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Abstract. Being able to exploit modularity in genetic programming
(GP) is an open issue and a promising vein of research. Previous work
has identified a variety of methods of finding and using modules, but
little is reported on how the modules are being used in order to yield the
observed performance gains. In this work, multiple methods for identi-
fying modules are applied to some common, dynamic benchmark prob-
lems. Results show there is little difference in the performance of the
approaches. However, trends in how modules are used and how “good”
individuals use these modules are seen. These trends indicate that discov-
ered modules can be used frequently and by good individuals. Further
examination of the modules uncovers that useful as well as unhelpful
modules are discovered and used frequently. The results suggest direc-
tions for future work in improving module manipulation via crossover
and mutation and module usage in the population.

1 Introduction

A recent survey by O’Neill et al. [13], cites modularity as an important open topic
in genetic programming (GP) [7]. Some of the earliest work in this area shows
how GP representations which enable and/or exploit some form of modularity
may outperform and scale better than standard GP on certain benchmark prob-
lems [8]. Since the early 1990s, numerous methods have been implemented with
varying levels of success. While these methods can be valuable and yield signif-
icant performance improvements over standard GP, little has been reported on
how the discovered modules are used and contribute to the population’s fitness.

Studies of modularity in dynamic environments (also an open issue [13]) are
also sparse. Dynamic environments provide a testbed that more resembles real-
world problems which are rarely static, like most problems GP researchers tackle.
Recent work by Kashtan et al. [6] and O’Neill et al. [11] shows dynamic environ-
ments which vary the fitness function over time can even speed up evolution.
While dynamic environments is a large topic in GP, no work has been published,
to the author’s knowledge, examining how incorporating modularity changes
GP’s performance in dynamic environments.
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The experiments carried out for this work use the popular grammar-based
form of GP, grammatical evolution (GE) [12]. To study how enabling and
exploiting different forms of modularity impact GE’s search in dynamic environ-
ments, methods for identifying and making modules available to the population
described by Swafford et al. [16] are used. For this work, modules are defined
as encapsulated sub-derivation trees taken from the full derivation trees of GE
individuals.

In the rest of this work, the effects of modules on GE’s search will be pre-
sented. First, Sect. 2 describes some of the relevant previous work in dynamic
environments and identifying and using modules. Next, Sect. 3 explains how
modules are identified and made available for use by the population. Section 4
outlines the various experimental setups used. Following the explanation of the
experimental design, Sect. 5 details the results of this study and discusses their
meaning. Finally, Sect. 6 draws together some conclusions and proposes ideas for
more future work.

2 Previous Work

To this day, there have been numerous approaches for identifying and using
modules. Some of the best known of these are Koza’s automatically defined
functions [8], Angeline and Pollack’s Genetic Library Builder [1], Rosca and Bal-
lard’s Adaptive Representation [14], and Walker and Miller’s Embedded Carte-
sian GP [17]. Each of these are valuable for defining how modules may be
identified and the benefits they give to the evolving population. However, lit-
tle is said about the modules are actually used by the population. Harper and
Blair [3] touch on this issue on their work with Dynamically Defined Functions
(DDFs). They give an example how individuals which do not use any DDFs are
quickly weeded out of the population and replaced with individuals using one or
two DDFs. While this is useful, a more in-depth examination of how modules
(in this case DDFs) are used could provide insight into how they could be better
exploited to maximize the performance gain they provide. Miller et al. [9] also
spend some time examining the frequency of use of certain sub-programs in their
study of evolutionary design of digital circuits.

Little work has gone into understanding how modularity enhances or inhibits
evolutionary search in dynamic environments. Some of the earliest approaches
to modularity are tested on a dynamic problem (the Pac-man game) [8,14] and
outperform standard GP on this problem. But no attention is given to how
the addition of modules actually encourage the discovery of better solutions.
More related work by Kashtan et al. [4,5,6] examine how evolution in dynamic
environments can lead to more modular solutions and speed up evolution under
certain conditions. They provide a useful analysis of their findings, but do not
incorporate any mechanism for identifying and promoting the use of modules.
For a more comprehensive survey of work in dynamic environments, see Dempsey
et al. [2].
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3 Module Identification Methods

Numerous methods for identifying modules and making them available to in-
dividuals during evolution have been developed by previous researchers. The
experiments presented here use the methods described by Swafford et al. [15,16].
For the proceeding methods for discovering modules, a module is defined as
encapsulated sub-derivation trees taken from the full derivation trees of GE
individuals. These approaches for finding modules are briefly summarized as
follows:

Mutation Identification (M-ID): An individual is taken from the popula-
tion and a node on its derivation tree is randomly picked. This is the candi-
date module. It is replaced 50 times with randomly created sub-derivation
trees of the same size. For each replacement, the entire individual is
re-evaluated and the updated fitness is recorded. For each random sub-
derivation tree inserted into the individual, the difference between the in-
dividual’s original fitness and updated fitness is saved. If the original fitness
is better than 75% of the updated fitness values, the candidate module is
saved and the mean of the fitness differences is used as the module’s fitness.

