
On Measures to Build Linkage Trees in LTGA

Peter A.N. Bosman1 and Dirk Thierens2

1 Centre for Mathematics and Computer Science, P.O. Box 94079,
1090 GB Amsterdam, The Netherlands

Peter.Bosman@cwi.nl
2 Department of Information and Computing Sciences, Utrecht University,

Utrecht, The Netherlands
D.Thierens@uu.nl

Abstract. For an evolutionary algorithm (EA) to be efficiently scalable,
variation must be linkage friendly. For this reason many EAs have been
introduced that build and exploit linkage models, amongst which are
estimation-of-distribution algorithms (EDAs). Although various models
have been empirically evaluated, it remains of key importance to better
understand the conditions under which model building is successful. In
this paper, we consider the linkage tree genetic algorithm (LTGA). LTGA
is a recent powerful linkage-learning EA that builds a hierarchical linkage
model known as the linkage tree (LT). LTGA exploits this model using
an intensive mixing procedure aimed at optimally exchanging building
blocks. Empirical evaluation studies of LTGA have appeared in literature
using different entropy-based measures for building the LT, but with
comparable results. We study the differences in these measures to better
understand the requirements for detecting important linkage information
and point out why some measures are more successful than others.

1 Introduction

Having a tunable model that drives variation in an evolutionary algorithm (EA)
potentially allows efficiently tackling a large class of optimization problems.
Key to successfully solving a particular problem is the ability to configure this
model for that problem, i.e. such that combining solutions leads to (significant)
improvements. Key questions are whether such a proper configuration can be
learned efficiently and what type of model and learning algorithm are required.
In this paper we consider this question in the light of one of the latest and most
promising model-building EAs for discrete optimization problems: the linkage
tree genetic algorithm (LTGA) [1,5,10].

The type of EA that is perhaps best known for building and using models is
the estimation-of-distribution algorithm (EDA). Models in EDAs represent prob-
ability distributions over the space of solutions. In EDAs, linkage information,
i.e. which variables should be considered jointly when generating new solutions,
is processed via probabilistic dependency relations. Although probability theory
provides very powerful tools, estimating complete distributions might be more
than what is required. Instead therefore, LTGA learns linkage relations directly,

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 276–285, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Measures to Build Linkage Trees in LTGA 277

although the statistical techniques used to do so have much in common with
building probabilistic models as is done in EDAs.

LTGA exhibits excellent performance on several benchmark problems [1,5,10].
Themeasures used to learn the linkagemodel in these studies are however different,
although all are entropy-based. In this paperwe take a closer look atwhy the results
using different measures are so similar in order to better understand the require-
ments for detecting important linkage information. To do so, we consider what it is
we require of a linkagemeasure from a viewpoint of EA dynamics rather than from
probability theory and notions of probabilistic independence as in EDAs.

2 The Linkage Tree Genetic Algorithm (LTGA)

Here we only briefly describe the most recent version of LTGA [1]. For more
details we refer the interested reader to the related literature [1,5,10].

x

xx xxxx xxxx

x xx xx x

x x xx x xx x x

x x xx x xx x x

x x x xx x x x x x

0

0

0

0

0

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

7

8

8

8

9

9

9

9

9

Fig. 1. Example of a LT for 10 variables

To model linkage, a linkage tree
(LT) is used in which variables can
be linked on one level but not linked
on another, lower, level. At the lowest
level, all variables are unlinked and
form singleton sets. An LT then can
be formed by merging pairs of sets un-
til all sets are merged. An example of
an LT is given in Figure 1.

In each generation of LTGA a set
of n solutions is selected from a popu-
lation of size n using tournament selection with a tournament size of 2. The LT is
learned from this set. New solutions are however generated from the population
directly. Instead of fully creating new solutions first and only then evaluating
fitness, LTGA uses a procedure called Genepool Optimal Mixing (GOM) [10].
For each solution in the population, exactly one offspring solution is generated.
To do so, the solution is first cloned. The LT is then traversed in reverse-merging
order, i.e. ending with all variables in separate groups, and skipping the top level.
For each group, a donor solution is chosen randomly from the population. The
values in the donor pertaining to the variables in the linkage group are then
copied. If the solution is thereby improved, it is kept, otherwise the changes are
reverted. The use of GOM increases selection pressure in a building-block-wise
manner instead of on an entire solution basis. It is mostly because of OM that
LTGA requires only very small population sizes compared to most EDAs.

