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Abstract. Single Node Genetic Programming (SNGP) offers a new approach to 
GP in which every member of the population consists of just a single program 
node. Operands are formed from other members of the population, and evolu-
tion is driven by a hill-climbing approach using a single reversible operator. 
When the functions being used in the problem are free from side effects, it is 
possible to make use of a form of dynamic programming, which provides huge 
efficiency gains. In this research we turn our attention to the use of SNGP when 
the solution of problems relies on the presence of side effects. We demonstrate 
that SNGP can still be superior to conventional GP, and examine the role of 
evolutionary strategies in achieving this. 

1 Introduction 

Single Node Genetic Programming (SNGP) [1] is a newly-introduced form of GP in 
which each individual in the population consists of just a single program node drawn 
from the terminal or function set of the problem we are attempting to solve. The oper-
ands for a node are other members of the population. As such, it could be argued that 
the population forms one large graph; however, we do not treat it as such during evo-
lution. In addition to the attributes encoding connections with other members, each 
individual has data structures recording the outputs it produces when evaluated; more 
importantly, it has its own distinct fitness value. It therefore makes much more sense 
to view the population as a set of graphs, with each individual holding the root node 
of an expression or program to be evaluated. 

This approach is vastly different from other forms of GP, including those in which 
alternatives to conventional tree-based structures are employed. Most systems treat 
individuals as distinct, separate structures (although some hierarchical approaches 
have made use of limited forms of interconnectedness between members). Even when 
the values of internal graph nodes become important (such as in Oltean’s Multi-
Expression Programming [2,3]), the population is still constructed as a set of multi-
node graphs, each unconnected to the others. 

Structural considerations are not the only differences between SNGP and other 
forms of GP, however. In conventional GP and most other variants, the evolutionary 
operators are reproduction by cloning, recombination via subtree or segment 
crossover, and mutation. By contrast SNGP has only one evolutionary operator, and 
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its effects are reversible. SNGP uses a form of hill-climbing in which evolutionary 
changes which do not lead to improvements are undone. 

In the initial experiments we have performed, SNGP has demonstrated substantial 
improvements over conventional GP in terms of solution rates, execution times, and 
sizes of solutions obtained. One of the reasons its performance is so good is that it is 
able to exploit a form of dynamic programming in which the outputs obtained during 
the evaluation of each node are recorded as an attribute of that node. This means that 
any function requiring the values of its operand sub-graphs merely has to fetch those 
values directly from the vectors in which they are stored, without the necessity for 
further node evaluations. 

An approach such as this works well for problems in which the nodes are purely 
functional and do not have side effects, i.e. it is the outputs of the function that are of 
interest, and these outputs depend only on the inputs supplied. Examples of such problems 
in GP are symbolic regression and various Boolean problems such as even-parity. 

It is a different matter when problems rely on behavioural side effects. Such 
problems make use of nodes which modify state or have some form of interaction 
with an external world. This usually means that behaviour is reliant not just on current 
inputs but also on previous history. A good example of this type of problem in the 
context of GP is the Santa Fe artificial ant problem [4], in which the aim is to evolve a 
program that guides an agent along a trail of ‘food’ particles. In this problem, function 
outputs are of no relevance. Instead, the fitness of a program is ascertained via the 
side effects of those functions on a model of the ant’s world. Because of this, the type 
of dynamic programming previously used in SNGP cannot be employed. Note that 
this does not necessarily imply that SNGP is not capable of solving such problems, 
merely that its efficiency will be hampered in doing so, since full evaluation is 
required of the tree rooted at each individual. 

In this paper, then, we investigate the extent to which SNGP is a suitable system 
for the evolutionary solution of problems with side effects. As we shall see, this work 
entails re-examination of the evolutionary strategy used to drive SNGP. 

2 Related Work 

SNGP is, of course, not the first approach to deviate from Koza-style GP [4], in which 
programs are stored as tree structures and evolutionary operators work by swapping 
subtrees or replacing them with new, randomly-generated subtrees. In linear GP [5], for 
example, programs are simply sequences of individual instructions; and whereas tree-
based GP takes a functional view of programs, in which calculations are passed up a 
tree as it is evaluated, linear GP is more akin to conventional imperative programming, 
with intermediate and final results being stored in registers of memory variables. 