Insertion Identification (I-ID): First, 50 test individuals are generated us-
ing the same initialization method as the population. Next, the fitness of each
is calculated. A candidate module is randomly picked from an individual and
is inserted into each of the test individuals to replace a random sub-derivation
tree with the same depth. Then, the test individuals are re-evaluated. When
the candidate module is inserted into each of the test individuals, the dif-
ference between the original and updated fitness is saved. If the candidate
module improves the fitness of 75% of the test individuals, it is saved and
the mean of the fitness differences is used as the module’s fitness.

Frequency Identification (F-ID): This method counts the occurrence of ev-
ery sub-derivation tree in the population, except for single non-terminals.
The most common sub-derivation trees are used as modules and given fit-
ness values based on their frequency: # of occurrences

total # of sub-trees .

Random Identification (R-ID): A random sub-derivation tree is picked from
each individual in the population and a module is created out of it. Because
the module is not evaluated, the parent individual’s fitness is used as the
module’s fitness.

For the following experiments modules are only selected from the top 15% of
individuals. Once the modules have been identified a mechanism for making
them available to the population is needed. In GE, adding them to the grammar
used to create individuals in the population is a simple and effective method to
resolve this issue. As with the methods for identifying modules, the manner in
which modules are inserted into and removed from the grammar is also borrowed
from Swafford et al. [16]. This is summarized in Fig. 1. The number of modules
allowed in the grammar at one time has been limited to 20 based on results
reported by Swafford et al. [15]. If more than 20 modules have been identified,
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move

<acts>

<acts>

left <act> <acts>

<act>move

<act>

(a) A sample individual

<acts>

<act> <acts>

<act>move

move
(b) A sample
module

<acts> ::= <act> | <act> <acts>
<act> ::= move | left | right

(c) Original Grammar

<acts> ::= <act> | <act> <acts>
| <acts_mod_lib>

<act> ::= move | left | right
<acts_mod_lib> ::= <mod_0>
<mod_0> ::= move move

(d) Updated Grammar

Fig. 1. These figures show how the grammar is modified when a module is added to it

they are ranked based on their fitness values assigned upon their creation and
the best 20 of these are kept. If a module is removed from the grammar, and
individuals still use it, every occurrence of the module is expanded into the full
sub-tree used to create that module. This prevents the phenotypes of individuals
from changing when the grammar is modified.

4 Experimental Setup

This work examines the hypothesis that modules can be useful in dynamic en-
vironments as they may be able to find and encapsulate sub-solutions that are
useful across multiple fitness scenarios. In order to do this, an easy, medium, and
hard instance of each of the following common benchmark problems are used:
Symbolic Regression (x5−2x3+x, x6−2x4+x2, x7−2x5+x3), Even Parity (7,
8, 9), and Lawn Mower (8× 8, 12× 12, 14× 14). Parameters for specifying how
often and the manner in which the fitness function changes are borrowed from
Murphy et al. [10]. The number of generations between fitness function changes
are 5 and 20. Each of these period lengths was used with random and cyclic
changes. Modules identification also occurs every 5 and 20 generations, meaning
modules are identified at the beginning of each fitness period. However, this does
not allow time for evolution to adjust to the new fitness function before modules
are selected from the population. In response to this, staggered module identi-
fication steps are also used. Instead of searching for modules at the beginning
of each fitness period, the initial module identification starts 2 generations into
the first fitness period and then continues every 5. A similar staggered approach
starting at generation 10 and continuing every 20 generations is also employed.
More frequent and random changes in the fitness function mean GE has little
time to adjust to the new environment. Longer fitness periods allow GE more
time to adjust to the new target. This variety of fitness and module identification
steps allows for testing how well the discovered modules helps GE recover from
changes in the target functions.
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5 Results and Discussion

This section answers the question of how modules alter (or not) the behavior of
GE in dynamic environments. First, modules’ frequency, lifetimes, and the fitness
of individuals using them are examined. Hand picked modules are also shown
for the purpose of understanding what kinds of modules are being discovered
and used. Then, a short explanation of how the various methods for identifying
modules helps or hinders GE’s search capabilities in the dynamic environments.

