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Abstract. Computational Intelligence (CI) provides good and robust
working solutions for global optimization. CI is especially suited for solv-
ing difficult tasks in parameter optimization when the fitness function is
noisy. Such situations and fitness landscapes frequently arise in real-world
applications like Data Mining (DM). Unfortunately, parameter tuning in
DM is computationally expensive and Cl-based methods often require
lots of function evaluations until they finally converge in good solutions.
Earlier studies have shown that surrogate models can lead to a decrease
of real function evaluations. However, each function evaluation remains
time-consuming. In this paper we investigate if and how the fitness land-
scape of the parameter space changes, when only fewer observations are
used for the model trainings during tuning. A representative study on
seven DM tasks shows that the results are nevertheless competitive. On
all these tasks, a fraction of 10-15% of the training data is sufficient.
With this the computation time can be reduced by a factor of 6-10.

Keywords: Machine learning, parameter tuning, sampling, SVM,
sequential parameter optimization.

1 Introduction

Data Mining (DM) is an interesting field for applying Computational Intelligence
(CI) techniques. Although CI methods can generate good and robust solutions
for global optimization problems, it is known that they sometimes require a large
number of function evaluations. Unfortunately, data mining tasks are usually
very expensive to evaluate and quick solutions are requested by the users. In
this paper we investigate how computation time can be saved in order to make
CI methods more applicative for DM tasks.
We claim the following hypotheses:

H1. Tuning results are more subject to noise when smaller fractions X of the
training data are used.
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H2. Tuning with smaller fractions X will usually lead to increased prediction
errors, but the optimal design points found by a robust optimizer will nev-
ertheless be competitive (as long as X is not too small).

If we rewrite H1 a little, we can come to the conclusion that the variance should
be higher when the training set size is smaller. If H1 holds, we should be able
to measure this effect directly by an increased variance of the model error. If we
can confirm H2, considerable computation speedups in tuning DM models are
possible.

Previous work in analyzing the effects of the chosen sample size has been
mainly done in fields like statistics and machine learning. A good overview about
different strategies to sample data can be found in Cochran [3]. A description of
resampling methods for optimization in data mining has been given by Bischl
et al. [2]. Raudis and Jain [I4] and Jain and Zongker [7] discuss the influence
of sample sizes on the results of feature selection, which is in a certain way
related to the parameter optimization task in this article. In statistics, sample
sizes are frequently discussed in terms of statistical studies like significance tests
[11]. In machine learning, sampling strategies like the bootstrap [5] have been
well analyzed and are often applied in practice. However, to our knowledge no
study exists where the size of the underlying training data is diminished during
parameter tuning.

2 Methods

2.1 Learning Algorithms

As a learning algorithm we experimented with the Support Vector Machine
(SVM) [16], since SVM is known to be very sensitive to its parameter settings.
We used the libsym implementation in R from the e1071 package@. However, all
experiments can be also performed with any other (supervised) machine learning
algorithm. Here, we restricted ourselves to SVM, since it appeared to be best
suited for our experiments.

SVM needs several hyperparameters to be set to work properly. First of all
it requires a kernel function to allow for non-linear class boundaries. The choice
of the kernel function is a crucial decision in machine learning and must be
considered carefully. However, some kernel functions are good-working for several
problems. For instance, the radial basis function (RBF) kernel belongs to the
most popular kernel functions and defines the similarity of inputs x and z by

k(z, 2) = exp(—(llx — z[)) (1)

For our needs the RBF kernel function is well-suited, since it comes along with
the hyperparameter v which has to be set anew for each data. Small values of
~ indicate large influences of given data points, whereas large v values mean

! Software available from
http://cran.r-project.org/web/packages/el1071/index.html
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that the influence of the data points is more restricted. Besides the v kernel
parameter SVM regularizes points which do not lie in the hyperplane fitted by
the algorithm. Therefore it uses a so-called regularization parameter C' (for cost),
which is important for finding a good balance of the underlying optimization
problem of the SVM and correct classification of training examples. For more
details on SVM we refer the interested reader to the literature [15].

