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Abstract. Learning Classifier Systems (LCSs) are a unique brand of
multifaceted evolutionary algorithms well suited to complex or heteroge-
neous problem domains. One such domain involves data mining within
genetic association studies which investigate human disease. Previously
we have demonstrated the ability of Michigan-style LCSs to detect ge-
netic associations in the presence of two complicating phenomena: epis-
tasis and genetic heterogeneity. However, LCSs are computationally de-
manding and problem scaling is a common concern. The goal of this
paper was to apply and evaluate expert knowledge-guided covering and
mutation operators within an LCS algorithm. Expert knowledge, in the
form of Spatially Uniform ReliefF (SURF) scores, was incorporated to
guide learning towards regions of the problem domain most likely to be
of interest. This study demonstrates that expert knowledge can improve
learning efficiency in the context of a Michigan-style LCS.

Keywords: Expert Knowledge, Learning Classifier System, Genetics,
Epistasis, Heterogeneity, Evolutionary Algorithm, Mutation, Covering.

1 Introduction

Learning Classifier Systems (LCSs) [1] are a rule-based class of algorithms which
combine machine learning with evolutionary computing and other heuristics to
produce an adaptive system. We focus on Michigan-style LCSs (M-LCSs) which
uniquely make decisions using the entire rule population giving them the ability
to perform on-line learning, form niches, and adapt. They have been applied to
many problems including behavior modeling, function approximation, classifica-
tion, and data mining [1].

Scalability and learning speed have been synonymous targets for improvement
in the LCS literature [2,3,4,5,6] largely in the context of Pittsburgh-style LCSs
(P-LCSs) due to their inherent limitations in this area. However these consider-
ations are just as important for M-LCS algorithms, especially in the context of
large-scale, high dimensional problems.
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1.1 The Problem Domain: Human Genetics

One domain where these shortcomings clearly impact the utility of LCS is within
human genetics. Single nucleotide polymorphisms (SNPs) are single loci in the
DNA sequence where alternate nucleotides (i.e. alleles) are observed between
members of a species or between paired chromosomes in an individual. In a
typical genetic association study, researchers look for differences in SNP allele
frequencies between a group of individuals with the disease of interest, and a
matched group healthy controls.

Despite the rising quality and abundance of genetic data, epidemiologists con-
tinue to struggle with the connection of disease phenotypes to reliable genetic
and environmental markers. While strategies seeking single locus associations
(i.e. main effects) are often sufficient to address diseases which follow Mendelian
patterns of inheritance, their application to diseases characterized as complex
has yielded limited success [7,8]. Epistasis and heterogeneity have been recog-
nized as phenomena which complicate the epidemiological mapping of genotype
to phenotype [9]. In the present context, epistasis simply refers to attribute inter-
action. Heterogeneity, referring to either genetic heterogeneity (locus and allelic)
or environmental heterogeneity, occurs when individual (or sets of) attributes
are independently predictive of the same phenotype (i.e. class).

As proof of principle, M-LCSs were applied to the detection and modeling
of simulated epistatic and heterogeneous genetic disease associations [10]. These
evaluations identified the strengths and weaknesses of M-LCS on these types of
complex, noisy problems. To address the shortcoming of knowledge discovery
in M-LCSs we previously introduced an analysis pipeline with statistical and
visualization-guided strategies for rule population interpretation [11]. In order
to explicitly identify heterogeneity we introduced a strategy to link instances in
the dataset to respective heterogeneous subgroups using attribute tracking and
feedback [12]. To date, we have a functional LCS algorithm able to concurrently
detect patterns of association with epistasis and heterogeneity. In this work, we
turn our focus to improving the efficiency and scalability of this strategy.

The present study explores the adaptation of expert knowledge, previously
utilized in the context of other evolutionary algorithms, to improve algorithm
efficiency [13,14,15,16]. Here, we uniquely introduce expert knowledge to an M-
LCS algorithm and develop the strategies to utilize it. To achieve this goal we: (1)
derive expert knowledge from Spatially Uniform ReliefF (SURF) [17], (2) adopt
a logistic function to reliably transform any set of expert knowledge scores into
a set of attribute respective probabilities, (3) utilize these probabilities to intel-
ligently guide covering and mutation operators within M-LCS towards regions
of the problem domain most likely to be of interest.