A tree is merely one form of a graph, and so it is perhaps not surprising that it is 
not the only such graph structure that has been tried for GP. One of the first systems 
to explore this was PADO (Parallel Algorithm Discovery and Orchestration) [6]. 
PADO makes use of stack memory and indexed memory, and a graph may contain 
action nodes and branch-decision nodes. The system was used to evolve parallel 
programs for classifying images. 
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Taking inspiration from the parallel processing performed in neural networks, Poli’s 
PDGP (Parallel Distributed GP) [7] uses a grid representation to hold graph-structured 
programs. Individuals are still subject to (suitably modified) crossover and mutation, but 
programs are more compact than tree-based equivalents, and offer opportunities for 
concurrent execution. A similar grid-based approach is employed in Cartesian Genetic 
Programming (CGP) [8], in which the number of rows and columns, and the amount of 
feed-forward, are all parameters to the system. Originally developed to evolve digital 
logic designs, the approach made use exclusively of mutation to generate new 
candidates which took part in a (1+λ) evolutionary strategy, but more recent research 
has explored the advantages of a new crossover operator [9]. In the GRAPE (GRAph 
structured Program Evolution) approach [10], graphs contain arbitrarily directed links, 
and both calculations and node sequencing are determined by a separate data set. 

Other researchers have taken conventional tree-based or linear GP and augmented them 
with additional structures. In linear-tree GP [11], each node of a tree consists of a linear 
program and a branching node which determines the next node in the tree to be executed. 
The idea was later extended to more general graph structures [12]. In the MIOST system 
[13], program trees may contain additional links both to provide more sophisticated 
interaction between nodes and also to allow multiple outputs from individuals.  

In Multi-Expression Programming (MEP) [2,3], each individual has a structure 
similar to that of single-row CGP, with each node of the graph having links to 
operands further back in the graph. The main difference is that execution results are 
computed not only for a program graph as a whole, but also for each of its sub-graphs. 
The overall fitness of the individual is defined to be the fitness of the best sub-
expression. Mutation and crossover are the primary evolutionary operators. As we 
shall see, an SNGP population can be viewed as being analogous to a single MEP 
individual, although the mechanics of evolution are very different.  

3 The SNGP Model 

An SNGP population  is a set of N members 

M = {m0, m1, …, mN-1}. 

Each member is a tuple of the form: 

mi = < ui, ri, Si, Pi, Oi > 

where:  

    ui ∈ {T ∪ F} is a single graph node taken from either the function set F or the 
terminal set T of the problem; 

    ri is the rating of fitness for the individual; 
    Si is a set of successors of this node; 
    Pi is a set of predecessors of the node; 
    Oi is a vector of outputs generated when this node is evaluated. 

During initialisation, the population is partitioned in such a way that: 

    ui ∈ T              if  i < TNUM 
    ui ∈ F              otherwise 
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where TNUM is the number of terminals in the terminal set. Moreover, for any ui, uj 
such that i, j < TNUM and i ≠ j, we have ui ≠ uj. 

In other words, the first TNUM members of the population are initialised to 
represent the members of the terminal set, with each terminal appearing exactly once. 
All other members contain nodes drawn from the function set. These are allocated at 
random, and so may be replicated in the population. 

For a population member which represents a function, the operands of that function 
are drawn from other members of the population. The successor set of the node is a list 
of the population members acting as operands, represented by their position in the 
population. We make the restriction that for each   s ∈ Si we have 0 ≤ s < i, i.e. the 
operands of a function must be ‘lower down’ in the population (towards position zero).  

Similarly, the predecessors of an individual are those population members for 
which the individual is used directly as an operand, i.e. they take us to the next higher 
expression level. This means that for each p ∈ Pi we have i < p < N. 