To ensure efficient convergence to a single solution, in the latest version of
LTGA [1] GOM is extended with forced improvements (FI). In FI, if a solution
could not be improved by GOM, an additional GOM operation is performed on
that solution but now with the currently known best solution as the donor, this
time stopping as soon as an improvement is detected. FI introduces a special
directed convergence pressure, through linkage space, toward the best solution
found so far. Note that FI doesn’t continuously reduce population diversity, but
only if a solution couldn’t be improved anymore anyway.

278 P.A.N. Bosman and D. Thierens

3 Measures to Build Linkage Trees

To build a LT, a similarity measure to be maximized or distance measure to be
minimized is required in order to decide which two groups of variables to merge
next. Building a LT is also known as hierarchical clustering [4].

3.1 Commonly Used Measures for Hierarchical Clustering

The most commonly adopted measures are based on mutual information (MI)
and variation of information (VI). Both measures themselves are based on en-
tropy. For a set X of random variables, the entropy H(X) is given by:

H(X) =
∑

x∈ΩX

−P (X = x)log(P (X = x)) (1)

where ΩX is the sample space of X , i.e. all 2k bit combinations for k binary
variables. For two sets of random variables X and Y , MI and VI are given by:

MI (X,Y) = H(X) +H(Y)−H(X ∪ Y) (2)

VI (X,Y) = H(X ∪ Y)−MI (X,Y) = 2H(X ∪ Y)−H(X)−H(Y) (3)

MI is a similarity measure whereas VI is a distance measure. MI is closely related
to probabilistic model building in EDAs. Specifically, MI times the size of the
data set is identical to the negative log-likelihood difference of two distributions
that differ only in modelling X and Y independently or jointly. This difference
is part of extended-likelihood measures, which are commonly used, e.g. in the
well-known EDA ECGA [3].

The actual measures commonly encountered in hierarchical clustering litera-
ture are normalized versions of MI and VI. The reason for this is that the range
of both measures is dependent on the number of variables in X and Y . This
results in a bias to favoring large sets when deciding which two sets to merge [4].
Different normalizations are possible. We denote the normalized version used in
LTGA by NVI. We similarly normalize MI and denote that by MNI, giving:

MNI (X,Y) = MI (X,Y)/H(X ∪ Y) = (H(X) +H(Y))/H(X ∪ Y)− 1 (4)

NVI (X,Y) = VI (X,Y)/H(X ∪ Y) = 2− (H(X) +H(Y))/H(X ∪ Y) (5)

Although the direct use of NVI results in well-balanced LTs in LTGA and excel-
lent optimization performance of LTGA [9], joint entropies need to be computed
for every candidate set. High up in the LT these sets contain many variables.
This poses a computational burden because Equation 1 requires summing over
all variable configurations (encountered in the population). For this reason, a
measure adaptation known as UPGMA (unweighted pair group method with
arithmetic mean) was used in recent versions of LTGA [1,5,10]. With UPGMA
all possible pairs of variables are considered. This is computationally beneficial
if the computational effort to compute a measure grows faster than quadratic

On Measures to Build Linkage Trees in LTGA 279

in the number of variables, which is the case for VI (and MI). The UPGMA
adaptation of a measure M is given by:

MUPGMA(X,Y) =
1

|X ||Y |
∑

Xi∈X

∑

Yj∈Y

M({Xi}, {Yj}) (6)

LTGA with an UPGMA adaptation of NVI performs at least as good as LTGA
with NVI, in terms of the required number of function evaluations [5]. However,
with UPGMA, every actual VI computation is performed for just 2 random
variables. Arguably therefore normalization is no longer required. For this reason
LTGA was also recently tested with UPGMA and MI, obtaining apparently
comparable results [10]. This raises the natural question of how these measures
really guide hierarchical clustering and thereby LTGA.

3.2 Measures from a Viewpoint of EA Dynamics

What we ideally desire from a EA is efficient mixing of building blocks, i.e. in-
stances of sets of variables that have an above-average contribution to a solutions’
quality. Selection gives these building blocks more copies, thereby reducing the
diversity of instances for the involved variables. The latter is exactly what is
measured by H (Equation 1). This therefore suggests that we could minimize
H(X,Y) = H(X ∪ Y) when deciding which sets of variables X and Y to merge.

