
A Spatial EA Framework for Parallelizing

Machine Learning Methods

Uday Kamath1, Johan Kaers2, Amarda Shehu1, and Kenneth A. De Jong1

1 George Mason University, Fairfax VA 22003, USA
{ukamath,ashehu,kdejong}@gmu.edu

2 Shaman Research, Heverlee 3001, Belgium
johankaers@telenet.be

Abstract. The scalability of machine learning (ML) algorithms has be-
come increasingly important due to the ever increasing size of datasets
and increasing complexity of the models induced. Standard approaches
for dealing with this issue generally involve developing parallel and dis-
tributed versions of the ML algorithms and/or reducing the dataset sizes
via sampling techniques. In this paper we describe an alternative ap-
proach that combines features of spatially-structured evolutionary al-
gorithms (SSEAs) with the well-known machine learning techniques of
ensemble learning and boosting. The result is a powerful and robust
framework for parallelizing ML methods in a way that does not require
changes to the ML methods. We first describe the framework and illus-
trate its behavior on a simple synthetic problem, and then evaluate its
scalability and robustness using several different ML methods on a set
of benchmark problems from the UC Irvine ML database.

Keywords: Spatially-structured evolutionary algorithms, machine learn-
ing, ensemble learning, boosting.

1 Introduction

The most common applications of machine learning involve supervised learn-
ing in which a training set of labeled examples (or instances) is used to learn
a model that can be subsequently used to make predictions about previously
unseen examples. The scalability of such ML algorithms has become increas-
ingly important as datasets become larger and the complexity of the induced
models increases. Many current ML techniques scale poorly either because they
require the entire training set to be in memory simultaneously, or because the
running time of the model induction code grows non-linearly with the size of the
training data, or both [1]. Basic solutions like reducing the size of the training
datasets via sampling can be used but can introduce sampling errors. ML boost-
ing techniques are designed to deal with hard-to-classify examples, but do so
by making multiple passes over the training data [2]. More complex approaches
involve changing the basic structure of ML methods into parallel and distributed
versions.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 206–215, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Spatial EA Framework for Parallelizing Machine Learning Methods 207

In this paper we describe an alternative approach that combines features
of spatially-structured evolutionary algorithms (SSEAs) with the well-known
machine learning techniques of ensemble learning and boosting. The result is
a powerful and robust framework for parallelizing ML methods in a way that
does not require changes to the underlying ML methods. We refer to this as our
PSBML framework, shorthand for Parallel Spatial Boosting Machine Learning.
We first describe our framework and illustrate its behavior on a simple synthetic
problem. We then evaluate its scalability and robustness using several different
standard ML methods on a selected subset of the benchmark problems in the
UC Irvine ML database.

2 Related Work

As noted above, our framework combines features from both the evolutionary
computing (EC) and ML communities. In this section we briefly summarize
them.

Spatially-structured evolutionary algorithms (SSEAs) which use topologically
distributed populations and local neighborhood selection have been well ana-
lyzed in the EC literature [3]. SSEAs have been shown to maintain a diverse set
of better individuals longer, resulting in improved performance in many appli-
cations [4]. However, the key feature that we want to take advantage of is its
“embarrassingly parallel” architecture in that at each topological grid point a
local algorithm is running that has only local interactions with its immediate
neighbors. In that sense our approach has much in common with cellular EAs
and cellular automata.

One of the interesting ML developments is that a collection (ensemble) of
simpler classifiers can often be more accurate than a single more complex clas-
sifier, and of course much easier to parallelize [5]. This maps nicely onto SSEAs
in the sense that an ensemble of classifiers can be distributed across the topo-
logical grid points in an SSEA. However, standard ensemble techniques require
each classifier to look at the entire (possibly sampled) set of training data. The
hypothesis we are exploring is that, by distributing the training data across the
grid points as well, the emergent capability of an ensemble of ML classifiers that
only have access to local subsets of training data will be comparable in classi-
fication performance to that of standard ML techniques and significantly more
scalable via parallelization.

