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Abstract. Learning a Bayesian network structure from data is a well-
motivated but computationally hard task, especially for problems ex-
hibiting synergic multivariate interactions. In this paper, a novel search
method for structure learning of a Bayesian networks from binary data is
proposed. The proposed method applies an entropy distillation operation
over bounded groups of variables. A bias from the expected increase in
randomness signals an underlaying statistical dependence between the in-
puts. The detected higher-order dependencies are used to connect linked
attributes in the Bayesian network in a single step.

1 Introduction

A Bayesian networks is a probabilistic graphical model that depicts a set of ran-
dom variables and their conditional independence via a directed acyclic graph. It
represents a factorization of a multivariate probability distribution that results
from an application of the product theorem of probability theory and a simplifi-
cation of the factors achieved by exploiting conditional independence statements
of the form P(A|B,X) = P(A|X), where A and B are attributes and X is a set
of attributes.
The represented joint distribution is given by:

n

P(As,..., An) =[] P(Ailpar(4))) (1)

i=1

where par(A;) denotes the set of parents of attribute A; in the directed acyclic
graph that is used to represents the factorization.

Bayesian networks provide excellent means to structure complex domains and
to draw inferences. They can be acquired from data or be constructed manually
by domain experts (a tedious and time-consuming task).

One of the most challenging task in dealing with Bayesian networks is learning
their structures, which is an NP-hard problem [I2]. Most algorithms for the
task of automated network building from data, consist of two ingredients: a
search method that generates alternative structures and an evaluation measure
or scoring function to assess the quality of a given network by calculating the
goodness-of-fit of a structure to the data.
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Due to the computational cost implications [2], most of the algorithms that
learn Bayesian network structures from data use a heuristic local search to find a
good model, trading accuracy for tractability and efficiency. Exact Bayesian net-
work learning has a O(n2™) complexity, thus it is feasible up to 30 variables [3].

Heuristic methods, at each step apply some search operators like perturba-
tion or solution mixing, to some current network structure(s), exploring their
neighborhoods. After evaluating the new solutions, they promote changes that
result in the improvement of some discriminative metric.

Because these search methods alter only a few arcs at the time, they can hardly
find and express multivariate interactions that only manifest at a synergic level
like the parity function. Here, adding edges between less than k nodes, where
k is the size of the block containing the multivariate interaction, will not result
in any improvement, thus are hard to discover by methods closely following the
discriminative metric gradient.

In this paper we propose a linkage-detection method that is able to select all
relevant parents for an attribute in one step, by finding and expressing even rela-
tionships not manifesting at pairwise level. Our method exploits the property of
the exclusive or (XOR) operator to produce randomness from non-deterministic
sources. We search for groups of variables where entropy distillation does not oc-
cur, signaling a non-determinism in the source - statistical dependence between
the variables.

Albeit a costly search for the groups of variables must be performed, this
approach enables the correct detection of Bayesian network, unattainable by
simple heuristic search methods.

2 Detecting Higher-Order Dependencies

Binary problems of real interest may have many variables with complicated
multivariate interactions among them. The dependency of a binary variable X,
on a (noisy) feature expressed by several other variables of the problem can be
formalized as follows:

if fo(Xo1, Xova,..., Xu) [and noise(X)]
then

[else

Xe=b
Xe=b

]

where fp is an arbitrary deterministic boolean function of [ binary variables,
which analyzes if the input variables satisfy a certain feature or not. b is the bit-
wise negation of b. As the relation must not be fully specified, the else branch
is optional. The optional boolean noise(X) function can be used to introduce
stochasticity to the relation, to model external influences or factors which are
not directly considered when evaluating the feature. This boolean function may
prevent the expression of the feature even if the conditions are present, thus
adding noise to the relation.
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For these kind of problems, pairwise dependencies might be very small or
lacking altogether. Therefore, finding the correct dependency structure is a very
hard task. Prospective methods must combine an extensive higher order model
search guided by a criteria that evaluates the quality of the model in rapport
with the evidence, like the Minimum Description Length (MDL) principle [4] or
Bayesian-Dirichlet metric [5].

The complexity of the model determination is a product of the complexity of
the search and candidate model evaluation.

For problems where statistical dependence can only be detected by considering
at least k variables, the search must enumerate at least all combinations of
variables taken k at the time.

