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Abstract. We define the linkage model evolvability and the evolvability-
based fitness distance correlation. These measures give an insight in the
search characteristics of linkage model building genetic algorithms. We
apply them on the linkage tree genetic algorithm for deceptive trap func-
tions and the nearest-neighbor NK-landscape problem. Comparisons are
made between linkage trees, based on mutual information, and random
trees which ignore similarity in the population. On a deceptive trap
function, the measures clearly show that by learning the linkage tree
the problem becomes easy for the LTGA. On the nearest-neighbor NK-
landscape the evolvability analysis shows that the LTGA does capture
enough of the structure of the problem to solve it reliably and efficiently
even though the linkage tree cannot represent the overlapping epistatic
information in the NK-problem. The linkage model evolvability measure
and the evolvability-based fitness distance correlation prove to be use-
ful tools to get an insight into the search properties of linkage model
building genetic algorithms.

1 Introduction

Linkage learning genetic algorithms aim to identify interacting or dependent
problem variables that contribute to highly fit solutions. The goal is to build a
linkage model of these interactions and use this model to generate, with high
probability, new highly fit solutions.

To better understand how this class of algorithms searches for optimal solutions
we introduce two measures: the linkage model evolvability and the evolvability-
based fitness distance correlation. These measures have their origin in the evolv-
abilitymeasure and fitness distance correlation coefficient for general evolutionary
algorithms. We exploit the particularities of linkage models to design more infor-
mative evolvability and correlation measures.

The paper is organized as follows. In the next section we describe the linkage
tree learning and the optimal mixing evolutionary algorithm. Section 3 intro-
duces the linkage model evolvability measure and the evolvability-based fitness
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distance correlation. In Section 4 we compute these measures for the LTGA on a
deceptive trap function and a nearest-neighbor NK-landscape problem. Finally,
Section 5 concludes the paper.

2 Linkage Tree Genetic Algorithm

We give a short review of the LTGA, for more details we refer the reader to [9].

The linkage tree (LT) is a hierarchical linkage model obtained by a bottom-up
agglomerative hierarchical clustering algorithm starting from the set of problem
variable singletons [2,8]. For a problem of length � the linkage tree has � leaf
nodes (the clusters having a single problem variable) and �−1 internal nodes. The
similarity measure is for instance the normalized mutual information between
two subsets of variables. An efficient method to compute the similarity measure is
the average linkage clustering or unweighted pair group method with arithmetic
mean (UPGMA) [6,9]. Given a population of size N the LT can be built in
O(N�2) time using the reciprocal nearest-neighbor chain algorithm.

The LT specifies a set of problem variable subsets which are a specific example
of the more general family of subsets (FOS). The class of linkage model building
GAs we consider here specify their linkage model by this FOS model. Mathemat-
ically, the FOS model is a subset of the power set of the problem variables. This
FOS model is used by the Gene Pool Optimal Mixing Evolutionary Algorithm
(GOMEA) to generate new solutions [9]. Each subset of problem variables is
used as a crossover mask. Each solution of the population is iteratively used as
parent solution. For each parent solution the entire FOS set is traversed: for each
problem variable subset in the FOS model a random solution is picked from the
population as donor. The donor’s values of the problem variables specified by the
subset - or crossover mask - are copied to the parent solution. This new solution
is evaluated and when it is an improvement of the parent, the offspring replaces
the parent. Next , the traversal of the FOS model continues with the new so-
lution. If there was no fitness improvement the FOS model is further traversed
using the parent solution. New solutions are thus only accepted when they have
a better fitness value than the parent solution. When the tree is completely tra-
versed, the current parent solution is copied to the next generation’s population.
This tree traversal process is done for each solution in the current generation.
The LT has 2�−2 subsets in the tree (the top node is ignored because it contains
all problem variables), so in one generation there are at most N(2�−2) offspring
generated and evaluated. This value is an upper boundary because before eval-
uating a new solution we always first check whether the generated solution is
really different from the parent solution.