5.1 Frequency and Lifetime of Modules in the Population

To begin the analysis of the various modular approaches, the frequency of mod-
ule usage in the population is shown in a heatmap in Fig. 2. This reveals trends
in how many individuals are using modules and how long modules are used.
This figure shows the results of a Symbolic Regression instance where the fit-
ness function target changes randomly every 20 generations and modules are
identified every 20 generations starting at generation 10. Modules are identified
using the M-ID approach. Out of the 1519 modules discovered across all 50 runs
of this variation, only 442 modules are present in the heatmap. These modules
appear in at least 50% of the population. Out of all the modules in Fig. 2 only a
small portion of the modules identified in early generations are heavily present
throughout multiple module identification and replacements. This suggests these
modules contain information that is useful in all of the fitness instances of this
particular problem. Through crossover, mutation, and selection operations, some
of these modules are able to move from being used by less then 10% of the
population to over 90%. Figure 2 also shows that the majority of modules are
identified, used frequently, and then are used rarely, if at all, after one or two
fitness periods. It also shows a scattered few modules are being used by a large
portion of the population for only 5–25 generations before their usage plummets.
This indicates that being used by a large percentage of the population does not
ensure longevity across many generations.

Only examining the frequency and longevity of use of modules does not paint
a full picture of how they are used. To further understand this, Fig. 3 shows the
average fitness of every individual each module appears in. The modules in Fig. 3
and Fig. 2 are the same. An interesting characteristic is the similarity between
Fig. 2 and Fig. 3. This similarity shows a strong correlation between modules
getting used frequently and modules being used by highly fit individuals. A
comparison of Figs. 2 and 3 also shows that better individuals are often the only
individuals that use modules for long periods of time before and after they are
used more widely in the population. Another notable trait of Fig. 3 is the darker
colored cells immediately after the fitness period changes. This signifies a drop
in the population’s fitness as they are adjusting to a new target.

However, Figs. 2 and 3 only show results for a single variation on one problem.
Changing the length of the fitness periods and frequency of identifying modules
yields no significant changes in the correlations noted above. Using the R-ID
and F-ID module identification methods also show similar correlations between
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Fig. 2. This figure show module usage across all runs on the Symbolic Regression prob-
lem using the M-ID approach, identifying modules every 20 generations starting from
generation 10 with the fitness function changing randomly every 20 generations. Each
row (the y axis) represents a module that is used by at least 50% of the population at
any point in a run and each column (the x axis) corresponds to a single generation.
The cells represent the percentage of the population that uses the module in each gen-
eration. The black vertical lines indicate generations when the fitness function changes.
Dark red colored cells indicate that modules are not being used by any individuals.
White colors denote that a module is used by a large percentage or all of the popula-
tion. The modules have been clustered together with modules that were used similarly
to make the graph easier to read. Generations 0–9 have been omitted because module
identification has not yet occurred in those generations.

the frequency of module usage and fitness of individuals using those modules.
The exception to this is the insertion (I-ID) method for finding modules. It finds
very few modules in general. Many runs using the I-ID method find very few
modules, and even fewer of these are used largely by the population. The small
number of modules found by I-ID is due to the fact that it requires modules to be
beneficial in multiple individuals, not only one. In many instances, no modules
are used by more than 50% of the population. This suggests that this approach
is inappropriate for the instances of the Symbolic Regression problem examined.

Analyzing the Even Parity problem in the same manner, Figs. 4(a) and 4(b)
show similar behavior to the Symbolic Regression problem. Modules that are
used more frequently tend to also be used in individuals with better fitness. But
there are also modules being used in good individuals and few other individuals
in the population. Another similarity is that the I-ID approach finds remarkably
fewer modules than M-ID, R-ID, and F-ID. In the case of the Lawn Mower
problem, Figs. 4(c) and 4(d) tell a different story. Any correlation between how
frequently the modules are used and the fitness of individuals using them appears
to be absent. Figure 4(c) shows modules being used by both large and small
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Fig. 3. This figure shows the average fitness of individuals that use a given module.
The module identification and fitness period parameters are used in this figure are the
same those in Fig. 2. Fitness values have all been normalized between 0 and 1. White
and pale yellow colored cells represent modules being used by individuals with good
fitness values. Orange cells mean modules get used in individuals with worse fitness.
Red cells indicate that modules are not used at all at that generation.

percentages of the population. But the same modules in Fig. 4 are constantly
used by the best individuals in the population, regardless of how frequently
they are used. The most likely reason for this is the nature of the Lawn Mower
problem itself. As modules are able to encapsulate multiple mowing instructions
into a single production, individuals using modules can more easily cover larger
areas of the lawn than individuals that must combine single terminal symbols to
cover the same area. Taking this under consideration, it is easy to understand
why modules are frequently being used by the best individuals.

