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Abstract. This paper presents a system for detecting and classifying
road signs from video sequences in real time. A model-based approach
is used in which a prototype of the sign to be detected is transformed
and matched to the image using evolutionary techniques. Then, the sign
detected in the previous phase is classified by a neural network. Our
system makes extensive use of the parallel computing capabilities offered
by modern graphics cards and the CUDA architecture for both detection
and classification. We compare detection results achieved by GPU-based
parallel versions of Differential Evolution and Particle Swarm Optimiza-
tion, and classification results obtained by Learning Vector Quantiza-
tion and Multi-layer Perceptron. The method was tested over two real
sequences taken from a camera mounted on-board a car and was able
to correctly detect and classify around 70% of the signs at 17.5 fps, a
similar result in shorter time, compared to the best results obtained on
the same sequences so far.

Keywords: Road Sign Classification, Differential Evolution, Particle
Swarm Optimization, Learning Vector Quantization, Neural Networks,
GPGPU.

1 Introduction

Automatic road sign detection and classification is a task that can help drivers and
increase road safety. For this reason, this problem has been frequently tackled [2],
up to systems mounted on recent car models, with limited functionalities.
Solutions to this problem usually include two different stages: the presence of
a sign is first detected in the image, then it is classified to precisely recognize
its meaning and possibly activate some driving system control. In the detec-
tion phase, the features used most frequently to recognize a sign are shape and
color. Detection based on RGB color is usually fast but performance degrades
when dealing with illumination changes [I7] or other artifacts related to image
acquisition. These problems can be reduced by performing conversion to other
color-spaces like HSV/HST [13]. Shape-based detection is generally more robust
against these problems, besides allowing one to work with gray-scale images.
However, it has to struggle against occlusions, different viewing angles or the
presence of other artificial objects like commercial signs or buildings. For these
reasons, a combination of color and shape information is usually preferred [5/15].
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The term “road sign classification” is not used consistently in the literature:
in fact, some authors reduce the classification problem to what, in this paper, we
call detection [15], i.e. distinguishing between a sign and a different object in the
scene. In other papers [16], the classification problem takes into account only
the classification between different categories of signs (e.g. prohibitory versus
warning signs). The classification task considered here is concerned with the
distinction of signs within the same category (prohibitory, warning, mandatory),
as the category is implicitly determined in the detection phase.

The techniques most frequently used for classification are artificial neural
networks [T0/T3] and support vector machines [9].

In the detection phase of our method a model representing a category of signs
is rigidly transformed and then reprojected onto the image using an Inverse
Perspective transform: this model-based approach shows good results against
several problems that can affect the images, like partial occlusions or color un-
balancing. After doing so, a fitness function is calculated to assess the degree of
matching between the reprojected model and the image, turning detection into
an optimization problem, in which a sign is considered to have been detected
when the similarity is above a pre-defined value. To perform such an optimiza-
tion we considered and compared Differential Evolution (DE) [18] and Particle
Swarm Optimization (PSO) [7]. For the classification stage, we used Multi-layer
Perceptrons (MLP) [4] and learning vector quantization (LVQ) [8] neural net-
works. In both phases we relied on GPUs to increase processing speed and to
reach real-time performance, implementing our methods in CUDA-C [14], a C
language extension for developing parallel routines (kernels) that run on GPU.

2 Sign Recognition System

A first implementation of the system, limited to the detection stage of three cate-
gories of signs (priority, prohibitory and warning), has been first presented by Mussi
et al in [I1]. The work described in this paper completed the system, adding the
detection of mandatory signs and the classification stage. In addition, a DE-based
detection stage has been developed and compared to the one based on PSO.

2.1 Sign Detection

The sign detection stage is based on a generally-applicable object detection al-
gorithm that includes the following steps:

1. Consider some sets of key points, of known coordinates with respect to a
reference position, and representative of the shape and colors of specific
regions of the object to detect.

2. Translate and rotate the sets to a hypothesized position visible by the camera
and project them onto the image.

3. Verify that the color histograms of the sets match those of their projection
on the image to assess the presence of the object being sought.
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Fig.1. The model used to recognize priority, warning and prohibitory signs. Each
model consists of three sets of points. The first (S1) lies just outside the sign; the
second (S2) on the red band, while the third (S3) inside the sign.