The reason for calling this operation optimal mixing is due to its inception in
the original LTGA [8] where a two-parent crossover operator was used following
the LT with intermediate evaluations to check for improvements. Given only
two parents, traversing a FOS while performing crossover then ensures that all
building blocks as described in the FOS wind up in one of the two parents and
mixing therefore can be said to be optimal. However, it was recently shown that
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considering a randomly selected new donor parent for each element in the FOS
while performing crossover, which was called Gene-pool Optimal Mixing (GOM)
is overall a more efficient manner of mixing because this removes the covariance
in mixing that is inherent in using the same two parents for the entire crossover
operation [9].

The use of OM allows making use of the linkage information as provided by
all subsets in the FOS. OM further strongly increases the selection pressure in
a building-block-wise manner instead of on a entire solution basis, the latter of
which is a source of noise in deciding well between building blocks that increases
the population size. It is through OM that the LTGA is capable of working
with very small population sizes compared to most linkage learning EAs of the
Estimation of Distribution Algorithm (EDA) type.

3 Linkage Model Evolvability Analysis

When applying a genetic algorithm - and more generally, any metaheuristic
search algorithm - to a specific problem, we often would like to get a clear
picture of how the search dynamics proceeds. We would like to possess a few
measures that can give us a better understanding of what is going on during
the search. Ideally, these measurements would help us explain why a certain
algorithm succeeds in finding good solutions while others do not. In this paper
we will use four measurements: two existing and two that we define specifically
for linkage model building GAs where the model is a family of subsets (FOS).

Hamming Distance. The first and most obvious measure to trace the conver-
gence progress is the minimum and median hamming distance from the solutions
in the current population towards the global optimum.

Evolvability. The ultimate goal of search operators like crossover or mutation
is to create new solutions that have a better fitness than their parent(s). The
probability that this occurs has been called probability of success in the evo-
lution strategy literature, while Altenberg called this the evolvability [1]. For
an evolutionary algorithm to be successful it is important that the evolvability
remains positive when the search has reached the higher regions of the fitness
landscape, or when the parents have high fitness values. To compute this we
split up the higher fitness values in bins and count the frequency of generating
fitter offspring when the parent has a fitness value within the fitness bin’s range.
The parents are taken from actual runs, not from random samples. This is im-
portant as the key question here is whether the evolvability remains positive as
the search approaches the most fit solutions in the search space.

Linkage Model Evolvability. The evolvability as a function of the parental
fitness does not give any insight in the contribution of the different masks in
the linkage FOS model. To investigate their importance in the search process we
calculate the evolvability as a function of the size of the masks - or FOS sub-
sets - of successive linkage trees during an actual LTGA run. For the benchmark
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functions used in this paper, the successive application of five linkage trees is
sufficient to reliably find the global optimum, at least if the model learning is
done properly. In an actual LTGA run each mask of the tree is used N times (N
being the population size): for each solution in the population the linkage tree
is traversed and a random solution is picked as donor. Counting the evolvability
based on these offspring represents a limited sample of the actual evolvability
potential of the linkage tree for the current population. In order to get a less
noisy measurement we have calculated the evolvability by taking each solution
in the population as the donor solution, as opposed to a single random solution.
This way each mask is used N2 times and the number of improvements are
counted. We also compute the relative number of improvements as the percentage
of offspring more fit than their parent (excluding the donor) of all the offspring
generated by a mask of a given size using a particular linkage tree. It is important
to note that this calculation of the linkage masks’ evolvability has no influence
on the actual LTGA run. The offspring generated during this calculation are not
used in the actual LTGA run.