Examining how modules are used in this way naturally leads to two questions:

1. What kinds of modules are being discovered?
2. Do the modules being discovered and used improve GE’s fitness?

To answer the first question, a small selection of modules from the Symbolic
Regression runs shown above can be examined. The following modules are de-
scribed in detail because their clear utility and their longevity of use. The first
two modules to be examined are *--xx+11/*1x/11 and *+11x, which simplify to
−2x and 2x respectively. These two modules can be discussed together as their
stories are similar and it is easy to see how they could potentially be used as
building blocks for the target solutions. Both of these modules were discovered
at generation 10. Neither of these modules are immediately adopted by large
amounts of individuals. For many generations, they fluctuate in usage percent-
age from at 0.008% to 70% of the population. By generation 28, both modules
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(a) Parity - Usage (b) Parity - Fitness

(c) Lawn Mower - Usage (d) Lawn Mower - Fitness

Fig. 4. This figure shows how frequently modules are used and the average fitness of
individuals modules are used in for the Even Parity and Lawn Mower problems. These
problem instances use the same parameters as Figs. 2 and 3

are being used by at least 90% of the population. They also experience lulls in
usage at different generations where they are used by as little as 5% or 10% of
individuals before becoming more prominent in the population again. A third
module, *xx, or x2, was also discovered and used in a similar manner. The dif-
ference in this particular module is that it never experiences the drop in usage
the others do. Once more than 90% of the population uses this module, never
again do less than 94% of individuals use it.

When examining the modules used by large portions of the population, an-
other notable trend was seen. Many popular modules simply reduced to 0. An-
other observation about the modules discovered is that some of the frequently
used ones have no apparent usefulness. A possibility for this is that they do not
damage or change the fitness of individuals. More investigation is needed to give
a definitive reason why these modules are used frequently. A possible cause of
this is that it is very difficult to find good modules and the module identification
methods sometimes find bad modules.

5.2 Modularity and Fitness

Different approaches to modularity lead to differences in GE’s performance.
These approaches are compared using the metrics presented by Murphy et al. [10]
are used (draw down, area under the curve, and fall off ). The methods for iden-
tifying modules from Sect. 3 are compared to standard GE and GE with ADFs.
The observed data shows that among the methods examined, there is no single
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best approach on any of the problems except the Lawn Mower, where GE with
ADFs is the best performing approach. As seen in Sect. 5.1, modules are being
identified and often used. This suggests that even though modules are being used
frequently, they are being used sub-optimally or are not good modules.

6 Conclusion and Future Work

This work examined the effects of incorporating four approaches to modular-
ity on three common benchmark problems in GP: Symbolic Regression, Lawn
Mower, and Even Parity. Each of these problems was studied as a dynamic
problem, where targets of increasing levels of difficulty were used. The results
observed show no large difference between any of the approaches in terms of in-
creasing performance over standard GE. However, the Symbolic Regression and
Even Parity instances did show interesting trends in how often modules were
used by the population and the fitness of individuals using those modules. The
data suggests that modules used by a large percentage of the population also
tend to be used by individuals with high fitness. Further examining a selection
of the modules being used frequently also shows how potentially helpful modules
are being found, used frequently, and used by highly fit individuals. On the other
hand, a number of useless modules are being used in the same way. These results
point towards a number of possibilities for future work.

One potentially extension from this work would be ensuring that modules are
being used in contexts where they can be the most useful. Two of the approaches
for identifying modules estimate how well sub-derivation trees perform in partic-
ular contexts. If those sub-derivation trees become modules and are used in other
contexts, they may be harmful instead of helpful. When estimating the worth
of sub-derivation trees, many are passed over as they are deemed unworthy of
becoming a module. These may even be harmful sub-derivation trees. Another
interesting vein of research could be considering these “bad” sub-derivation trees
as anti or taboo modules. It may be beneficial to guide search away from these
structures as they are not considered to contain helpful information.
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