In [II], PSO generates location estimates for a sign as each particle in the
swarm encodes the candidate sign pose as four values: its offsets along the =z,
y and z axes, and its rotation around the vertical axis (yaw) in the camera
reference frame. Rotation around the camera optic axis (roll) and the horizontal
axis (pitch) have been ignored after some preliminary tests showed that they
have little relevance. The image region located by the model is then rectified
via an inverse perspective transform in order to obtain a frontal view. Then, the
three sets of points (see Figure[ll) are evaluated according to the fitness function
described below; a sign is considered to have been detected when the fitness
value is below a fixed threshold.

For every set of points, three color histograms in the HSV color space are
computed. Then, the Bhattacharyya coefficient [6] B(x,y), which estimates the
overlap between two statistical samples, is used to compare the histograms. The
fitness function can be expressed as follows:

f _ k‘o(l — B(h1,h2)) + k‘l(l — B(hg,hg)) + k‘gB(hl, hr)
ko + k1 + k2

where h; is the histogram of set S;, and h,. is a reference histogram centered on
red; ko, k1 and ks € RT are used to weigh the elements of the equation. This
means that a sign is detected when:

— the histogram of the set outside the sign is different from the histogram of
the set located on the red band;

— the histogram of the points in the red band is as different as possible from
the one computed on the inner area of the sign;

— the histogram of the points in the red band is similar to the reference his-
togram we defined for the red hue (a Gaussian centered on pure red).

This operation is repeated twice for every frame to permit recognition of more
than one sign of the same category. This method has shown good robustness
against illumination changes.

Mandatory signs (see figure ) are detected similarly to the other three cat-
egories, although some changes have been introduced to improve performance.
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Fig.2. An example of a mandatory sign, along with the corresponding model

We still consider three similarly arranged sets of points: the only difference in
their location is that set Ss is located closer to the center of the sign, in order
to get more information about the white foreground, which usually includes the
main information useful for sign recognition. The fitness function has also been
changed to:

f= ko(1 — B(hy, h2)) + k1(B(hs, h.)) + ko B(ha, b)) + ks(1 — B(ha, hy))
ko + ki + ko + ks

where h!. is a reference histogram with peaks corresponding to blue and white, h!
a reference histogram centered on blue, and k;, i = 1, ..., 4 are positive weights.

2.2 Sign Classification

Before performing classification, the rectified image of the detected sign is pre-
processed to reduce the complexity of this step. The following pre-processing
steps are performed:

— the image is re-sampled to 50x50 pixels, converted to gray scale, and the
pixels outside the sign are removed;

— for mandatory signs, in which the foreground is brighter than the back-
ground, gray-scale values are inverted, in order for the inputs to the final
classifier to have similar contrast features;

— the histogram is calculated, average-filtered to remove isolated peaks and
stretched between the mean intensities of the sign background and fore-
ground.

In our test set we considered 27 different classes for prohibitory, 30 classes for warn-
ing, and 27 for mandatory signs. The training sets contained 9 instances of each
sign, obtained by applying the pre-processing phase over synthetic noiseless images
of the sign and adding some noise in terms of position and rotation. Since there
is only one possible instance of priority signs, we implemented a binary classifier
and created a test set which includes priority signs along with signs of different
categories and other elements that are not signs (cars, trees, guard rails . . . ).
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3 Implementation Details

Both the detection and classification phases have been implemented on a Graph-
ical Processing Unit (GPU) within the CUDA (Compute Unified Distributed
Architecture) environment available from nVIDIA. CUDA requires that a prob-
lem be divided into groups of cooperating threads (each group is called a thread
block), organized in one-, two- or three-dimensional grids. The threads within a
block are also organized in similar grids. The performance of CUDA code largely
depends on the grid configurations and memory access schemes. As in CPUs, also
in GPUs, memory is arranged in a hierarchy, in which each thread has its own
private local memory, thread blocks use shared memory that is visible only to the
threads of the block, while all threads have access to global device, texture, and
constant memory spaces [I4]. To maximize efficiency, algorithms developed in
CUDA-C should rely mainly on fast local and shared memory, avoiding frequent
accesses to global memory locations.

The details about the parallel design and implementation of the methods used
for detection and classification are discussed in the following subsections.