Evolvability-Based Fitness Distance Correlation. Although the evolvabil-
ity measures the potential of an evolutionary algorithm to keep finding new and
better solutions it does not consider whether the population is actually con-
verging towards the global optimal solution. An EA could well be capable of
generating many better offspring during the search process but that is not a
guarantee that it is actually getting any closer to the optimum. To measure
the progress towards the optimum Jones and Forrest [4] introduced the concept
of fitness distance correlation (FDC). As its name implies the FDC measures
the correlation between the fitness value and the hamming distance towards the
global optimal solution. A large negative correlation is seen as an indication
that the GA would be guided towards the optimum by following a path of ever
improving solutions. A large positive correlation is interpreted as a deceiving
problem: following a path of better solutions would lead away from the optimal
solution. The FDC is actually a search ignorant measure in the sense that it
does not include any information about the capability of the genetic operators
to generate improving solutions. FDC only looks at the representation and the
fitness values of the solutions, not at the actual dynamics of the GA run. There
is little to be gained from a high negative FDC measure if the genetic operators
are unable to generate the high fitness solutions in the first place. Altenberg [1]
discussed these limitations of a Hamming-distance based FDC and proposed two
crossover-distance based FDC measures (XFDC). The XFDC measures aim to
include the role of the genetic operators. The first XFDC defined the crossover
distance as the number of discontinuities between 0s and 1s in a solution’s bit-
string. This measure is clearly only suitable for the specific test function used in
that paper which is based directly on this number of discontinuities. A second
more general crossover-based distance measure is computed by running crossover
in reverse. Starting from the global optimum and its binary complement bit-
strings are given a crossover distance of 1 when they are generated by a single
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application of the crossover operator. A second set of strings is given a distance
of 2 by applying crossover to the previous set. Continuing this way a sequence of
populations is generated with increasing crossover distance. The XFDC measure
is now computed by calculating the correlation coefficient between the crossover
distance and the fitness value. It is clear that both XFDC measures are only
rough approximations of the actual GA dynamics. The main problem of getting
a more accurate measure is the vast amount of different crossover events that
are possible.

For the LTGA however, the number of possible crossover events is much
smaller. In fact, when computing the linkage model evolvability, we are already
looking at all possible outcomes for a specific linkage FOS model and a given
population. The only thing we need to add is the correlation with approaching
the optimal solution. Therefore we define the evolvability-based fitness distance
correlation (EFDC) as the correlation between the Hamming distance between
the offspring and the optimal solution and the amount of fitness gain whenever
an improvement occurred during the calculation of the linkage masks’ evolvabil-
ity. The EFDC is a much more informative measure of the search dynamics than
the FDC or XFDC measures.

In [3] the fitness distance correlation is computed for fixed neighborhoods that
match the structure of the fitness function. The EFDC however is computed
during the search and depends on the specific linkage tree built each generation,
thus capturing more of the dynamics of the search process.

4 Experimental Analysis

To test whether the evolvability measures do indeed provide any insight in the
search behavior of the LTGA we compare the linkage tree with a randomly
build tree on 2 benchmarks. First, we consider the deceptive trap function [2].
This function is interesting for our purposes here because a linkage learning
algorithm must be able to learn the structure of the problem in order to find the
optimal solution. A randomly constructed tree will be unable to do this, and the
interesting question is how this gets reflected in the evolvability measures. Our
second test function is the nearest-neighbor NK-landscape [7]. This function is
interesting because the overlap of the subfunctions cannot be represented by a
linkage tree, and yet the LTGA is capable of consistently finding the optimal
solution. The key question is whether the evolvability measures can help explain
why this is the case.

Evolvability measures should give insight in the particular behavior of an ac-
tual GA run. We therefore compute the values on one single run, and not average
them out over a whole set of runs. Of course, this run should be representative
and we compared the results on different runs. As it turned out, all runs had
basically the same behavior and similar evolvability values, so we only report
here the results of one single run for both the benchmark functions.
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4.1 Deceptive Trap Function

The deceptive trap function used here consists of 10 subfunctions of length 5
(stringlength � = 50), fitness value of the subfunctions is 5 for the optimum and
4 for the deceptive attractor. The population size is 100. The initial population
is generated by performing a single-pass bit-flip local search on a population of
random solutions.