A second interesting ML development is the awareness of the important dis-
tinction between easy and hard training examples. Intuitively, the hard exam-
ples are those close to classification decision boundaries. A classic example of
these are the “support vectors” on which support vector ML techniques are
based. Since the decision boundaries are not known a priori, in general, multiple
passes over the training data are required to identify these examples often via
“boosting” techniques that increase the frequency and/or weights of such train-
ing instances [2]. Beyond just improving classification accuracy, the identification
of these difficult training examples on the boundaries often leads to additional
problem insights used for finding interesting features for classification [6].

208 U. Kamath et al.

Our PSBML framework incorporates this idea as well by introducing a local
neighborhood notion of hardness, using it as a measure of fitness, and boosting
the harder instances via fitness-proportional selection. The result is a parallel
ML technique in which both classification accuracy and the identification of hard
instances improves as the system evolves.

3 The PSBML Framework

Our PSBML framework for parallelizing machine learning methods has at its
core an SSEA [3] in which individuals and algorithms are distributed over a two-
dimensional torroidal grid with a common algorithm running locally on each
node in the grid and only local interactions with nearby grid points. In our case
the common algorithm is a replicator EA (i.e., no reproductive variation) that is
manipulating a population of training examples. Selection pressure in an SSEA
is determined by two design choices: the selection method used by the local EAs
running on each grid point, and the size and shape of the neighborhood structure.
In the experiments described in this paper, the local EA selection method used
was fitness-proportional selection (our boosting technique). We did, however,
experiment with different standard cellular neighborhood structures (Fig. 1) in
order to study the effects of varying the overall selection pressure.

Fig. 1. 2D-grid with various neighborhood structures (Source: LNCS 1141, p 237) [3]

Each node in the grid has a local EA running maintaining a population of
ML training examples that gets updated each generational cycle. The fitness of
each training example in the population is assessed via is a local ML technique
(e.g., a naive Bayesian classifier, a decision tree learner, etc.) in the following
manner. On each generational cycle, a node performs a standard ML train-test
procedure using the training examples on its node for training, and using the
training examples on neighboring nodes for testing. As is the case with standard
ML boosting methods, in addition to classifying the test examples, the learners
output a confidence value for each decision. The confidence values are used to
assign a fitness to each of the neighborhood test examples, allowing the local
replicator EA to subsequently select (boost) the more difficult examples. Since
each member of the overall set of training data is a member of the neighborhood
of multiple local ML methods, the result is an ensemble assessment of difficulty
similar to the classification margin concept used in boosting [2]; namely, the
smallest confidence from any node, for any class is taken as the fitness w of the
instance.

A Spatial EA Framework for Parallelizing Machine Learning Methods 209

w = min
i∈class

(min
n∈neighbor

cni)

Experimentally, we determined that a non-overlapping-generation model for the
local EAs was much less effective than an overlapping one, in which only a
fraction of the local population was replaced each generational cycle. We imple-
mented this feature through a replacement probability parameter pr, and found
that values around 0.20 were most effective (i.e., replacing about 20% each gen-
eration). See section 4.3 for more details.

The overall pseudo-code of PSBML is as follows:

– Initialization: distribute the training dataset uniformly over all the nodes in
the grid.

– For every EA generation:
• On each node:

∗ Use the local ML technique and the current local population of train-
ing examples to produce a candidate classifier.

∗ Test this classifier on all the population members in the neighboring
nodes, assigning confidence values to each population member.

∗ Create a selection pool consisting of all population members of the
node and its neighbor nodes.

∗ For each member in the current node population, replace it with
probability pr with an individual from the selection pool using fitness-
proportional selection.

4 Analysis of the PSBML Framework

As stated in the introduction, the hypothesis for this research is that the emer-
gence behavior of ML techniques embedded locally in this spatially distributed
framework will be comparable in classification performance to the correspond-
ing monolithic ML versions with the significant additional benefit of significant
improvements in scalability via parallelization. The two important emergent
properties are the effects of local boosting and local classifier training and test-
ing. We analyze both effects in this section.