2 Methods

In this section we describe (1) the M-LCS algorithm and run parameters used
in this investigation, (2) SURF, the selected source of our EK, (3) logistic trans-
formation of the EK values into probabilities, (4) the incorporation of EK into
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the covering and mutation mechanisms, and (5) our experimental evaluation of
the proposed mechanisms.

2.1 Learning Classifier System: UCS

M-LCSs, often varying widely from version to version, generally possess four
basic components; (1) a population of rules or classifiers, (2) a performance
component that assesses how well the population of rules collectively explain
the data, (3) a reinforcement component that distributes the rewards for correct
prediction to each of the rules in the population, and (4) a discovery compo-
nent that uses different operators to discover new rules and improve existing
ones. Learning progresses iteratively, relying on the performance and reinforce-
ment components to drive the discovery of better rules. For a complete LCS
introduction and review, see [1].

The sUpervised Classifier System (UCS) [18], is a M-LCS based largely on
the very successful XCS algorithm [19], replacing reinforcement learning with
supervised learning. UCS was designed specifically to address single-step problem
domains such as classification and data mining, displaying particular promise
when applied to attribute interaction and heterogeneity in [10].

For evaluation purposes we implement expert knowledge into a Python en-
coding of the UCS algorithm [10]. We utilize mostly default run parameters with
the exception of 200,000 learning iterations, a population size of 1600, tourna-
ment selection, uniform crossover, subsumption, attribute mutation probability
= 0.04, crossover probability = 0.8, and ν = 1. ν has been described as a “con-
stant set by the user that determines the strength [of] pressure toward accurate
classifiers” [20], and is typically set to 10 by default. A low ν was used to place
less emphasis on high accuracy in this type of noisy problem domain, where
100% accuracy is only indicative of over-fitting. While we run each algorithm for
a maximum of 200,000 iterations, we also stop and evaluate the systems after
10,000, 50,000, and 100,000 iterations. Also, as in [10], we employ a quaternary
rule representation, where for each SNP attribute, a rule specifies genotype as (0,
1, or 2), or instead generalizes with “#”, a character which implies that the rule
doesn’t care about the state of that particular attribute. The implementation
described above is available on request (ryanurbanowicz@gmail.com) and will
be posted on the LCS and GBML Central webpage.

2.2 Expert Knowledge from Spatially Uniform ReliefF (SURF)

Expert knowledge (EK) is an external source of information providing, in this
context, a measure of attribute quality. In this study, the external measure was
statistical, but it could just as easily be biological. The usefulness of EK is en-
tirely dependent on it’s quality. There are many statistical and computational
methods for determining the quality of attributes. We selected a method that
is capable of identifying attributes that predict class primarily through depen-
dencies or interactions with other attributes. To this end we selected Spatially
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Uniform ReliefF (SURF) [17] as the source of EK. SURF estimates the qual-
ity of attributes through a nearest neighbor algorithm that selects neighbors
(case or control instances) within an automatically determined distance thresh-
old. Weights, or quality estimates, for each attribute are estimated based on
whether the nearest neighbor (nearest hit) of a randomly selected instance from
the same class and the nearest neighbor from the other class (nearest miss) have
the same or different values. In addition to SURF, [17] also evaluated Tuned
ReliefF (TuRF) [21] which was designed for human genetics application. TuRF
systematically removes attributes that have low quality estimates so that the Re-
liefF values of the remaining attributes can be re-estimated. SURF and TuRF
could be combined in future work to derive EK scores, but in the present study
we exclusively utilize SURF to generate EK scores for every simulated training
dataset described in section 2.5. Note that the SURF run time was negligible
compared to that of UCS: requiring a matter of seconds to run.

2.3 Transformation of Expert Knowledge into Probabilities

This section describes our application of the logistic function in order to trans-
form raw EK scores into normalized probability values. We start with a set of
raw EK values K ⊂ R. We know neither the range nor distribution of the EK
values. The only requirement is that greater importance should translate to a
larger EK score. Let n = |K| and ki ∈ K|1 ≤ i ≤ n be the ith score.