Table 1 shows the Hamming distance between the optimal string and the best
and the median solution in the population for successive linkage trees. When
the linkage tree is learned using normalized mutual information, the population
quickly converges to the optimal solution. Both the minimum and median Ham-
ming distance are reduced by each new generation, and the optimal solution is
generated at the fifth generation. The table also shows the Hamming distance
when the linkage tree is built using random numbers as similarity measure in-
stead of normalized mutual information. Clearly, without linkage learning the
search algorithm does not make a lot of progress in finding the optimal solution.
Only looking at the Hamming distance however does not make it clear whether
the search is not making progress at all or it is simply going the right direction
but at a very small pace.

Table 1. Hamming distance towards the global optimum for the deceptive trap func-
tion

distance
Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

minimum 25 20 15 5 0 30 30 30 30 30
median 45 40 30 20 10 45 45 40 40 35

Table 2 shows the frequency of improvements as a function of parental fitness.
The fitness is divided in 10 bins, spanning the fitness range from the solution
with all deceptive attractors to the global optimum. Clearly, the search without
linkage learning is not able to make any substantial progress towards the optimal
solution. The probability of generating better offspring is nearly zero, and no
offspring with a fitness value of 45 or higher are created. When linkage learning
is done properly we see that better offspring are created in a consistent way, and
the evolvability remains positive with increasing parental fitness values.

The linkage model evolvability in Table 3 gives a more detailed picture of
the evolvability in the linkage tree. The table only shows the masks where a
fitness improvement takes place. For the linkage learning the masks’ sizes are all
multiples of five which reflects the building block length of the deceptive trap
function. The percentage of improvements is quite high for all the masks in the
table, indicating a very efficient search process.

For the random tree - this is, no linkage learning - there are very few fitness
improvements, and the vast majority of them are achieved with crossover masks
of length 48 and 49. For a stringlength of size 50 this basicallymeans that the donor
solution is better than the parent and the largemasks are simplymaking an almost
complete copy of the donor. Obviously, this does not lead to good novel solutions.
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Table 2. Evolvability: frequency of improvements as a function of parental fitness

Fitness Linkage tree Random tree
range Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

[40, 41[ 0.29 0.27 0.26 0.22 – 0.03 0 0 – –
[41, 42[ 0.10 0.16 0.20 0.23 – 0 0 0 0 0.01
[42, 43[ 0.01 0.05 0.15 0.21 0.17 0 0 0 0 0.01
[43, 44[ 0.03 0.02 0.05 0.18 0.24 0 0 0 0 0
[44, 45[ 0.01 0.02 0.03 0.12 0.19 – 0 0 0 0
[45, 46[ 0 0.01 0.02 0.04 0.15 – – – – –
[46, 47[ – 0 0.01 0.03 0.14 – – – – –
[47, 48[ – – 0 0.02 0.08 – – – – –
[48, 49[ – – – 0.01 0.02 – – – – –
[49, 50[ – – – 0 0.01 – – – – –

Table 3. Linkage model evolvability for the deceptive trap function

Linkage tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

5 10892 16808 21916 22648 16192 11% 17% 22% 23% 16%
10 7176 9474 8995 12726 7462 18% 24% 30% 32% 25%
15 5152 6032 10080 3661 5668 26% 30% 34% 37% 29%
20 2147 3318 3677 3846 – 22% 33% 37% 39% –
30 – – 3712 3931 3720 – – 37% 40% 38%
35 3285 3663 – – – 33% 37% – – –
40 – – – – 3975 – – – – 40%
45 – – – 4112 4002 – – – 41% 40%

Tot. 28652 39295 48380 50924 41019

Random tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

22 269 – – – – 1.3% – – –
29 – 62 – – – – 0.01% – –
39 – – 130 – 110 – – 0.01% – 0.01%
41 – – – 40 – – – – 0.00%
42 – – – 40 – – – – 0.00%
43 – – 130 – – – – 0.01% –
44 – – – – 310 – – – – 0.03%
48 – – – – 3351 – – – – 34%
49 2095 – – – – 21% – – –