However, reducing the dispersion of instances by itself isn’t sufficient because
this also happens simply because the EA converges. Thus, from a viewpoint of EA
dynamics H has an undesirable bias toward more converged variables. This can
also be seen in Figure 2. Combinations with the converged variable X1 lead to a
lower H than when variablesX0 andX2 are combined, merely because the entropy
of X1 itself is 0. Instead therefore, what is really of interest is the change in dis-
persion of instances when going from possible combinations of available instances
ofX and Y to actually available instances ofX∪Y . Such an effect is exactly what
MI (Equation 2) measures. Indeed, in Figure 2 we see that when considering what
variable to best join X0 with, X2 is best when using MI whereas using H directly
the converged and uninteresting variable X1 appears best.

Data X0 X1 X2

0 1 1 0

1 1 1 1

2 0 1 0

3 1 1 1

4 1 1 0

5 1 1 1

6 1 1 1

7 0 1 0

8 0 1 0

9 1 1 1

H X0 X1 X2

0.88 0.00 1.00

H X0 X1 X2

X0 0.88 0.88 1.48

X1 0.88 0.00 1.00

X2 1.48 1.00 1.00

MI X0 X1 X2

X0 0.88 0.00 0.40

X1 0.00 0.00 0.00

X2 0.40 0.00 1.00

VI X0 X1 X2

X0 0.00 0.88 1.09

X1 0.88 0.00 1.00

X2 1.09 1.00 0.00

NMI X0 X1 X2

X0 1.00 0.00 0.27

X1 0.00 1.00 0.00

X2 0.27 0.00 1.00

NVI X0 X1 X2

X0 0.00 1.00 0.73

X1 1.00 0.00 1.00

X2 0.73 1.00 0.00

Fig. 2. Example of all measures for a specific set of data and 3 random variables

280 P.A.N. Bosman and D. Thierens

Since VI is a negation of MI, it appears equally useful. However, the negation
involves H(X,Y), resulting in H(X,Y) weighing twice as heavy in VI as it does
in MI (Equations 2 and 3). As a result, the bias in H toward more converged
variables rings through more in VI. Considering EA dynamics, VI is therefore
further away from the desirable properties of a linkage detection measure than
MI. Accordingly, using VI in Figure 2 results in a different preference relation
than using MI. Now X1 is best to combine with X0, just like when using H.

As mentioned earlier, normalization removes the bias of VI to large clusters.
The above however suggests VI additionally has a bias toward more converged
variables. However, recent literature suggests that, in combination with UP-
GMA, LTGA using NVI [5] performs equally good as LTGA using MI [10]. Nor-
malization thus appears to change more things. This can indeed already be seen
in the example in Figure 2 because, similar to MI, when using NVI we find that
the best variable to combine with X0 is X2. When we look closer, we can indeed
see that normalization brings VI very close to MI. Clearly, from Equations 4
and 5 we have NVI (X,Y) = 1 − MNI (X,Y). This also holds using UPGMA,
since NVI UPGMA(X,Y) = (|X ||Y |)−1

∑
Xi∈X

∑
Yj∈Y 1 − MNI ({Xi}, {Yj}) =

(|X ||Y |)−1(|X ||Y | −∑
Xi∈X

∑
Yj∈Y MNI ({Xi}, {Yj})) = 1 −MNI UPGMA(X,Y).

Using MNI or NVI to build an LT is therefore an identical approach. Contrary
to the use of H and VI, the use of NVI is however quite similar to the use of
MI, as can be seen by equivalently comparing MNI and MI. Normalization of
MI shifts the importance of the absolute difference between joint entropy and
the individual entropies to their relative difference. For EA dynamics this means
that normalization brings the advantage that if variables are nearly converged,
the reduction in instance dispersion that we want to detect can still lead to large
“signals” for the learning algorithm to pick up. Compared to MNI, MI there-
fore has a larger preference for less converged variables. Note that this relative
bias only plays a role in cases where a desirable reduction in instance disper-
sion is already present. Thus, this bias in MI toward less converged variables is
likely not harmful like the bias in VI or in H toward more converged variables.
Furthermore, it is beforehand unclear whether MI or MNI is to be preferred in
LTGA. Preferring entropy reductions in less converged variables (i.e. MI) allows
to reduce noise in the overall optimization process faster. The opposite however
allows first considering variables whose diversity is running out the fastest.