We use the logistic function to transform the raw values into selection prob-
abilities. Namely,

�α,β(x) =
1

1 + e−(α+βx)

.
Before applying this function we must determine values for constants α and β.
First, the user specifies a range constant d. We have chosen d = 0.4 which yields
an output range of (0.5 − d = dl = 0.1, 0.5 + d = du = 0.9). This range ensures
that the attribute with the lowest EK score retains at least a 10% chance to be
specified, while the attribute with the highest EK score has no greater than a 90%
chance to be specified. Next, the user must specify c, which is the resulting sum of
probabilities in the transformed set. This is useful when one wants to guarantee
that a selection algorithm, given the set of probabilities, returns a certain number
of individuals on average. In this study we want selection to choose 50% of the
attributes during covering, therefore we set c = 10 since datasets each have 20
attributes. Lastly, the user must specify how many digits of precision (set to 5
here) we use when calculating α in step 5. EK transformation progresses in five
steps as follows:

Step 1: Compute range r = max(K)−min(K).
Step 2: Shift scores such that the lowest score is at minimum zero. Ifmin(K)<

0 then add abs(min(K)) to every EK score.
Step 3: Compute β such that the logistic function’s slope ’nicely’ occupies

the data range, i.e. �α,β(−r/2) = dl and �α,β(r/2) = du. Since α does not affect
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slope we set α = 0 while calculating β. We solve for β after some simple algebra
with the following:

β = 2 ln(
1 − dl
dl

)/r

Step 4: Compute an initial guess for α such that �α,β(min(K)) = dl. Since α
simply shifts the function left or right we only need to move the curve such that
the minimum EK score is transformed to dl. We solve for this initial α0 using
the following equation derived again with some simple algebra:

α0 = −β(min(K) + r/2)

Step 5: In order to find α such that the transformed probabilities sum to c
we iteratively search for an appropriate value of α using the Newton-Raphson
method. For our purposes β is a constant. We applied differential calculus to
obtain:

αj = αj−1 −

n∑

i=0

�α,β(ki)− c

n∑

i=0

�′α,β(ki)

We iterate this equation until αj = αj−1 with respect to the digits of precision.
At this point applying the logistic function to the input scores (K) using the
computed parameters, α and β, will produce a set of probabilities that sum to
the desired c.

2.4 Expert Knowledge Applied to Covering and Mutation

Once EK-based probabilities has been generated for all attributes, we incorpo-
rated these as weights to guide LCS learning. To achieve this, we apply these
probabilities to both covering and mutation operators within M-LCS. The cov-
ering operator is responsible for population initialization, as well as ensuring
that a matching rule exists for a given data instance within each learning iter-
ation. Previously, EK has been successfully applied to population initialization
in genetic programming [16]. In the context of LCS, EK probabilities drive the
specialization (state is important) or generalization (state is not important) of
attributes within rules. Having chosen a c of 10, rule generated via covering
will tend to have half of the 20 attributes specified, and half generalized. The
standard covering mechanism gives each attribute a 50% chance of being spe-
cialized. With the incorporation of EK, attributes with higher EK scores (likely
to be useful) will have a higher probability of being specified, and vice-versa.

The mutation mechanism is a discovery component of the M-LCS. When
activated, mutation traditionally randomly permutes an element of the rule such
that if it had been specified it becomes generalized and vise-versa. Previously,
EK has been successfully applied to mutation in genetic programming [15]. Here,
we apply EK probabilities to mutation, such that if an attribute is selected for
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‘possible’ mutation, the probability of mutation is equal to the EK probability
for that attribute. Specified attributes with high EK-scores will be less likely to
be generalized while generalized attribute with high EK-scores will more likely
to be flipped to specified. The opposite is true for attribute with low EK-scores.

In this study we evaluate the utilization of EK into UCS over four trials. The
trials include the following scenarios: (1) UCS algorithm without EK (UCS),
(2) UCS with EK applied to covering only (UCS-EK-Cov), (3) UCS with EK
applied to mutation only (UCS-EK-Mut), and (4) UCS with EK applied to both
covering and mutation (UCS-EK-Both).