An ordered tuple of binary random variables X = (X3, X, ..., X,,) is in-
dependent iff the joint distribution Pr(X; = z1, Xo = x2,..., X, = x,)
and the product of the independent ones [[;_, Pr(X), = zi) is equal for all
T = (SUl, L2y - 7xn) € {Oa 1}n

Relative entropy or Kullback-Leibler divergence [6] can be used to measure
the “distance” between these two distributions:

()

o 2)

Dir(plla) = 3 pla)logy(”
reX q

Measuring the Dg, between the observed joint distribution of some variables
and the product of independent joint distribution one can measure the informa-
tion gain by considering a group of variables linked. The complexity of calculat-
ing Dk, is exponential in k& with a base equal to the cardinality of the random
variables. Thus, for the binary case the complexity is O(2F).

While the burden of the combinatorial search can not be obviated, in the
following we consider ways in which the complexity of the model discriminatory
function can be heavily reduced from the exponential complexity.

3 Entropy Distillation Based Multivariate Dependency
Detection

Most practical sources of randomness, be it hardware or pseudo-random number
generators, exhibit a certain level of imperfection or bias. A perfectly random
bit has an entropy of one bit and bias of 0. To obtain a highly random bit, there
are algorithms that combine multiple, streams of imperfect random bits, each
with entropy less than one, to create a single bit with entropy one and bias 0.
This process is called entropy distillation or entropy extraction.

Exclusive OR (XOR, also denoted by ®) is commonly used to reduce the bias
from imperfectly random bits, provided that the random bits are statistically
independent.

The reduction in bias by repeatedly applying the XOR on non-deterministic
inputs can be computed using the Piling-Up Lemma [7].
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Lemma 3.1. Let X; for i € 1,n be statistically independent random binary
variables, where p; is the probability that X; = 0 and ¢; = p; — 1/2 are the
biases. Then the probability that X1 @ Xo® ... 0 X,, =0 is

1 n—1 -
9 + 2 ]:[167; (3)

Note that as biases €; € [0, 1] their product is a monotonically decreasing func-
tion. If any of the €’s is zero, that is, one of the binary variables is unbiased, the
resulting probability function will be unbiased. Also, performing an XOR with
a constant variable having p; = 0 or p; = 1 i.e a maximum bias of ¢, = £1/2
will not reduce the bias.

In our algorithm we will apply the XOR operation in a sequential manner,
performing in each step the operation between a variable X; and the result
Y=X10Xo®...®0 X;_1 of the repeated XOR up to that variable i. Therefore,
we take a closer look on the expected result of XOR for two variables.

Lemma 3.2. If X and Y are independent random binary variables with expec-
tations E(X) =u and E(Y) = v then

EXQY)=u+v—2uv (4)
= 2Au ) 5)

Proof. Following from the logical table of the XOR, for two bits a and b, a ® b
equals lifa=0andb=1orifa=1and b=0.
Thus, E(X ® Y) can be written as

E(X®Y)=(1—pmv+p(l—v)

=p+v-—2uv

SVRE S
= Vf p—

H St

1 uwov o1
= —2 — —

2 [W 2 2+4}
1 1 1
= —2 — —

, =2 =)

3.1 XOR Based Multivariate Dependency Detection

The Piling-Up Lemma is successfully used in linear cryptanalysis to construct
linear approximation to the action of non-linear block ciphers. In this application,
the X;-s are approximations to the substitution-boxes of block ciphers for which
the biases are trivial to measure. The attack relies on performing a costly search
for finding combinations of input and output values that have very high biases
i.e probabilities very close of zero or one.

Similarly, we perform a search to find groups of variables for which the actual
probability mass of the result obtained by performing the XOR greatly differs
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from the value predicted by the Piling-Up Lemma. For these cases the high bias
must come from the fact that the assumption of non-determinism is not satisfied.
Thus, there is an underlaying (higher-order) statistical dependence between the
inputs.

The proposed metric has a great complexity advantage, as performing k& con-
secutive XOR operations in linear. While the approach is efficient in detecting
multivariate dependences, we still have to perform an ample search to find the
higher-order groups of variables that are dependent. In the next section we ap-
ply this multivariate dependence detection technique to determine all relevant
parents for the Bayesian network building task.

4 Bayesian Network Building

In Bayesian network building, the goal is to decide the set par(A;) for each
attribute, with the restriction, that adding the edges between and attribute and
its parents must not result in a cycle.