For all combinations of measures we empirically determined how often they
disagree. For a fine-grained sampling of all possible probabilities for two sets of
two binary variables {X0, X1} and {X2, X3} we determined, for two different
measures M0 and M1, whether Mi({X0}, {X1}) � Mi({X2}, {X3}), i ∈ {0, 1}.
We also created correlation graphs for measure differences Mi({X2}, {X3}) −
Mi({X0}, {X1}). The results are shown in Figure 3. Because MI and MNI need
to be maximized and H, VI and NVI need to be minimized, we replaced MI
and MNI by -MI and -MNI. In the correlation graphs, two measures agree if
the observed differences are both positive or both negative (i.e. all-positive and
all-negative quadrants). Moreover, observations for H and VI were divided by 2
to ensure that all measures have a difference in the range [−1; 1].

On Measures to Build Linkage Trees in LTGA 281

H MI MNI VI NVI

H 0.0

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

MI 40.4 0.0

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

MNI 37.0 3.4 0.0

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

VI 10.1 30.3 26.9 0.0

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

NVI 37.0 3.4 0.0 26.9 0.0

Fig. 3. Percentage of cases in which measures disagree about the preference ordering
of two sets of random variables (lower-left triangle) and gray-value coded maps of
the density of observed combinations of measure differences for two sets of random
variables, overlaid with density contours

Figure 3 shows a strong agreement of VI with H. Given the strong bias of H
toward more converged variables, VI is, like H, expected to lead to less efficient
behavior of LTGA. MI is decorrelated the most with H, followed by MNI. This
is in accordance with our earlier finding that MI is relatively more biased to
less converged variables. NVI and MNI are, as expected, in perfect agreement.
The difference between MI and MNI is small. When they do differ, the measures
themselves exhibit only small differences (i.e. decisions are a “close” call).

Ultimately, it is the optimization performance of the EA that is of impor-
tance. From the analysis above it is to be expected that the use of MI and MNI
(and, equivalently, NVI) in LTGA leads to better performance on non-randomly
structured problems than the use of H and VI. However, the difference between
MI and MNI, i.e. normalization, is subtle. Therefore, in the next Section we
empirically determine whether normalization does something desirable in terms
of EA dynamics by running LTGA on various optimization problems.

282 P.A.N. Bosman and D. Thierens

4 Experiments

4.1 Optimization Problems

We consider three well-known benchmark problems from linkage-learning litera-
ture and one well-known NP-hard problem, all of which need to be maximized.
The first problem is onemax in which every variable is independent of the others:

fOnemax(x) =

l−1∑

i=0

xi

The second problem is the mutually-exclusive, additively decomposable sum of
the well-known order-k deceptive trap functions [2] with k = 5:

fTrap5(x) =

(l/k)−1∑

i=0

f sub

Trap-k

⎛

⎝
ki+k−1∑

j=ki

xj

⎞

⎠ , with f sub

Trap-k
(u) =

{
1 if u = k
k−1−u

k otherwise

It is commonly known that the linkage groups pertaining to the subfunctions
need to be detected and processed in order for optimization to proceed efficiently.

The third problem is the nearest-neighbour overlapping, additively decom-
posable sum of a-priori randomly generated subfunctions of length k, which
constitutes a NK-landscape [6]. We use k = 5 and the maximum overlap of 4,
but without wraparound:

fNK-S1(x) =

l−k∑

i=0

f sub

NK

(
x(i,i+1,...,i+k−1)

)

where f sub
NK

(
x(i,i+1,...,i+k−1)

)
is an a-priori randomly chosen value in [0; 1].

The NP-hard problem we consider is weighted MAXCUT. It is defined given
a weighted undirected graph with a set of l vertices V = {v0, v1, . . . , vl−1}, a set
of edges E between the vertices, and a weight wij for each edge (vi, vj) ∈ E.
The goal is to split V into two sets such that the combined weight of edges that
are thereby cut, i.e. running between vertices in different sets, is maximized. By
introducing a binary variable xi for every vertex that indicates if vertex vi is
either in set 0 or set 1, the function to be optimized is therefore:

fweighted MAXCUT(x) =
∑

(vi,vj)∈E

{
wij if xi �= xj

0 otherwise

We encode this problem straightforwardly using the xi directly. Benchmarks
problem instances of various types and sizes exist in literature, but because
we want to perform a controlled scalability analysis, we generated our own in-
stances. For problem sizes l ∈ {6, 12, 25, 50, 100} we generated fully connected
graphs with 1

2 l(l − 1) edges. To set the weights, we follow the approach by Ru-
binstein [8] to obtain interesting instances and choose them randomly following
a β distribution with parameters α = 100, β = 1 and scaled to the range of
[1; 5]. For each problem size, we generate 10 instances. The maximum problem

On Measures to Build Linkage Trees in LTGA 283

size was chosen such that the exact optimizer BIQMAC [7] could provide op-
timal solutions within reasonable time. Because MAXCUT is NP-hard, we will
consider both obtaining the optimum as well as obtaining 95% of the optimum
where we accounted for the average random value ARV of an instance by setting
the actual target value for an instance to ARV +0.95(OPT −ARV). The ARV
is determined empirically by averaging over many randomly sampled solutions.