2.5 Data Simulation and Analysis

We evaluate EK using simulated datasets which concurrently model heterogene-
ity and epistasis as they might appear in a SNP gene association study of com-
mon complex disease [10,22]. All data sets were generated using a pair of distinct,
two-locus epistatic interaction models, both utilized to generate instances (i.e.
case and control individuals) within a respective subset of each final data set.
Each two-locus epistatic model was simulated without Mendelian/main effects,
as a penetrance table as in [10]. Due to the computational demands of LCSs,
this study limited its evaluation to 3 heterogeneity/epistasis model combina-
tions. For simplicity the minor allele frequency of each predictive attribute was
set to 0.2, a reasonable assumption for a common complex disease SNP. The
three model combinations included a pair of models with a heritability of either
(0.1, 0.2, or 0.4). We considered model architectural “difficulties” of both “easy”
and “hard” [23]. Balanced datasets simulated from these models were generated
as having four different sample sizes (200, 400, 800, or 1600) and a heteroge-
neous mix ratio of either (50:50 or 75:25) (e.g. 75% of instances were generated
from one epistatic model, and 25% were generated from a different one). Twenty
replicates of each dataset were analyzed and 10-fold cross validation (CV) was
employed to measure average testing accuracy and account for over-fitting. To-
gether, a total of 48 data set configurations (3 Model Combos x 4 Sample Sizes
x 2 Ratios x 2 Difficulties), and a total of 960 data sets (20 random seeds each)
were simulated. With 10-fold CV, 9600 runs of each of the four UCS trials were
completed.

For each run we track the following statistics; training accuracy, testing ac-
curacy, generality, macro population size, the power to find both underlying
models, the power to find at least one underlying model, the power to correctly
rank attribute co-occurrence [11], and run time. Power is a reflection of our abil-
ity to reliably mine knowledge from the evolved rule population. Co-occurrence
power is a reflection of our ability to distinguish heterogeneous models. Each of
these values represent an average over the 10 CV runs.

Statistical comparisons were made using the Wilcoxon signed-rank tests due
to a lack of normality in the value distributions. All statistical evaluations were
completed using R. Comparisons were considered to be significant at p ≤ 0.05.
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3 Experimental Results and Discussion

This analysis of EK spans over a spectrum of complex datasets, with evaluations
taken at four different iteration intervals, and examines a variety of M-LCS
statistics in order to compare the performance of UCS, UCS-EK-Cov, UCS-EK-
Mut, and UCS-EK-Both. Table 1 summarizes averages and identifies significant
differences for all run statistics over all simulated datasets between our four
experimental investigations after either 10,000 or 200,000 iterations. Averages
after 10,000 iterations reveal the impact of EK very early on in the learning
process, while averages after 200,000 give a better sense of it’s impact after the
learning curve has started to level off.

Table 1. Comparing UCS with EK implementations after either 10,000 or 200,000
learning iterations each averaged over all simulated datasets. Arrows indicate a signif-
icant increase or decrease when compared to UCS.

10,000 Iterations

Statistics UCS UCS-EK-Cov p UCS-EK-Mut p UCS-EK-Both p

Train Accuracy 0.8268 0.8439 ↑ ** 0.7918 ↓ ** 0.8301 ↑ **
Test Accuracy 0.5909 0.6112 ↑ ** 0.6283 ↑ ** 0.6278 ↑ **

Both Power 0.15 0.2677 ↑ ** 0.2458 ↑ ** 0.2969 ↑ **
Single Power 0.5427 0.7281 ↑ ** 0.6885 ↑ ** 0.7302 ↑ **

Co-Occur. Power 0.1531 0.1625 - 0.1469 - 0.0396 ↓ **

Generality 0.7019 0.6543 ↓ ** 0.7351 ↑ ** 0.6580 ↓ **
Macro Population 1371.82 1400.71 ↑ ** 1244.44 ↓ ** 1276.68 ↓ **

