(x)

Total 431 697 553 484 431 427
Distinct 431 659 552 484 431 427

Avg(N(x))
Total 325 671 516 420 363 324

Distinct 324 347 481 414 356 323

Table 2. Means and standard deviations of fitness evaluations for NK problems, or-
ganized by configurations of fitness function and descent method (using only random
walk for escape), best values in bold.

K=4 K=8
Descent Eval N=100 N=500 N=100 N=500

steepest
f .231 ± .003 .223 ± .004 .231 ± .006 .238 ± .005

Avg .229 ± .004 .222 ± .004 .226 ± .006 .236 ± .005

next
f .236 ± .004 .219 ± .003 .238 ± .006 .224 ± .005

Avg .236 ± .003 .219 ± .003 .236 ± .006 .223 ± .003

Table 3. Means and standard deviations of fitness evaluations for NKq problems,
organized by configurations of fitness function and descent method (using only random
walk for escape), best values in bold.

Descent Eval
K=4 K=8

N=100 N=500 N=100 N=500

steepest
f .035 ± .007 .039 ± .006 .065 ± .010 .060 ± .005

Avg .026 ± .005 .039 ± .005 .046 ± .006 .059 ± .006

next
f .045 ± .008 .045 ± .004 .073 ± .010 .060 ± .005

Avg .029 ± .004 .039 ± .003 .055 ± .009 .046 ± .004

For NKq problems, the advantage of utilizing Avg(N(X)) is clearer. The
results using Avg(N(x)) are better than f(x) in most cases. In all but two cases,
p < 0.0001; for N = 500 when steepest descent is used the p values are p = 0.9
for K = 4 and p = 0.5 for K = 8.

3.3 Runtime Results

The number of “updates” (and thus the number of “moves”) was used to con-
trol termination. A random restart is implemented as a series of “moves” from
the current solution to the new randomly generated solution, which has O(N)

100 D. Whitley, W. Chen, and A. Howe

complexity. Thus the total execution time used by hard random restarts and
the random walk soft restarts is basically the same. There was also virtually no
difference in the steepest descent and the next descent runtimes; next descent
was faster, but only by a small insignificant amount.

In our current implementation, computing Avg(N(x)) requires the use of both
the S and Z vectors; Thus the cost of computing Avg(N(x)) was approximately
twice the cost of computing f(x) for each move.

However, to be more efficient note that

Avg(N(xp)) = Avg(N(z))− 2Sp(z) +
4

N
Zp(z) by Eqn 4

= Avg(N(z))− 2(
k∑

j=1

ϕ′
z,j(x)) +

4

N

k∑

j=1

jϕ′
z,j(x) by Eqn 2,3

= Avg(N(z)) +
k∑

j=1

(4j − 2N)

N
ϕ′

z,j(x)

Construct a new vector w∗
i (x) =

(4j−2N)
N w′(x) = (4j−2N)

N w(x)ψi(x).
Let Z∗

p (z) =
4
NZp(z)− 2Sp(z) which yields: Avg(N(x)) = Avg(N(z))+Z∗

p (z)

Using the update rules for vectors S and Z when bit p is flipped:

Z∗
i (yp) =

4

N
Zi(yp)− 2Si(yp)

=
4

N
[Zi(x)− 2

∑

∀b,(p∧i)⊂b

j ∗ w′
b(x)] − 2[Si(x) − 2

∑

∀b,(p∧i)⊂b

w′
b(x)]

= Z∗
i (x) − 2

∑

∀b,(p∧i)⊂b

4j − 2N

N
w′

b(x)

= Z∗
i (x) − 2

∑

∀b,(p∧i)⊂b

w∗
b (x)

Thus, Avg(N(x)) can be computed in precisely the same number of updates
needed to compute f(x) and Z∗(x) can directly be used as a proxy forAvg(N(x)).
Furthermore f(x) can be efficiently computed on demand given Avg(N(x)) [7].

4 Conclusions

In light of new methods that allow steepest and next descent to be implemented
in O(1) time, we evaluated the impact of the fitness function, the descent method
and the method used to escape local optima on NK and NKq landscapes. Not
surprisingly, random walks perform much better than random restarts; using
random walks in place of random restarts transforms the algorithm into an
Iterated Local Search algorithm [4].

An Empirical Evaluation of O(1) Steepest Descent for NK-Landscapes 101

Somewhat more surprising, we find little or no difference between steepest
and next descent methods. This could be due to the fact that NK-landscapes
have little inherent structure; the results might differ in other domains.

Finally, for NKq landscapes, using Avg(N(x)) as the evaluation function
instead of f(x) generally improved performance. This appears to be because
Avg(N(x)) results in fewer plateaus and fewer local optima compared to f(x).

Acknowledgments. This research was sponsored by the Air Force Office of
Scientific Research, Air Force Materiel Command, USAF, under grant num-
ber FA9550-11-1-0088. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References

1. Geard, N.: A comparison of neutral landscapes: NK, NKp and NKq. In: IEEE
Congress on Evolutionary Computation (CEC 2002), pp. 205–210 (2002)

2. Heckendorn, R., Whitley, D.: A Walsh analysis of NK-landscapes. In: Proceedings
of the Seventh International Conference on Genetic Algorithms (1997)

3. Heckendorn, R.B.: Embedded landscapes. Evolutionary Computation 10(4), 345–
369 (2002)

4. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann (2004)

5. Kauffman, S., Weinberger, E.: The NK Model of Rugged Fitness Landscapes and
its Application to Maturation of the Immune Response. Journal of Theoretical
Biology 141(2), 211–245 (1989)

6. Rana, S.B., Heckendorn, R.B., Whitley, L.D.: A tractable Walsh analysis of
SAT and its implications for genetic algorithms. In: Mostow, J., Rich, C. (eds.)
AAAI/IAAI, pp. 392–397. AAAI Press / The MIT Press (1998)

7. Sutton, A.M., Whitley, L.D., Howe, A.E.: Computing the moments of k-bounded
pseudo-Boolean functions over Hamming spheres of arbitrary radius in polynomial
time. Theoretical Computer Science 425, 58–74 (2012)

8. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Transactions on Evolutionary Computation 14(6), 783–797 (2010)

9. Whitley, D., Chen, W.: Constant Time Steepest Ascent Local Search with Statis-
tical Lookahead for NK-Landscapes. In: GECCO 2012: Proceedings of the Annual
Conference on Genetic and Evolutionary Computation Conference (2012)

10. Zhang, W.: Configuration landscape analysis and backbone guided local search:
part i: Satisfiability and maximum satisfiability. Artificial Intelligence 158, 1–26
(2004)

	An Empirical Evaluation of O(1) Steepest
Descent for NK-Landscapes
	Introduction
	The Theoretical O(1) Result
	Implementation Details
	Experiment Design
	Solution Quality
	Runtime Results

	Conclusions
	References