Note that for terminal nodes the successor sets are empty. Moreover, as these 
nodes cannot change during evolution (see later), their predecessor sets are not needed 
and are also left empty. 
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Fig. 1. SNGP graph structure and effects of the smut operator 

Fig. 1(a) shows how a population of just 8 members might be initialised, together 
with the corresponding graph. The first four positions in the population are occupied 
by terminals, the remainder by functions. For ease of explanation the functions shown 
here are all different, although in reality functions could be replicated, and certainly 
will be with larger population sizes. Note that the AND node and the OR node both 
have two predecessors, i.e. they appear as immediate operands of two other function 
nodes. This form of reuse is characteristic of SNGP programs, and therefore differs 
from conventional tree-based GP. 
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The graph shown here contains eight different expressions, one per node. The sim-
plest expressions are the single-node terminals: D0, D1, D2 and D3. The other ex-
pressions are those rooted at the remaining nodes: 

AND(D0, D1) 
OR(AND(D0, D1), D2) 
NAND(AND(D0, D1), OR(AND(D0, D1), D2)) 
NOR(OR(AND(D0, D1), D2), D3) 

It can be seen that, even with only eight nodes, a range of reasonably complex expres-
sions can be encoded. This complexity can rise dramatically when hundreds of nodes 
are used. 

If the type of problem is one in which functions and terminals do not have side 
effects, then we can employ a form of dynamic programming which substantially 
enhances the efficiency of SNGP. During initialisation, each terminal is evaluated 
across all test input cases, and the outputs generated are stored in Oi. These outputs 
are used to calculate the fitness values ri. As initialisation continues, and each 
randomly selected function is inserted into the population, outputs and fitnesses 
continue to be computed, but making use of the values already stored for the operands 
forming the successor set. In this way, the fitness calculation for an individual is 
highly efficient, involving the application of only one operator or function per test 
case. Of course, when side effects are present, as they are in the problems studied 
later in this paper, the use of such a mechanism is ruled out, and every node contained 
in a graph must be evaluated fully. 

In SNGP there is only one evolutionary operator, called smut (successor mutate). 
The way that smut works is that a member of the population is chosen at random, and 
then one of its operands (i.e. a member of its successor set) is modified to refer to a 
different member of the population (but still lower down in the position order). Figure 
1(b) shows how this operator is applied. Here, the first operand of the OR node is 
being changed from population member number 4 (the AND node) to member 
number 1 (the terminal D1). Hence, the successor set of node 5 must be changed to 
reflect this, and node 5 must therefore be deleted from the predecessor set of the AND 
node. In this example, the new operand is a terminal, and so nothing more needs to be 
done to the graph structure; when the new operand is a function, its predecessor set 
must also be updated to add in the new parent. 

A modification such as this means that the individual which has been changed 
must be re-evaluated to determine its new outputs and fitness rating. In our example, 
the expression OR(D1, D2) must be computed for all test cases. However, this will 
also have an effect on individuals higher up in the population. Exactly which 
individuals are affected is determined by the predecessor sets. In Figure 1(b), the 
predecessors of the OR node are the NAND node and the NOR node, and so these 
must be re-executed. In larger graphs, it may be necessary to continue this chain of 
execution by pursuing the predecessor references until all affected individuals have 
been re-assessed.  

The order in which evaluations proceed up the population can have a great impact 
on efficiency. In Figure 1(a), a change to the operands of the AND node might cause 
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the immediate predecessors NAND and OR to be evaluated next. Then, because the 
OR outputs have changed, the NAND node might be invoked once again. In general, 
there may be many unnecessary evaluations that take place before the population 
eventually settles to its final values. To circumvent this, we implement a mechanism 
in which the predecessor sets are followed to build an ordered ‘update list’ of all 
affected individuals. We then execute each member of the list in turn, from the lowest 
to the highest position in the population, thus ensuring that no function is invoked 
more than once. 

Evolution of an SNGP population is driven using a hill-climbing approach. 
Whenever the smut operator is applied, the fitnesses of the affected individuals are re-
assessed. If fitness has not improved, then the modifications made by smut are 
reversed. To make this more efficient, the old outputs (if outputs are being recorded) 
and fitness values of each member of the update list are recorded by smut, so that they 
can be put back in place if necessary by a single restore operation. 

This begs the question of how we determine whether fitness has improved. In the 
original version of SNGP, this was ascertained by considering fitnesses across the 
population as a whole. In this strategy, the aim is to drive down the aggregate fitness of 
the population (and therefore the average fitness). More formally, and assuming that 
lower fitness values are better, the aim is to minimize Σri. One of the things called into 
question during the research described here is whether that is always the best strategy. 