Since local boosting is done by a replicator EA using fitness-proportional
selection from a pool that includes neighboring populations, the formal analysis
is identical to that of how the emergent selection pressure in SSEAs changes
as a function of the neighborhood topology [3,7] as illustrated in Figure 2. In
this case, increased selection pressure corresponds to increased boosting rates.
As with standard boosting techniques, one must find a growth rate in PSBML
that facilities the learning process by gradually propagating the more difficult
training examples throughout the grid via evolutionary boosting.

The second emergent property is the overall classification accuracy of PSBML.
Unless its local boosting and training elements result in an ensemble perfor-
mance comparable to monolithic ML techniques, there is no virtue in PSBML’s
scalability.

210 U. Kamath et al.

Fig. 2. Growth curves for C13, L9, C9 and L5 neighborhoods

In the following sections we describe an initial set of experiments to assess
both of these emergent properties. We start with a series of tuning experiments
to obtain a rough estimate of the more important PSBML design parameters
that affect these emergent properties. Then, using this as the default PSBML
configuration, we evaluate its performance on a set of standard ML benchmark
problems and assess the robustness of the approach using a variety of standard
ML methods.

4.1 Experiment 1: A Simple Circle Classification Problem

As a first step in analyzing the behavior of PSBML, we designed a simple syn-
thetic ML problem to illustrate its behavior. The underlying binary classification
problem was a 2-dimensional space in which points inside a circle centered at the
origin were designated as negative examples and the rest as positive examples.
In this case, a simple ML learner is trying to infer the radius of the circle from
the training examples it is given by choosing a radius equal to the average dis-
tance from the origin of the largest negative example and the smallest positive
example. Classification confidence is then based on the distance of an instance
from the edge of the circle with the hypothesized radius.

Figure 3 illustrates the results involving a circle of radius 0.4. The underly-
ing spatial topology was a 5x5 torroidal grid in which 10,000 sample points are
equally distributed over the 25 grid nodes. In these experiments, the C9 neigh-
borhood structure was used. We ran the PSBML framework on this setup for
100 generations and collected two pieces of behavioral data: the average distance
of the instances from the origin, and the number of distinct instances over all
nodes. As hypothesized, the emergent global behavior of PSBML was to steadily
reduce the number of distinct training instances to a subset that was “on the
margin”, i.e. close to the decision boundary of 0.4 and comparable to single
margin-based classifiers like SVMs.

A Spatial EA Framework for Parallelizing Machine Learning Methods 211

(a) (b)

Fig. 3. (a) Mean values with 95% confidence intervals from 30 independent PSBML
runs. (b) The number of distinct training distances decreases with the generations.

4.2 Experiment 2: Neighborhood Effects

The next step was to study the effects that SSEA neighborhood structure has
on the performance of PSBML. We chose the UCI Chess (King-Rook vs. King-
Pawn) dataset for these experiments. It has 3196 instances, 36 attributes and 2
classes. We ran PSBML on this problem using various neighborhood structures
as shown in Fig. 4(a). We used a 5X5 grid with a naive Bayesian classifier as
the ML method with discretization for numeric features. The ensemble classifier
is evaluated by combining the reduced datasets from all the nodes, training a
single classifier with these and comparing the test set predictions for classification
accuracy or the error-rate. Although the average reduction in the training data
was quite similar for all the neighborhoods, their classic “over fitting curves”
were different. The stronger selection pressures of L9 and C13 produced the
more rapid initial decrease in test classification error rates, which subsequently
increased more rapidly as the training data became too sparse. The simplest L5
neighborhood reduced classification error rates too slowly. The best results were
obtained with C9.

4.3 Experiment 3: Impact of pr

In this set of experiments, we ran PSBML on the UCI Chess dataset with dif-
ferent pr values to observe the effect that different rates of replacement have on
the performance of PSBML. Figure 4(b)-(c) illustrates that increasing pr results
in faster convergence but a less accurate learner, with the best results obtained
when pr is about 0.2.