To detect all dependencies, up to a predefined bounded size k in one step,
for each attribute we compute the repeated ® between the attribute and all
possible combinations of other variables up to the threshold k. For each com-
bination, we compute the difference between the percentage of zeros in the
result as predicted by the Pilling-Up lemma and the actual outcome percent-
age. For each attribute, we retain the combinations that yield the biggest
discrepancies.

In the network building phase, we process the attributes in a random order.
For each attribute A;, we sequentially assign the potential parent set par;(Ai)
to be the j combination of variables with the highest bias, as quantified with
the help of the Pilling-Up lemma in the previous step. In this way we process
a prefixed top S, interacting subsets for each attribute. For every subset, we
process each potential parent p*(A4;), p*(4i) € par;(A;), and if adding an edge
between the attribute and its potential parent does not result in a cycle, p*(A;)
becomes a parent of A;: par;(A;) = par;j(A4;) Up*(A;). From all the obtained
and tested parent subsets for each attribute, we choose attribute and its parents
that maximizes a given discriminative scoring function, in our case the Bayesian
Dirichlet metric [g].

The search stops when we determined the parents of each attribute, or when
considering the extension of the network does not result in improvements. The
outline of this parent search procedure is outlined in Algorithm [

4.1 Test Suite

To assess the performance of the proposed search method, we built some artifi-
cially generated test samples that contain various types of multivariate interac-
tions. We consider 10 variables X1, ..., Xig, sampled 5000 times.
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Algorithm 1. Constructing a Bayesian network that is able to capture
higher-order interactions up to a prefixed order k

1 BN + EmptyNetwork();
2 foreach attribute A, iterating by i do

3 foreach e possible combinations of variables that do not contain A;, up to
size k, iterating by j do
4 Measure the entropy distillation bias between A; and e; and retain the

Spr combinations with highest biases in M (4, :);

5 repeat

6 for i=randompermutation(1:n) do

7 if HasParents(i) then

8 continue;

9 for j=1:S,, do

10 par®(A;) < M(i,7);

11 par(A;) < EliminateCycles(par®(A;));

12 BN* « ExztendNetwork(BN, A;, par(A;));
13 if Score(BN*) > Score(BN) then

14 BN < BN™;

15 until No improvement was found;
16 return BN,

The first data set contains two highly noisy features:

— A highly noisy conditioning, where whenever three out of the four first vari-
ables are one, X5 is also set to 1 with a probability of 0.5:

if (sum([X1, X2, X3, X4]) ==3) and (rand < 0.5)
then Xs=1
— A noisy feature based on a parity function conditioning where if variables

X¢, X7, X9, X190 have an even number of ones, Xg is set to 0 with a 0.8
probability:

if (parity([Xes, X7, X9, X10]) == true) and (rand < 0.8)
then Xs=0

In the second dataset we reduce the amount of explicit noise but introduce an
overlap between the two features, which are:

— We have the noisy conditioning, where whenever exactly half of a group of
six variables are 1, X5 is also set to 1 with a probability of 0.95:

if (sum([X1, X2, X3, X4, X9, X10]) == 3) and (rand < 0.95)
then Xs=1
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— Again a noisy feature based on a parity function conditioning:

it (parity([Xe, X7, X9, X10]) == true) and (rand < 0.9)
then Xs=0

In the third dataset we introduce an interplay between the features, where the
realization of the first feature may inhibit the realization of the second one:

— We use again the first conditioning, from dataset one.
— A feature which may be short circuited by the realization of the first feature:
if X5 == 1, the feature regarding Xg is not expressed.

if (sum([X67X7, X97X10]) == 3) and (XE) - O)
then Xg=0

4.2 Results

For each test case, we generated 50 instances and tested the proposed method
against the classical Bayes network model building K2 algorithm [9], which ex-
tends a current model by performing one arc operation at the time. The allowed
in degree in the classic search and the k parameter in the proposed method
was set to 6, thus both methods could consider up to 6 parents. The number of
analyzed possible parent sets S, was set to 5.

For each batch of 50 runs, we recorded the best network found, its score, the
worst and the average score. Because the data is stochastically generated and
incorporates noise, the exact quantity of this values is of a little importance. The
same network structure will score differently when evaluated on different noisy
samples. Nevertheless, these values may be used to make qualitative assessments,
in the cases where the worst result of one method surpasses the best network
score or the average score found by the other method.

More important aspect regards the methods ability to extract the same struc-
ture from different samples of noisy data. We measure this robustness by com-
paring the best and worst scoring network out of each batch of 50 runs. If the
adjacency matrix of the two networks is not similar (one can not be transformed
into the other one by using only row and column swapping), implies that the
search method may find different network topologies on different runs.