4 Experimentation 

For the purposes of evaluation in situations where the dynamic programming ap-
proach previously employed is not possible, we have chosen three problems which 
rely on side effects during program execution. 

The first of these problems is the Santa Fe artificial ant problem [4], which is com-
monly used in assessing the effectiveness of GP algorithms and is known to be difficult 
to solve [14]. The second test problem we have used is that of navigating a maze. Al-
though less well-known than the ant problem, it has been used as the subject for re-
search on introns in several studies [15-17]. In our third problem, the aim is to evolve 
programs which are capable of parsing arithmetic and logical expressions. The output of 
a successful parser is the postfix (Reverse Polish) form of each expression, but the need 
to manipulate a stack during execution means that functions must rely on side effects to 
achieve this aim. Full details of this problem can be found elsewhere [18]. 

The problem parameters as they apply to the use of standard GP in all these prob-
lems is given in Table 1. For SNGP there are really only two parameters. The first is 
the population size (number of nodes), which we have arbitrarily set to 50, although 
later we will discuss the effects of altering this. The second parameter is the ‘length’ 
of a run, which we will refer to as L. SNGP does not have generations as such; we can 
think instead in terms of the number of evolutionary operations performed. Since 
standard GP with a population size of 500 running over 50 generations creates 25,000 
individuals via crossover or reproduction, we will set the upper limit on the number of 
smut applications to 25,000. 
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Table 1. GP system parameters common to all experiments 

Population size 500 
Initialisation method Ramped half-and-half 
Evolutionary process Steady state 
Selection 5-candidate tournament 
No. generations 51 generational equivalents (initial+50) 
No. runs 100 
Prob. crossover 0.9 
Mutation None 
Prob. internal node used 

as crossover point 
0.9 

 
As mentioned in an earlier section, the criterion used in the original version of 

SNGP to decide whether to reverse the effects of an evolutionary operation is based 
on the average fitness of the population. If the average fitness (or, to be more precise, 
the aggregate fitness) worsens, the operation is undone. Henceforth, we will use the 
notation SNGP/A to refer to the approach when it makes use of an evolutionary strat-
egy based on Average fitness. An alternative strategy is to use best fitness, rather than 
average fitness, as our criterion: if the best fitness in the population worsens, reverse 
the operation. The term SNGP/B will be used to refer to SNGP when it makes use of 
a strategy based on Best fitness.  

Table 2. Comparisons of SNGP with standard GP on example problems 

Problem System Soln. 
rate 
(%) 

Effort 
(evals/soln)
(x 106) 

Time 
100 runs 
(secs) 

Av. 
soln size

Max. 
soln size 

Min.
soln 
size 

Ant GP 9 308 50 51 199 25 
SNGP/A 16 2014 298 14 24 7 
SNGP/B 56 260 131 12 21 7 

Maze GP 47 8 7 1987 5620 722 
SNGP/A 98 18 18 33 45 10 
SNGP/B 60 15 9 24 37 9 

Parse GP 32 415 101 399 1154 58 
SNGP/A 45 4406 1073 19 30 9 
SNGP/B 83 355 159 19 34 11 

 
Table 2 compares SNGP against standard GP for our problems. In relation to per-

formance, three measures are used: solution rate, computational effort, and execution 
time. The solution rate is simply the percentage of full solutions obtained over 100 
runs of the problem. For computational effort it would be possible to count fitness 
evaluations, but since the sizes of SNGP programs and the way in which they are 
executed differs enormously from standard GP, we chose a different measure that is 
more reflective of the effort involved. We count the total number of program node 
evaluations over all runs and divide this by the number of solutions obtained, thus 
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giving a notion of effort per solution. Finally, timings are given for execution of 100 
runs. These were taken on a PC with an Intel Core i7 quad-core processor running at 
2.8GHz. Both the SNGP and GP systems were written in C and compiled using Mi-
crosoft Visual Studio as single-threaded processes running under identical load condi-
tions. 