Tot. 2364 62 260 80 3771

Finally, Table 4 shows the EFDC measure. In case of linkage learning there is
a perfect linear relationship between the amount of fitness improvement and the
reduction in Hamming distance towards the optimal solution. This makes sense
as the crossover masks exactly match the building blocks and fitness improve-
ments of 1, 2, 3, ... correspond to Hamming distance reductions of 5, 10, 15, ... .
When there is no linkage learning there is usually also no correlation coefficient
to compute since there are either zero or only one single pair of fitness improve-
ment and Hamming distance value. Only in the first random linkage tree large
masks can sometimes get a fitness improvement.
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Table 4. Evolvability-based Fitness Distance Correlation for the deceptive trap function

Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 – – – –

4.2 Nearest-Neighbor NK-Landscape

The nearest-neighbor NK-landscape used here has stringlength � = 50, the sub-
functions have length 5 bits, and the overlap is maximal - that is, 4 bits. The
population size is N = 200.

Table 5. Hamming distance towards the global optimum for the NK-landscape

distance
Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

minimum 7 3 0 0 0 7 7 7 7 7
median 20 18 15 12 6 21 20 19 19 18

Table 6. Evolvability: frequency of improvements as a function of parental fitness

Fitness Linkage tree Random tree
Bins Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

1 0.21 – – – – 0.06 – – – –
2 0.17 – – – – 0.08 – – – –
3 0.16 0.26 – – – 0.06 0.09 – – –
4 0.10 0.12 – – – 0.04 0.04 0.05 – –
5 0.07 0.11 0.10 – – 0.03 0.03 0.03 0.02 0.00
6 0.04 0.08 0.06 0.10 – 0.02 0.02 0.02 0.02 0.02
7 0.04 0.04 0.05 0.10 0.13 0.03 0.01 0.01 0.01 0.01
8 0.02 0.02 0.03 0.05 0.11 0.00 0.00 0.01 0.00 0.01
9 0.00 0.02 0.02 0.03 0.06 – – – – –
10 – 0.01 0.02 0.02 0.02 – – – – –

As for the deceptive trap function, we look at the impact of linkage learning
by comparing the results with a randomly constructed linkage tree. A linkage
tree has 2�− 2 nodes that are used as crossover masks.

Table 5 shows the Hamming distance for the linkage tree and the random tree
models. As shown in previous work the linkage tree has no trouble in finding the
optimal solution, while the random tree is getting nowhere.

Table 6 shows the evolvability as a function of the parental fitness. We have
divided the fitness range between the fitness value low and the global optimal
value in 10 bins of equal width. The fitness value low is the fitness of the least
fit solution of a population of 100 single-pass bit-flipped solutions. Whenever
an improving solution is generated the bin corresponding to the parent’s fitness
is updated. The evolvability values for the linkage tree model shows that the
successive linkage trees are capable of generating new and more fit solutions
with increasing parental fitness. On the contrary, the random trees are not able
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Table 7. Linkage model evolvability for the NK-landscape

Linkage tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

1 31205 13358 6169 3650 2765 1.5% 0.6% 0.3% 0.2% 0.1%
2 29523 12345 5638 4019 3943 3.9% 1.6% 0.8% 0.5% 0.5%
3 17308 5446 4273 3694 1354 4.8% 1.7% 1.2% 1% 0.5%
4 12409 5278 6732 6479 6953 7.8% 3.3% 4.2% 4% 2.9%
5 14053 12519 8730 6580 2044 7.1% 6.3% 5.5% 5.5% 2.6%