The numerical scores are presented in Table[Il The plot of the best networks
found for each of the three cases are presented in Figures [Tl 2 Bl

In the first case, where there is a high amount of noise, the classical approach
can not detect the real structure, the network is filled with spurious connections
where often an attribute is accounted as the parent of all other attributes following
after. Observe for example in Figure [T that Node 1 is attributed as parent for
all other nodes. On the other hand, even with such a high amount of noise, the
extended multi-parent search is able to detect the correct topology of the network.

For the second dataset it is expected that the classical approach is not able
to detect the parity, multivariate interaction as it would need to add at least six
arcs at once to reveal this interaction. Furthermore, as this feature overlaps with
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Table 1. The performance of the proposed and classical methods on the three test
suites. The multi-parent extended search worse results are better than the best scores
obtained by the classical search method in all cases.

Best Worst Average Std. Robust

Test suite 1

Classic -34128.06 -34269.11 -34204.73 32.89 No
Extended -33662.24 -33826.25431 -33748.88 37.67 Yes
Test suite 2

Classic -33876.23 -34040.17 -33950.13 36.63 Yes
Extended -33063.69 -33308.58 -33192.06 52.87 Yes
Test suite 3

Classic -34172.68 -34298.18 -34228.73 27.03 No
Extended -33915.10 -34065.95 -33982.97 29.87 Yes
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Fig. 1. Best networks found by the classical method (A) and the multi-parent extended
search (B) on the first test suite

[Node1 ] [Node2 | [Node3| [Node4| [Nodes| [ Node6| [Node7 | [Nodes | [ Nodeo | [ Nodeto | (A)

| Node 3 | | Node 4 | | Node 9 | | Node 10 | | Node 1 | | Node 2 | | Node 6 | | Node 7 |

| \ﬂ-&ode; B ﬁ-l;ode; “ (B)

Fig. 2. Best networks found by the classical method (A) and the multi-parent extended
search (B) on the second test suite
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[ Node1 | [ Node2 | [ Node3 | | Node4 | | Node7 | | Nodeo | | Node10

[ Node6 | [ Nodes |

| Node 1 | | Node 2 | | Node 3 | | Node 4 |

| Node5 | | Nodes | | Node7 | | Nodeo | | Node 10

"

Fig. 3. Best networks found by the classical method (A) and the multi-parent extended
search (B) on the third test suite

the other feature which also spans across six variables, the method is unable to
account for useful relations and returns the empty network, without edges, in
all cases. Please note by looking at the best and worst score in Table [Tl for test
suite 2, how the same empty network may score differently when presented with
different test data. The proposed method is again able to find the correct struc-
ture, as we allowed the feature space exploration up to six combined variables,
which is also the length of the highest multivariate relation.

On the third case, the classical method is able detect the interactions in-
fluencing attribute 5 and its relation to attribute 8, while failing to model the
synergic interaction of the other variables. Sometimes, as depicted in Figure Bl A,
it reports attribute 5 as linked to other variable different from attribute 8, but
this result is rarely achieved. By modeling all interactions up to size six in the
feature space, the multi-parent search is able to correctly decipher the interplay
between the two features.

For all cases, as shown above, the extended search found qualitatively better
networks; the worst scoring results of the proposed method were always better
than the best results returned by the classical method. As it does not contain
stochastic components, the proposed showed robustness, finding the same topol-
ogy on different runs.

5 Conclusions

Usual Bayesian network building starts by exploiting pairwise dependencies.
When no such relations are available a successful approach must do k-wise mul-
tivariate interaction search.
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In this paper a search algorithm for constructing Bayesian networks from
binary data was developed, where all dependencies of each attribute is detected
in one step. The proposed method has demonstrated a great ability to identify
simpler and synergic multivariate interactions even in the case of noisy feature
interplay, where considering one edge addition at the time is fruitless.

While it uses a small number of model evaluations and it is much more effec-
tive than doing greedy search using a k-wise stochastic edge search operator, the
extended multi-parent search is still very costly in terms of building and eval-
uating all combinations of variables, having an O(n*) complexity. Fortunately,
backtracking algorithms are very easy to parallelize as processing different paths
in the search tree is an embarrassingly parallel task, with no communication over-
head [I0J11]. Parallel backtracking scales very well with the number of available
processors. Therefore, future effort will focus on parallelizing the higher-order
dependency detection search.
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