2.2 Tuning Algorithms

Parameter tuning tasks in machine learning can be modelled as noisy single-
objective optimization problems. Any parameter setting of the learning parame-
ters is called a design. For each design we can measure the quality by training a
model (running the learning algorithm using some training data) and applying
the trained model to new test data. Note that although the underlying learning
algorithm may be deterministic, the tuning task can be nevertheless stochastic,
because the training and test samples of the data are drawn at random. Hence,
the robustness and generalization ability of the optimization algorithm is an
important criterion for the tuning task. Konen et al. [10] therefore compared
tuning algorithms like the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [6] with the Sequential Parameter Optimization Toolbox (SPOT) [I].
SPOT is a heuristic which employs surrogate models of the objective function.
The advantage of such strategies is that the number of real function evaluations
can be reduced, since parts of the optimization can be performed on the surro-
gate model. In a comparative study [10], SPOT performed best under strongly
limited budgets. It was noted that CMA-ES can give similar results, presum-
ing that enough function evaluations are allowed. Other statistical methods like
Latin hypercube sampling (LHD) [12] uniformly distribute design points over
the search space: their performance and accuracy usually diminishes for larger
search space dimensions.

2.3 Objective Function

We perform a tuning of all parameters which are relevant for our machine learn-
ing task. Any single-objective optimizer requires an objective function, in order
to evaluate the quality of the parameter designs. In our case we distinguish
between

(a) the model error on validation data during tuning, and
(b) the error obtained with the best parameters from tuning on independent test
data (data which has not been used throughout the whole tuning process)

During tuning the objective function value is the fraction of wrongly classified
pattern in the validation set. The unbiased estimator for the model’s error on
new data is th fraction of wrongly classified pattern in the test set.
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3 Experimental Setup

Parameter optimization in machine learning can be challenging: the training
time of SVM often grows quadratically with the number of training patterns
[13]. Since this might be one reason why parameter optimization is seldom done
in practice, we try to find new ways to make tuning of DM tasks less costly:
We vary the number of training patterns used during parameter tuning. In our
optimization task the most time consuming part is the evaluation of the objective
function, because in each evaluation a complete SVM training is performed (the
runtime of optimizers like SPOT can be also expensive, but are neglectable
in our case, since we only use fast surrogate models and small designs). We
investigate how much time can be saved by reducing the training data used for
parameter tuning and if parameters with small training fractions are competitive
with parameters tuned on the total training set.

3.1 Datasets

All experiments presented in this study were performed using datasets from the
UCI WebsiteE which can be regarded as the simpler datasets, the DMC 2007 data
from the data mining cup 2007, and a real-world dataset from water ressource
management (AppAcid). In Tab. [[] an overview about the datasets and their
sizes is given. We present the minimal training set size for each dataset, and
also the sizes of the test and validation sets. Each model is evaluated a) during
tuning on the validation data and b) after tuning on the independent test data.
The sizes for the test and validation sets are equal and stay constant all the time
at 20% of the total dataset size. In Tab. [Il these sizes are given as Validation and
Test Size.

Table 1. Datasets used for the training set size experiments

Dataset Records Min. Training Max. Training Validation =~ Number of
Size Size and Test Size Parameters

Sonar 208 8 124 41 2

Glass 214 8 128 42 2

Liver 345 13 207 69 2

Tonosphere 351 14 210 70 2

Pima 768 30 460 153 2

AppAcid 4400 176 2640 880 12

DMC-2007 50000 2000 30000 10000 7

Every time a fixed set of 20% of the patterns was set aside prior to tuning
for testing purposes. From the remaining 80% of the data (subset Diqin), We
use a fraction X from X, = 5% to Xinar = 75% for training and a fraction of

2 http://archive.ics.uci.edu/ml/


http://archive.ics.uci.edu/ml/

Efficient Sampling and Handling of Variance in Tuning Data Mining Models 199

Table 2. Splitting of data. We use fractions from 4% to 60% of the data for model
training, 20% for validation during the tuning and the remaining 20% for independent
testing.

Training
—

not used Validation Test

25% for validation (which is 20% of all data). See Tab. 2 for illustration. At the
end of tuning a best design point is returned. Using this best design point, we
ran a final ’full’ training with all data in Dyy.qin (80%) and evaluated the trained
model on the test set (20%). Since the training, validation and test sets were
drawn at random we repeated all of our experiments ten times.