Run Time (min) 1.61 1.79 ↑ ** 1.20 ↓ ** 1.43 ↓ **

200,000 Iterations

Statistics UCS UCS-EK-Cov p UCS-EK-Mut p UCS-EK-Both p

Train Accuracy 0.8544 0.8546 - 0.8468 ↓ ** 0.8467 ↓ **
Test Accuracy 0.6134 0.6141 - 0.6283 ↑ ** 0.6278 ↑ **

Both Power 0.3115 0.3083 - 0.3927 ↑ ** 0.3990 ↑ **
Single Power 0.7125 0.7156 - 0.7677 ↑ ** 0.7625 ↑ **

Co-Occur. Power 0.2438 0.25 - 0.2302 - 0.2260 ↓ *

Generality 0.7136 0.7138 ↑ * 0.7535 ↑ ** 0.7533 ↑ **
Macro Population 1317.09 1316.84 - 1173.03 ↓ ** 1172.21 ↓ **

Run Time (min) 37.48 35.85 ↓ ** 29.66 ↓ ** 29.06 ↓ **

− Not Sig.
* p < 0.05

** p << 0.001

Most notable after only 10,000 iterations, all three EK implementations show
significant improvement in testing accuracy, and the power to find one or both
underlying models supporting the hypothesis that EK can direct LCS towards
important regions of the problem space to improve learning efficiency. After
200,000 iterations the advantages of using UCS-EK-Cov become hidden, as most
observed statistics are comparable to those seen using UCS. This indicates that
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UCS-EK-Cov speeds up learning, but given enough time, UCS is able to achieve
similar performance. However, for UCS-EK-Mut, and UCS-EK-Both, we again
observe significant improvements in testing accuracy, both, and single power
even after 200,000 iterations. Additionally for these two implementations we ob-
serve increased rule generality, a smaller macro population size, and a decrease
run time, all considered to be indicators of improved learning efficiency in this
context. Figure 1A illustrates changing rule generality at different learning in-
tervals for each implementation, while Figure 1B illustrates the same for macro
population size. Increasing generality while maintaining or improving accuracy
indicates that UCS is doing a better job focusing on attributes that will be valu-
able for making predictions on subjects it has not yet seen. Decreasing macro
population size suggests that a smaller, more reliable, and applicable set of rules
have been found by UCS. The only statistic which was not improved via EK
incorporation was co-occurrence power. This is a logical finding given that EK
operates globally during the learning process. Since co-occurrence power reflects
the ability of the system to separate heterogeneous models, it makes sense that
a global EK mutation pressure (applied uniformly to all rules) may reduce the
systems overall ability to differentiate heterogeneity.
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Fig. 1. (A) Comparing average rule population generality and (B) comparing average
macro population size between UCS and UCS implementations utilizing EK. In both
plots, the values on the x-axis indicate the number of completed learning iterations.
Each box includes 960 observations. The star within each box plot indicates the average
of those values.

4 Conclusions

The primary conclusion of this work is that EK may be successfully applied to
an M-LCS algorithm to improve learning efficiency. We observe better algorithm
performance when using EK after as few as 10,000 iterations. We have developed
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and evaluated a strategy for implementing EK using SURF scores as a source of
EK, transforming any EK score source into usable probabilities, and incorporat-
ing these probabilities into covering and mutation mechanisms for the M-LCS.
Overall, our findings support the inclusion of EK in M-LCS as a strategy for im-
proving learning efficiency. However, in the context of potentially heterogeneous
problems it may be better to (1) limit the use of EK to covering alone and (2)
guide GA mechanisms such as mutation and crossover with local information as
explored in [12] rather than with global information (i.e. EK). In future work
we will extend this effort to consider the integration of EK and attribute feed-
back [12]. We will also extend these analysis to datasets with larger numbers of
attributes in order to more directly evaluate improvements in scalability. This
work supports the overall conclusion of related studies examining EK in the con-
text of evolutionary algorithms [14,15,16]: that EK can be effective at pointing
the algorithm towards attributes of greatest interest therefore facilitating the
algorithm’s ability to find “the genetic needle in the the genomic haystack”.
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