3.1 Parallel Particle Swarm Optimization

Our parallel version of PSO [I1] is divided into three kernels: position update,
fitness evaluation, and bests update. Two-dimensional thread-block grids repre-
sent different swarms (one for each type of sign) along one dimension while, along
the other, every block represents a particle. Position update and fitness evalu-
ation are performed by the threads of a block working on particle data loaded
in shared memory for faster performance. Kernels follow a common procedure
that: i) loads particle data into shared memory from global device memory, ii)
processes the data in local and shared memory, iii) stores the results back to
global memory, at the end of its execution, to make them visible to other ker-
nels. We use four swarms (one for each sign category), each consisting of 64
particles arranged in a ring topology, that run for 250 generations. As for PSO
parameters, we set C; and Cy to 1.19, and the inertia factor w to 0.72.

3.2 Parallel Differential Evolution

Differential Evolution (DE) [I§] is a powerful stochastic real-parameter opti-
mization algorithm [I]. New solutions are generated by performing a crossover
operation between one element of the current population (parent) and a donor,
which is created by the combination of some randomly chosen solutions from the
population. This new element, called trial, is then evaluated and can replace the
parent if it has a better fitness than the parent’s. The parallel implementation of
DE [12] resembles parallel PSO, except that, instead of the position update ker-
nel, DE uses a kernel to generate trial vectors for every element in the solution
group, and another kernel to evaluate the fitness of the trial solutions to possibly
replace the parent with them. There are several flavors of DE, depending on the
method for choosing the individuals that are combined to form donor solutions,
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and the type of crossover used to generate the trial solutions. In our experiments,
we adopt random mutation and binomial crossover. The same PSO swarm con-
figuration was used for the DE population, also run for 250 generations, with
DE parameters: F' set to 0.5 and C. to 0.9.

3.3 Parallel Multi-Layer Perceptron

The Multi-layer Perceptron (MLP) is the most commonly used artificial neural
network [4], in which only feedforward connections between neurons are allowed
and a supervised training algorithm (backpropagation) is used.

The number of operations needed to perform the classification using MLP is
very high. For instance, the MLP we use for the classification of warning signs
has four fully-connected layers whose sizes are respectively 2500, 180, 90, 30.
This means that, for the first layer, the total number of products that has to be
computed is 2500 x 180, as each of the 2500 inputs is multiplied by the weight of
the connections between it and all neurons of the next layer, and must then be
summed. These operations amount to a product between a 2500-elements vector
and a 1802500 matrix. In our parallel implementation the computation of each
layer of the network is a CUDA kernel. The operations performed by each kernel
are:

1. loading layer inputs in shared memory;

2. computing, partly in parallel and partly sequentially, the products (as sug-
gested by [3]);

3. summing the products by means of a parallel reduction;

4. computing the activation function over the sum of the products.

3.4 Parallel Learning Vector Quantization

Learning Vector Quantization (LVQ) is a supervised classification algorithm de-
veloped by Kohonen [8]. The basic idea is to find a small set (called codebook)
of prototypes (called codebook vectors) representative of all possible inputs. New
data are then classified according to the most similar codebook vector. The
training phase is performed by iterating over the examples in a training set:
if an example is correctly classified, the codebook vector closest to the data
sample is attracted towards it, otherwise the codebook vector is moved in the
opposite direction. The CUDA implementation of LVQ is straightforward: a ker-
nel computes the distance between the input vector and the codebook vectors
that compose the network. Then, a parallel reduction is performed to compute
the classification result, that is the label corresponding to the most similar code-
book vector. Table [[l shows the topologies and sizes of the networks that have
obtained the best results during our experiments.

4 Experimental Results

In this section we will describe the data and the experiments performed to eval-
uate our system, for both detection and classification.
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Table 1. MLP and LVQ structures for the four categories of signs

Category  MLP Topology LVQ size
Prohibitory 2500x180x90x27 176

Warning 2500x180x90x30 246
Mandatory 2500x100x50x27 128

Priority  2500x120x16x2 128

4.1 Detection

The benchmark used to evaluate the results in a real environment is composed of
two sequences [I0]. The first one, which includes 10000 frames at a resolution of
750x 480 pixels, was acquired at 7.5 fps in Parma on a sunny day. The sequence
contains images featuring all possible light orientations. The second sequence is
about 5000 frames long and was acquired at 7.5 fps in Turin on a cloudy day.
Images in this sequence feature more constant lighting but lower contrast.

We compared the results of DE and PSO in terms of correct/incorrect detec-
tions of the signs. DE was able to detect more signs (scoring more true and false
positives); this suggests that DE has a greater exploitation ability, and is able to
refine solutions better than PSO. However, if fitness values are compared, PSO
has a better average, with a lower standard deviation, showing a more consistent
behavior. Table 2l reports the best and worst detection results obtained over 10
runs on each sequence.