212 U. Kamath et al.

(a)

(b) (c)

Fig. 4. Results are shown on the UCI chess dataset. The error rate is shown as a
function of the neighborhood structure in (a) and probability pr in (b). The number
of distinct training instances is shown as a function of pr in (c).

4.4 Experimental Analyses on Benchmark Datasets

Using the rough tuning parameters of the previous sections, we evaluated the
performance of PSBML on nine classification problems with medium-to-large
datasets from the UCI ML repository [8]. The datasets are shown in Table 1 in
terms of the number of training instances, number of testing instances, number
of features, and number of classes.

We employed a 5x5 grid with C9 neighborhood configuration and pr of 0.2.
To evaluate the robustness and meta learning capability, we tested PSBML with
3 standard ML methods: a naive Bayesian (NB) classifier, a decision tree (DT)
learner and a support vector machine (SVM), each employed with the standard
implementations available in Weka [9]. The classification accuracy obtained by
each ML method is compared to the classification accuracy obtained when em-
bedding that method within PSBML. Results are shown in Table 2. Rows labeled

A Spatial EA Framework for Parallelizing Machine Learning Methods 213

Table 1. UCI Benchmark datasets

Dataset Chess Spam Digit Magick Adult W8A Cod Cover KDD99

#Train 3196 4600 10992 19020 32560 49749 271617 581012 4000000
#Test 319 460 1099 1902 16279 14951 59535 58102 311000
#Feat 36 57 256 10 14 300 8 54 42
#Class 2 2 10 2 2 2 2 7 24

“#Hard” show the reduced size of the data set resulting from the evolutionary
boosting in PSBML. All reported results are averages over 30 runs (ceiling values
reported for “#Hard”). The standard deviation for most runs was below 0.1 and
so is not shown. Fields labeled NA correspond to experiments that could not be
performed due to algorithmic constraints or very long training times required
by the base classifier. Comparisons between methods are done by performing 30
runs and using t-tests for statistical significance with 95% confidence intervals.
Runs that show improvements are highlighted in bold.

Table 2. Comparison of PSBML with NB, DT, and SVM on UCI Benchmark datasets

Dataset Chess Spam Digit Magick Adult W8A Cod Cover KDD99

NB 88.32 79.52 84.41 78.21 83.19 96.7 78.11 79.15 98.89
PNB 93 94 90 83.1 89.01 98.1 90.01 85.1 99.65
#Hard 191 752 484 4544 5625 7234 9157 47234 45034

DT 99.65 97.17 79.51 85.49 85.83 NA 95.12 NA NA
PDT 99.64 96.1 80.12 86.1 85.61 NA 96.34 NA NA
#Hard 2678 2667 302 7699 9163 NA 45001 NA NA

SVM 96.24 90.76 87.97 79.33 85.26 NA 93.9 NA NA
PSVM 97.1 78 88.45 80.12 86.1 NA 84.1 NA NA
#Hard 2001 3078 1297 3715 23409 NA 47234 NA NA

Recent research has shown that parallelizing boosting algorithms results in
efficient learning [10,11]. So we also compared the performance of PSBML to the
ensemble-based meta-learners AdaBoost and ParallelBoost. Table 3 summarizes
the result using NB as the base classifier.

The column labeled PNB shows the classification accuracies obtained by PS-
BML running an NB classifier, the column labeled AB-NB shows the classifica-
tion accuracies obtained when employing AdaBoost with NB, and the column
labeled PB-NB shows the classification accuracies obtained when employing Par-
allelBoost with NB. Again we see that PSBML produces comparable or better
results.