6–10 36673 34266 18561 12871 16274 16% 11% 7% 5% 5.7%
11–20 16686 25813 33354 24045 48664 14% 34% 16% 22% 20%
21-30 6530 14800 – 46270 – 16% 37% – 29% –
31–40 14412 15726 15621 – 12502 36% 40% 39% – 31%
41–50 – – – – – – – – – –

Tot. 178799 139551 99078 107608 94499

Random tree

Mask size
Improvements % improvements

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

1 41040 23516 14635 9587 7081 2.1% 1.2% 0.7% 0.5% 0.4%
2 16361 7792 6361 3330 2228 2.9% 1.4% 1.2% 0.5% 0.4%
3 7914 4648 4043 1333 1180 3.3% 1.7% 1.3% 0.4% 0.6%
4 4247 1246 3409 1355 1040 2.7% 1.6% 1.4% 0.9% 0.4%
5 2632 1859 – 1019 328 2.2% 1.6% – 0.9% 0.3%

6–10 5246 4276 2738 2167 309 1.3% 0.9% 0.8% 0.6% 0.1%
11–20 1233 1121 821 586 241 0.4% 0.3% 0.3% % 0.2%
21–30 98 279 448 287 567 0.2% 0.3% 0.4% 0.4% 0.3%
31–40 510 – – – 503 1.3% – – – 0.6%
41–50 12323 6350 10226 – 10733 31% 16% 13% – 6.7%

Tot. 91604 51087 42681 19664 24210

Table 8. Evolvability-based Fitness Distance Correlation for the NK-landscape

Linkage tree Random tree

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

-0.26 -0.44 -0.47 -0.58 -0.41 -0.27 -0.13 -0.21 0.07 -0.32

to generate improving solutions above a certain fitness level. Successive trees are
not able to generate new solutions that fall in the higher valued bins. The search
clearly stagnates in the lower valued fitness bins.

In Table 7 we see the evolvability contributions of different crossover masks.
The linkage tree model has a much higher evolvability than the random tree in
both absolute as relative measures. It is interesting to see that all mask sizes con-
tribute to the search, which shows that the linkage tree’s capability of representing
interacting problem variables at multiple levels is beneficial to the search.

Finally, Table 8 shows the evolvability-based fitness distance correlation. For
the five successive linkage trees the EFDC remains significantly negative, mean-
ing that fitness gains are correlated with reductions in Hamming distance to the
optimal solution. For the random linkage trees the EFDC are also negative but
have a lower value, except for the first generation trees. It appears that in the
first generation the solutions can be easily improved and the Hamming distance
towards the optimal solution is reduced. If we look again at Table 7 we see that
most of these improvements for the random tree are obtained with masks of length
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1 and 2, so the offspring are only 1 or 2 bits different from to their parents but do
have a higher fitness and are mostly closer in Hamming distance to the optimal
bitstring. It is also noteworthy that the EFDC for the fifth tree of the random
models has a rather high correlation (= −0.32). Looking again at Table 7 reveals
that almost half of the improvements are obtained by masks of size larger than
40: the high correlation can thus be explained by the copying effect of good donor
solutions by large masks. Although these improvements increase the EFDC value
they do not significantly contribute to finding new good solutions.

5 Conclusion

We have analyzed the evolvability of the linkage tree genetic algorithm. For this,
we have defined the linkage model evolvability and the evolvability-based fitness
distance correlation. We have seen how these measures give an insight in the per-
formance of the LTGA. We have also made a comparison with a randomly con-
structed tree and discussed the differences observed in the evolvability measures.
On a deceptive trap function, the measures clearly show that learning the linkage
tree makes this an easy problem for the LTGA. On the nearest-neighbor NK-
landscape the evolvability analysis shows that the LTGA does capture enough
of the structure of the problem to solve it reliably and efficiently even though
the linkage tree cannot represent the overlapping epistatic information in the
NK-problem. We believe that measures like the linkage model evolvability and
the evolvability-based fitness distance correlation are useful tools to describe and
understand the characteristics of linkage model building genetic algorithms.
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