4.2 Classification

The evaluation of the classification system was firstly performed over a test set
that comprises synthetic, good quality and noisy or deformed images of signs, as
described in [I0], then on the two real sequences. The first rows of table Bl show
the percentage of correct classification for the four categories on the test set.
The same table (second and third row) shows the results of the classification of
all signs detected in the experiments reported in table [2l We take all detections
into account: this means that the same sign can be detected and classified in
more than one frame.

Table 2. Results of the detection phase (min-max) for the four categories of signs
(detections): worst and best result in 10 independent runs

Parma Sequence Turin Sequence
Total False Positives Detections Total False Positives Detections

Warning DE 51 0-1 27-31 53 0-2 39-43
PSO 51 0-0 27-30 53 0-1 35-40
Prohibitory DE 44 2-6 26-30 47 2-4 39-42
PSO 44 0-1 22-27 47 0-1 39-40

Priority DE 30 5-11 18-22 15 2-4 13-15
PSO 30 0-2 15-18 15 0-1 7-12

Mandatory DE 62 2-4 40-41 39 0-1 27-29
‘ PSO 62 0-1 35-39 39 0-1 24-27
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Table 3. Percentage of correct sign classifications in the test set and in the two se-
quences for the four categories of signs

Set ‘Warning Prohibitory Priority Mandatory Total

LvQ 743 78.7 98.7 89.3 81.6

TestSet  yp o 715 80.5 99.4 943 83.1
Parma Sequence LvQ 91.2 81.9 97.0 99.4 92.4
MLP  69.0 69.2 95.4 99.4 83.2

Turin Sequence LVvQ 75.3 94.8 100 100 92.5
MLP 77.1 77.8 98.9 99.6 88.4

The table shows that the two methods have similar performance (with slightly
better performances for the MLP) on the test set, but LVQ achieves better results
over the real sequences. This probably happens because the test set contains
several deformed or noisy images, while the images produced by the detection are
usually good in terms of quality and positioning. The conclusion can be that LVQ
is able to yield better results when operating on good quality images, while MLPs
have better generalization ability. Finally, in table @ we present the results of
the entire system using DE and LVQ. Since, in the actual implementation, there
is no way to track signs during the flow of the sequence (and, consequently, each
sign can be detected multiple times), we consider a sign to have been correctly
classified by evaluating off-line if at least half of its classifications are correct.
Figure B] shows some examples of correct classifications, correct detections with
wrong classification and wrong detections.

4.3 Computational Efficiency

Experiments were run on a PC equipped with a 64-bit Intel® Core(TM) i7
CPU running at 2.67 GHz, combined with a Quadro FX5800 graphics card by
nVIDIA, having 4Gb of video RAM and 240 processing cores. All the operations
performed on each frame (two repetitions of detection plus classification for each
sign category) require an average time of 57 ms, which corresponds to a frame
rate of 17.5 fps. A sequential version of the same algorithm could reach only a
frame rate of 4-5 fps [I1], a processing speed which is not acceptable for this
kind of application.

Table 4. Final results of the system using DE and LVQ

Parma Sequence Turin Sequence
Total Correct Total Correct
Warning 51 25-28 53 37-43
Prohibitory 44 24-27 47 38-41
Priority 30 17-20 15 11-15
Mandatory 62 38-41 39 26-29
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Fig. 3. Some results of the system. The first three columns show signs that have been
correctly detected and classified, the fourth shows misclassified signs, while the last one
shows wrong detections. Our method is robust against differences in light conditions
and partial occlusions.

5 Conclusions

We presented a system for detecting and classifying road signs. Detection is
performed using a method in which a model of the sign to detect is translated and
projected onto the image. Candidate solutions are created by means of swarm
intelligence techniques. Differential Evolution and Particle Swarm Optimization
have been compared in this phase, showing that PSO has better average results
than DE, while DE exhibits a better exploitation ability, which produces a larger
number of detections. Classification have been performed using Learning Vector
Quantization and Multi-layer Perceptrons. The results showed that LVQ has
better performance when working on good quality images, while MLPs have
greater generalization ability. The system has been implemented on GPU using
CUDA and is able to correctly detect and classify around 70% of the signs at
17.5 fps, a similar result in shorter time, compared to the best results obtained
on the same sequences so far [10].
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