Table 3. Comparison of PSBML with AdaBoost and ParallelBoost

Dataset Chess Spam Digit Magick Adult W8A Cod Cover KDD99

AB-NB 92.83 93.89 86.9 83.22 85.13 97.45 92.43 78.72 99.14
PB-NB 92.9 93.8 77.21 83.9 85.7 97.9 93.21 82.1 99.18
PNB 93 94 90 83.1 89.01 98.1 90.01 85.1 99.65

214 U. Kamath et al.

4.5 Scalability Experiments

The experiments of the previous section support the hypothesis that PSBML
achieves comparable classification in comparison with other single classifiers,
while providing a significant scalability potential via parallel local learning on
local subsets of training data. These experiments were run on single machines
using single computation threads. The next obvious step is a systematic study of
the scalability of PSBML on a variety of parallel and distributed computational
architectures. In general, although cellular models can map onto loosely-coupled
Beowulf-style clusters, a better fit is a multi-threaded shared memory architec-
ture with each local EA running on a separate thread.

A principled port of PSBML to our GPU server environment is in progress. To
date, our multi-threading experiments consist of measuring PSBML speedup on a
single machine with multiple cores and multi-threading support. As an example,
Fig. 5 shows the running time in milliseconds of PSBML as a function of the
number of threads employed, suggesting there is indeed significant potential for
speedup and hence scalability. These particular results were obtained running
under Linux OS on a 2GHz 2x4 core Intel machine.

Fig. 5. Training time when using 1, 2, 4, and 8 threads

5 Conclusion and Future Work

We have described a novel approach for parallelizing machine learning methods
that combines the features of spatially-structured evolutionary algorithms with
the well-known machine learning techniques of ensemble learning and boosting.
It does so in a way that does not require changes to the underlying machine
learning methods, maintains or improves classification accuracy, and can achieve
significant speedup in running times via a straightforward mapping to multi-
threaded shared-memory architectures.

Although our experiments to date have been on machines that have signifi-
cantly fewer parallel threads than the number of grid points of the underlying

A Spatial EA Framework for Parallelizing Machine Learning Methods 215

SSEA, we plan to continue our evaluation of PSBML in the context of a GPU
server environment in which this is not the case.

We are also exploring the use of PSBML as the first stage of multi-stage exper-
iments in which subsequent stages take advantage of the reduction of the dataset
to both a more manageable size and containing the most critical exemplars.

References

1. Bordes, A., Bottou, L., Gallinari, P.: Sgd-qn: Careful quasi-newton stochastic gra-
dient descent. Journal of Machine Learning Research 10, 1737–1754 (2009)

2. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new
explanation for the effectiveness of voting methods (1997)

3. Sarma, J., De Jong, K.: An Analysis of the Effects of Neighborhood Size and
Shape on Local Selection Algorithms. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN IV. LNCS, vol. 1141, pp. 236–244. Springer, Heidelberg
(1996)

4. Tomassini, M.: Spatially structured evolutionary algorithms: artificial evolution in
space and time. Natural computing series. Springer (2005)

5. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research 11, 169–198 (1999)

6. Pamuk, B., Can, T.: Coevolution based prediction of protein-protein interactions
with reduced training data. In: 2010 5th International Symposium on Health In-
formatics and Bioinformatics (HIBIT), pp. 187–193 (April 2010)

7. Banks, R.B.: Growth and Diffusion Phenomena: Mathematical Frameworks and
Applications. Springer (1993)

8. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

weka data mining software: an update. SIGKDDExplor. Newsl. 11(1), 10–18 (2009)
10. Yu, C., Skillicorn, D.B.: Parallelizing boosting and bagging (2001)
11. Favre, B., Hakkani-Tür, D., Cuendet, S.: Icsiboost (2007),

http://code.google.come/p/icsiboost

http://code.google.come/p/icsiboost

	A Spatial EA Framework for Parallelizing
Machine Learning Methods
	Introduction
	Related Work
	The PSBML Framework
	Analysis of the PSBML Framework
	Experiment 1: A Simple Circle Classification Problem
	Experiment 2: Neighborhood Effects
	Experiment 3: Impact of pr
	Experimental Analyses on Benchmark Datasets
	Scalability Experiments

	Conclusion and Future Work
	References