The first thing to note is that, at least in terms of solution rate, both forms of SNGP 
perform very much better than conventional GP. In comparing SNGP strategies, it 
would seem that, for two of our problems (artificial ant and parsing), strategy B is the 
one to opt for. Even though this strategy takes longer to execute 100 runs than stan-
dard GP, its much higher solution rate means that less effort is required per solution. 
Strategy A, on the other hand, requires an inordinate amount of effort to find its solu-
tions, entailing lengthy run times. For the maze navigation problem the situation is 
perhaps not as clear-cut. Strategy A has a much higher solution rate, and in fact is 
able to discover solutions on almost every run. However, it requires slightly more 
effort per solution to achieve this, and requires double the execution time for the runs. 
The choice of a winner here rests on whether one prefers lots of solutions, or fewer 
solutions in a faster time. 

An important point to make here is that the performance differences between 
SNGP and standard GP have been verified as statistically significant. This has been 
done by recording the fitness values of the best programs found in each run (whether 
forming a solution or not), and then performing a t-test on these data with p=0.05. 

Turning to solution sizes, there is no contest. SNGP clearly outperforms standard 
GP for all three problems, with little to choose from between the two evolutionary 
strategies. In the case of the maze and regression problems, the solutions found by 
SNGP are many times smaller than those found by standard GP. 

The compactness of the SNGP programs merits further discussion. Since any 
SNGP program is built only from the nodes contained in the population members, it 
cannot be larger than the population size. In the experiments described here, this 
means an upper bound of 50 nodes in any program. That said, the graph-like nature of 
these programs allows code re-use that is not present in conventional GP trees and 
which would otherwise require  many more nodes to implement. For example, one 
40-node SNGP solution to the maze problem would require 4953 nodes if written out 
as a tree-based GP expression. 

Key to the solution sizes obtained is the size of the population, which by definition 
in SNGP acts as a constraint. In the experiments above, the population size N was set 
arbitrarily at 50. However, this is not necessarily an optimum for each problem. In 
contrast to standard GP, one of the advantages of SNGP is that it can find solutions 
even when N is set very low. Usually this means that fewer solutions will be found, 
but they will be smaller programs, found in a shorter time. Hence, via the single pa-
rameter N, one can tune the system to select an appropriate balance of solution count, 
program size and execution time. Sometimes, however, this tuning can lead to surpris-
ing results. For example, setting N to just 20 for the ant problem using strategy B 
leads to seven times as many solutions as standard GP, and at a third of the computa-
tional cost per solution. 
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5 Conclusions 

Single Node Genetic Programming (SNGP) is a new approach to GP in which each 
individual in the population consists of just a single program node. Where a node 
requires operands, these are drawn from other members of the population. Evolution 
is driven by a hill-climbing mechanism that uses a single reversible operator.  

The research described in this paper began as a test of how well SNGP could cope 
with problems in which the functions and terminals used to build programs rely on 
side effects for their behaviour. In previous experiments, side effects were not present, 
and so it was possible to make use of a form of dynamic programming in which the 
outputs of subtrees could be cached for use as operands by higher-level functions, 
thereby leading to enormous efficiency gains. Without the opportunity to make use of 
this mechanism, it was known that efficiency would suffer, but it was hoped that 
SNGP would be at least competitive with conventional GP systems.  

In the event, our experimentation showed that SNGP can be superior in terms of 
solution-finding performance, computational effort, and solution size, with the caveat 
that is influenced heavily by the choice of evolutionary strategy. We investigated two 
strategies: one which promotes average fitness across the population, and the other 
concentrating on best fitness amongst individuals. In a sense, the first strategy could 
be described as altruistic, with the other being more selfish. In previous work, the 
altruistic strategy was generally found to lead to better results. In the work described 
in this paper, however, the selfish appears better, at least for two of the three 
problems. What we do not know is why this difference should exist. We hope to carry 
out further investigations to provide some insight, and in particular to assist us in 
deciding on a strategy to employ based purely on an a priori description of a problem. 

Other research lined up for the future includes an investigation into the dynamics 
of SNGP, to discover how it is able to find solutions so readily with such small 
populations. We also wish to explore ways to exploit the parallelism inherent in both 
the SNGP system and in the programs it evolves. And in the same way that we have 
explored alternative evolutionary strategies here, we want to evaluate the effects of 
using different operators, initialisation procedures and algorithms. 
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