4.2 Experimental Setup

We say that a problem is solved if at least 99 out of 100 independent runs
converged to either the global optimum or to a predefined sufficiently close ap-
proximation. Moreover, instead of stopping when the target is reached, we run
until convergence (all solutions are the same) because we feel this is more real-
istic in practice where the optimum is not known beforehand and outcomes are
typically collected upon termination.

For NK-S1, we have generated 100 instances per problem size randomly. The
100 independent runs are performed on 100 different, but always the same 100,
instances per problem size. For weighted MAXCUT however, every problem
instance is considered separately as is more typical of combinatorial optimization
literature. The reason for this is that specific instances may be easy or hard and
their properties may be interesting to study separately. Therefore, for weighted
MAXCUT 100 independent runs are performed per problem instance. Note that
this alters the interpretation of the range of outcomes where we aggregate per
problem size. For weighted MAXCUT these ranges will be much larger.

A key performance indicator is scalability, i.e. how do the required resources
(population size n and number of required evaluations) increase as the problem
gets larger. To study this, we determine, for various problem sizes, the minimally
required n to solve the problem. To do so, we perform a bisection search in which,
starting from n = 1, n is doubled until the problem is solved. Subsequently, a
binary search is performed in the range between the last two tested values for n.
Because this process is still subject to noise, rooted in the stochastic nature of
EAs, we perform 10 independent bisection searches for every problem size (and
in case of weighted MAXCUT, for every problem instance).

4.3 Results

In Figure 4, the minimally required population size and the associated number of
evaluations (upon convergence) are shown. The outcomes of the 10 independent
bisection searches are shown for each problem size (for each instance in case of
weighted MAXCUT). A least-squares polynomial fit of the form α · lβ is also
shown except for solving MAXCUT to optimality as it doesn’t fit the data well.
Instead, the lines we show connect the average values for each problem size.

All variants are virtually indistinguishable on onemax because the LT always
contains every variable in a singleton set. However, close examination shows
that the variant that uses H scales worst. These results are clearer on Trap 5
where only MI and NVI are virtually indistinguishable. Most clear are the re-
sults on NK-S1 where MI and NVI are again virtually indistinguishable but H

284 P.A.N. Bosman and D. Thierens

Onemax Trap 5 NK-S1 MAXCUT 95% MAXCUT 100%

#
E
v
a
lu
a
ti
o
n
s

 100

 1000

 10000

 100000

 1e+06

 1e+07

 25 50 100 200 400
 100

 1000

 10000

 100000

 1e+06

 1e+07

 25 50 100 200 400
 100

 1000

 10000

 100000

 1e+06

 1e+07

 25 50 100 200 400
 100

 1000

 10000

 100000

 1e+06

 1e+07

 6 12 25 50 100
 100

 1000

 10000

 100000

 1e+06

 1e+07

 6 12 25 50 100

P
o
p
u
la
ti
o
n

si
z
e

 10

 100

 1000

 10000

 100000

 25 50 100 200 400
 10

 100

 1000

 10000

 100000

 25 50 100 200 400
 10

 100

 1000

 10000

 100000

 25 50 100 200 400
 10

 100

 1000

 10000

 100000

 6 12 25 50 100
 10

 100

 1000

 10000

 100000

 6 12 25 50 100

Problem size Problem size Problem size Problem size Problem size

H MI VI VIN

Fig. 4. Scale-up of LTGA on all problems, using different measures to build the LT

and VI clearly guide LTGA less efficiently. Combined with our analysis in Sec-
tion 3, these results suggest that using LTGA on NK-S1 some variables converge
much faster than others. Once converged, VI and, even more so, H favor these
variables much stronger. Not only is this inefficient with respect to finding and
mixing building blocks amongst variables where diversity still remains, it also
creates strongly unbalanced trees with many large clusters, further reducing the
efficiency of optimal mixing. MI and NVI are not affected by this cascading ef-
fect of converging variables. Finally, it appears that for solving our randomly
generated weighted MAXCUT instances proper linkage learning is not as cru-
cial because just like on onemax, all variants scale quite similarly. Differences
do seem to increase with problem size, although far less severly. Proper linkage
learning may still be required when solving instances with specific structure, es-
pecially when targeting the global optimum. A more in-depth study on weighted
MAXCUT and the impact of linkage learning will be topic of future research.