While a first benchmark of tuning algorithms has been performed by Konen
et al. [10], it remained unclear, if the results also hold for smaller training set
sizes. Now we also compare SPOT as a tuning algorithm with LHD as a simple,
but robust sampling heuristic. LHD is based on the following procedure: We
chose random and roughly equally distributed design points from the region of
interest and evaluated the design 3 times. Again, the best point is taken for the
'full’ training as above.

3.2 SPOT Setup

SPOT can be controlled through various settings, which have to be adapted
slightly for each task. We briefly present our settings for the experimental study
here (Tab.[3). With 150 function evaluations for the UCI experiments we chose a
rather large number of evaluations compared to the other (real-world) datasets.
Our aim was to achieve a good and clear convergence to an optimum. Out
of this reason we considered to analyze simpler datasets first, since complex
datasets require much more time for such experiments. Nevertheless we also set
a number of 200 function evaluations for AppAcid, which proved to be a good
and sufficient number in one of our last studies [I0]. It has to be noted that the
dimensionality of the parameter space for AppAcid is 12, while it is only 2 for
the UCI benchmarks.

As region of interest (ROI) for the UCI datasets we set quite large ranges
(as we have enough evaluations for these benchmarks). We vary the range of
v between [0.0,1.0] and the range of cost C between [0.0,10.0]. For the other
applications (AppAcid, DMC2007) we relied on the same settings as in our
previous experiments, see [10] for more information.

Table 3. SPOT Configuration

Setting UCI AppAcid
function evaluations 150 200
initial design size 10 24
sequential design points 3 3

sequential design repeats {1, 3} 2



200 P. Koch and W. Konen

3.3 Sampling Strategies

First of all, k subsets D1, ..., Dy C Dypqin of the complete training data Dyygin
lead to models My, .., M which are presumably not equal when the training
data subsets are not equal, although hyperparameters v and C' are identical (on
the same training data SVM is deterministic). Thus we have Dy # Dy # ... #
Dy — My # My # ... # Mj. Different strategies are possible for sampling the
training subsets during tuning:

(A) Choose a subset D1 C Dypqin once and use it for the whole parameter opti-
mization process. We call this option parameter tuning without resampling.

(B) In each call i of the objective function, choose a new subset D; C Dirain
for training. If a design point is evaluated repeatedly, e. g. n times, we
choose different subsets D1, Do, ..., D,,, train models for them and use an
aggregation function (here: the mean) to return an objective function value.
We call this option parameter tuning with resampling.

4 Results

4.1 Tuning Results

Exemplarily we present boxplots of the SPOT hyperparameter tuning for the
Sonar and AppAcid datasets in Fig. B we distinguish between the error achieved
on the validation data when using only a smaller training set fraction X (Error
VALI Set) and the independent test set error when a complete re-training with
the optimal parameter setting is performed (Error TEST Set). All results in
Fig. ] were optimized using SPOT with sampling strategy (B) and a total num-
ber of 3 repeated evaluations for each design point. The validation error in both
plots is clearly increasing if the training set size X is reduced from X = 75% to
X = 5%. However, the same does not necessarily hold for the test data. While
the mean errors and their variances are large for small training fractions, they
are roughly constant and small for all X > 15%.

This is a promising result, as it may allow us to use only a subsample of the
complete data during tuning. As we can see in Tab. ] good tuning results with
a very small number of training data (here X=10%) were observed as well for all
other datasets. If we take the best parameters from such a tuning process and
re-train once with the complete training data, we obtain results on independent
test data which are competitive with a much more time-consuming ’full’ tuning.

We observed on all considered datasets, that the prediction accuracies of sin-
gle models on different data are very noisy. Thus, the chosen sampling strategy
(see Sec. B) has an impact on the final results. A comparison of the sampling
strategies (A) and (B) showed that we can achieve the most stable results using
strategy (B) and a number of repeated evaluations greater than 1 (from now on

3 A complete set of all boxplot results and accompanying material is available for the
interested reader from http://gociop.de/about/people/koch/ppsn2012/.
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Fig. 1. Tuning results with SPOT for Sonar and AppAcid datasets using 3 repeats.
The x-axis shows the training set fraction X.

Table 4. Test-set error rates (mean and standard deviation of ten runs) for all datasets
investigated. We show results when using small and full training data during tuning, af-
ter re-training once with best parameters found. In case of DMC-2007 we show relative
gain instead of error rate.

