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Abstract. Anytime algorithms aim to produce a high-quality solution
for any termination criterion. A recent proposal is to improve automati-
cally the anytime behavior of single-objective optimization algorithms by
incorporating the hypervolume, a well-known quality measure in multi-
objective optimization, into an automatic configuration tool. In this
paper, we show that the anytime behavior of IPOP-CMA-ES can be
significantly improved with respect to its default parameters by apply-
ing this method. We also show that tuning IPOP-CMA-ES with respect
to the final quality obtained after a large termination criterion leads to
better results at that particular termination criterion, but worsens the
performance of IPOP-CMA-ES when stopped earlier. The main conclu-
sion is that IPOP-CMA-ES should be tuned with respect to the anytime
behavior if the exact termination criterion is not known in advance.

Keywords: Anytime algorithms, automatic parameter tuning, contin-
uous optimization.

1 Introduction

In many practical situations, an optimization algorithm may be terminated at
any time, and, hence, it should return as high-quality solutions as possible for
a wide range of possible termination criteria. Algorithms that better satisfy this
property are said to have better anytime behavior [14].

When designing a new algorithm or tuning its parameters, the classical way to
assess its anytime behavior is either by comparing plots of the solution-quality
over time, called SQT curves [5], or by measuring performance at a different num-
ber of targets, for example, measuring solution quality after a given number of
function evaluations. The benefit of the graphical comparison of SQT plots is that
one gets the whole picture and it is less biased by the choice of the targets. How-
ever, a graphical comparison is intrinsically subjective. In contrast,measuring per-
formance at different targets is an objective comparison. However, one still needs
to aggregate the possibly conflicting results for each target in order to compare
multiple algorithms. In this paper, we apply a new alternative, which consists in
evaluating the anytime behavior as a bi-objective optimization problem. In partic-
ular, the hypervolume, a well-known quality measure in multi-objective optimiza-
tion, may be used to assign a single numerical value to the anytime behavior of an
algorithm’s run. This technique allows us to apply automatic configuration tools
for automatically improving the anytime behavior of optimization algorithms.
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CMA-ES [3] is a state-of-the-art algorithm for continuous optimization. Re-
cently, a variant of CMA-ES with incremental population has been proposed [1];
we refer to this variant as IPOP-CMA-ES. The authors of IPOP-CMA-ES show
that it outperforms the classical CMA-ES with restarts that keeps the population
size fixed for a wide range of functions and allocated number of function evalua-
tions. Therefore, one can say that IPOP-CMA-ES shows already a good anytime
behavior. In this paper, we show that the anytime behavior of IPOP-CMA-
ES can be further improved by combining automatic algorithm configuration
tools and the hypervolume measure. Moreover, we also report results on tuning
IPOP-CMA-ES for a specific termination criterion. The resulting configuration
of IPOP-CMA-ES obtains better final quality than the default configuration and
the configuration tuned for anytime behavior, but performs substantially worse
if interrupted earlier than the specific termination criterion. Therefore, our re-
sults indicate that if the specific termination criterion is not known in advance
or there is a high chance that IPOP-CMA-ES may be interrupted earlier, then
it is better to tune IPOP-CMA-ES according to anytime behavior rather than
using the default settings or tuning for a specific termination criterion.

2 Anytime Optimization

Anytime optimization algorithms may be terminated at any moment during
their run, and they return a solution that is closer to the optimal the more time
they were allowed to run [14]. In fact, most stochastic local search algorithms
match this definition. The ideal anytime optimization algorithm would return a
solution as close as possible to the optimal at any moment during its run. Hence,
algorithms closer to this ideal have better anytime behavior.