As expected from Section 3, LTGA performs best when the measure used is
MI or NVI (or, equivalently, MNI). For these two alternatives, using a Mann-
Whitney U test at a significance level of 1%, results differ only for onemax with
l = 400 (in favor of NVI), trap 5 with l = 400 (in favor of NVI), never for NK-S1,
never for weighted MAXCUT 95% and only for one instance with l = 100 for
weighted MAXCUT 100% (in favor of MI). Arguably therefore, it is virtually
impossible to prefer one measure over another (based on the selected problems).

5 Conclusions

The linkage tree genetic algorithm (LTGA) was previously combined with dif-
ferent measures for building its linkage model (the linkage tree). In this paper

On Measures to Build Linkage Trees in LTGA 285

we took a closer look at these measures, related them to the convergence of an
EA and we identified potential biases in the measures. The closest correspon-
dence to the notion of a building block was found for the mutual information
(MI) measure and a normalized (MNI) variant that is obtained by dividing by
joint entropy. MNI is equivalent to the normalized variation of information (NVI)
measure, even when using the less-computationally demanding pairwise measure
adaptation known as UPGMA. The difference between MI and MNI/NVI is that
the former has a slight preference for less converged variables. These measures
only disagree in less than 4%, and when they do differ, these differences are very
small. Consequently, LTGA was found to perform very similarly for these two
measures on a set of three benchmark problems from linkage learning literature
as well as on a combinatorial optimization problem: weighted MAXCUT. Only
very few statistically significant differences could be found in the performance
of LTGA using MI or NVI/MNI and even then the results were very close.

References

1. Bosman, P.A.N., Thierens, D.: Linkage neighbors, optimal mixing and forced im-
provements in genetic algorithms. In: Proc. of the Genetic and Evolutionary Com-
putation Conf., GECCO 2012. ACM Press, New York (to appear, 2012)

2. Deb, K., Goldberg, D.E.: Sufficient conditions for arbitrary binary functions. An-
nals of Mathematics and Artificial Intelligence 10(4), 385–408 (1994)

3. Harik, G.R., Lobo, F.G., Sastry, K.: Linkage learning via probabilistic modeling in
the extended compact genetic algorithm (ECGA). In: Pelikan, M., et al. (eds.) Scal-
able Optimization via Probabilistic Modeling: From Algorithms to Applications,
pp. 39–61. Springer, Berlin (2006)

4. Kraskov, A., Grassberger, P.: MIC: Mutual information based hierarchical cluster-
ing. In: Emmert-Streib, F., Dehmer, M. (eds.) Knowledge Incorporation in Evolu-
tionary Computation, pp. 101–123. Springer, Berlin (2009)

5. Pelikan, M., Hauschild, M.W., Thierens, D.: Pairwise and problem-specific distance
metrics in the linkage tree genetic algorithm. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2011, pp. 1005–1012. ACM Press,
New York (2011)

6. Pelikan, M., Sastry, K., Goldberg, D.E., Butz, M.V., Hauschild, M.: Performance
of evolutionary algorithms on NK landscapes with nearest neighbor interactions
and tunable overlap. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2009, pp. 851–858. ACM Press, New York (2009)

7. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Prog. 121(2), 307 (2010)

8. Rubinstein, R.Y.: Cross-entropy and rare events for maximal cut and partition
problems. ACM Trans. on Modeling and Computer Simulation 12(1), 27–53 (2002)

9. Thierens, D.: The Linkage Tree Genetic Algorithm. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 264–273. Springer,
Heidelberg (2010)

10. Thierens, D., Bosman, P.A.N.: Optimal mixing evolutionary algorithms. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011,
pp. 617–624. ACM Press, New York (2011)

	On Measures to Build Linkage Trees in LTGA
	Introduction
	The Linkage Tree Genetic Algorithm (LTGA)
	Measures to Build Linkage Trees
	Commonly Used Measures for Hierarchical Clustering
	Measures from a Viewpoint of EA Dynamics

	Experiments
	Optimization Problems
	Experimental Setup
	Results

	Conclusions
	References