Dataset X=10% X=75%

median (std.dev.) median (std.dev.)
Sonar 17.07 (14.3) 13.41 (5.5)
Glass 28.57 (7.7) 28.57 (7.6)
Liver 36.23 (4.3) 31.88 (6.5)
Ionosphere 5.71 (2.4) 5.71 (2.4)
Pima 23.20 (2.5) 23.20 (3.9)
AppAcid 17.99 (3.3) 19.38 (5.5)
DMC-2007 14.73 (2.0) 15.66 (1.0)

we always set the repeats to 3 in our study). We think that repeated evaluations
are an important factor to circumvent wrong decisions of the optimizer operating
in a noisy environment.

Regarding the comparison of SPOT and LHD we show in Fig. [ that SPOT
usually yields in better parameter settings when trained with a fraction of the
data, especially for X < 10%. Results degrade for very low training set sizes (1%
or 2%). They are however competitive for all X > 10% (SPOT) and X > 20%
(LHD): The tuning results are as good as with a tuning on the ’full’ training
data and the models generalize well on unseen data.
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Fig. 2. Comparison of SPOT and LHD algorithms on AppAcid

4.2 Landscape Analysis

Fig. Bl shows a comparison of the surrogate surfaces for a small (X=10%) and
large training set size on the Sonar dataset. We used a surrogate model based
on Gaussian Processes (GP) [8]. When only few training data were used (left
plots), the SPOT and LHD landscapes are both relatively flat, with shallow
minima near v ~ 0. These minima are however a good indicator for the minima
obtained when we perform the tuning with the complete training set size (right
plots). These plots both exhibit a clear and deep minimum near ~ & 0, relatively
independent of the cost term. The landscape for v > 0 is however very different.
With SPOT, we obtain very spiky surrogate models (Fig. Bl upper right). This
especially occurs in regions where only few design points are sampled (these are
the regions presumably not containing the optimum). We think that when there
is a region with a high density of points but large noise in the objective function,
GP assumes a very small correlation length leading to spikes in the low-density
regions. Overall this leads to a less robust surrogate model. We will show in a
forthcoming contribution [9] that slightly different SPOT initial design settings
can lead to instable results.

LHD with its equal-density sampling in design space does not have this prob-
lem: The landscape (Fig. Bl lower right) exhibits a low curvature and is stable
in all experiments. Nevertheless the main issue of LHD sampling, which is the
bad scalability for higher dimensions, remains, and this is the reason why this
sampling method is less preferable for higher-dimensional search spaces.

We can conclude that if we use a robust surrogate model and a sufficient initial
design size of the tuning algorithm, we can obtain good parameter settings very
quickly.

4.3 Computation Time

The characteristics of the computation times for different training set sizes are
shown in Fig. @ for the AppAcid dataset. Note that the curve which appears
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Fig. 3. Contour plots for Sonar. SPOT (top plots) and LHD (bottom plots), using 3
repeats, GP for the contour surface and small (X=10%, left) and large (X=75%, right)
training set sizes. White points are design points, the red point is the optimum found
by the optimization procedure.
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Fig. 4. Computation time on AppAcid as a function of training set size X



204 P. Koch and W. Konen

to be linear here can have a different look on other datasets. The roughly lin-
ear slope has its reason in the model building process for the AppAcid task.
This process includes several other operators beneath SVM training, e.g., pre-
processing (principal component analysis and feature selection). In other cases
the pure SVM training might grow quadratically with the number of training
samples, leading to even larger computation time savings.

5 Conclusion

We showed that tuning with a low training set size very often leads to good re-
sults: An astonishing small fraction of the training set (10-15%) was sufficient to
find with high probability a good DM model when performing one ’full’ training
with the best design point parameters. The resampling strategy (B) (see Sec.[33)
might be a crucial ingredient for this success with small training samples, but
further research is needed to justify this claimf

This study investigated seven different data sets with sizes from 208 to 50000
records. Especially for the bigger datasets large speedups (factor 6 to 10) are
possible as Fig. @ shows. Summarizing the results, we can conclude that both
hypotheses H1 and H2 hold for the datasets used in this study. In the future
we plan to search strategies for selecting the right sample sizes automatically.
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