One of the goals of adapting parameter settings at run-time is to adapt the ex-
ploration and exploitation trade-off to the amount of computation time allowed.
Such algorithms converge very quickly to a good solution or local optimum,
and then, if more time is allowed, explore more thoroughly the search space
to find better solutions. Although algorithms that adapt their parameters, such
as IPOP-CMA-ES, purport to remove the need to tune the parameters that
are adapted, the adaptation methods introduce parameters that are subject to
fine-tuning. In fact, it has been shown that automatically tuning these param-
eters may considerably improve the final quality obtained by IPOP-CMA-ES
on diverse and difficult benchmarks [6, 7, 12]. One may argue, however, that
this fine-tuning probably makes the algorithm more dependent on the particular
termination criterion used in the tuning, in other words, it worsens its any-
time behavior. Hence, it would be desirable to fine-tune the parameters of such
algorithms in a way that is not specific to a particular termination criterion.

3 Automatically Improving Anytime Behavior

The anytime behavior of an algorithm may be modeled as a bi-objective opti-
mization problem in terms of Pareto-optimality. In this model, the output of a



On the Anytime Behavior of IPOP-CMA-ES 359

run of an algorithm is a set of points in the time × quality space representing
every instant that the algorithm found a solution closer to the optimal. This
set of points is by definition mutually nondominated, that is, there is no point
in the set that is better than another point in one criterion and not worse in
the other. According to this model, we can say that a run of algorithm A has a
better anytime behavior than a run of algorithm B, if the output of A is bet-
ter than the output of B in the Pareto sense, that is, if all points from B are
dominated by at least one point from A, and there is no point from A that is
dominated by a point from B. In practice, the SQT curves of high-performing
algorithms will often cross, and, hence, their outputs are often incomparable
in the strict Pareto sense. This is a usual case in multi-objective optimization,
and, frequently, unary quality measures are used to compare nondominated sets.
Among the quality measures available, the hypervolume is the only one always
able to detect whether one nondominated set is not worse than another [15].
When all objectives are minimized, the hypervolume of a nondominated set is
the area of the objective space that is bounded below by the set and above by a
reference point that should be the same for all sets under comparison. Thus, a
larger hypervolume corresponds to a better quality.

Using the above model, López-Ibáñez and Stützle [11] have proposed to in-
tegrate the hypervolume into an automatic configuration tool in order to auto-
matically improve the anytime behavior of optimization algorithms. We show
here that this technique is able to significantly improve the anytime behavior of
IPOP-CMA-ES with respect to its default settings.

4 Experimental Setup

In this paper, we try to automatically improve the anytime behavior of IPOP-
CMA-ES. IPOP-CMA-ES is (μ, λ)-evolution strategy that samples a new pop-
ulation of solutions at each iteration from a multi-variate normal distribution.
The parameters of this normal distribution are adapted during the run of the
algorithm in order to focus the sampling on the most promising region of the
search space. IPOP-CMA-ES obtained the best performance in the special ses-
sion on real parameter optimization of the 2005 IEEE Congress on Evolutionary
Computation (CEC’05), and, thus, it is a state-of-the-art algorithm for contin-
uous optimization. In our experiments, we use the C version of IPOP-CMA-ES
from Hansen’s webpage http://www.lri.fr/~hansen/cmaesintro.html. We
have modified the code to handle bound constraints by clamping the variable
values outside the bounds on the nearest bound value [7].

There are a number of internal parameters of IPOP-CMA-ES that are fixed in
the default implementation. These are the initial population size λ0, the number
of parent solutions selected from the population μ, and the initial step-size σ0

among others. The population size is multiplied by a factor (ipop) every time the
algorithm is restarted. Restarts are controlled by three additional parameters:
stopTolFunHist, which is a lower threshold on the range of the best objective
function values in recent generations; stopTolFun, which is a lower threshold that,

http://www.lri.fr/~hansen/cmaesintro.html
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Table 1. Parameters that have been considered for tuning. Given are the default
values of the parameters and the continuous range we considered for tuning. The last
two columns are the parameter settings obtained for the anytime tuning (tanytime)
and the tuning for the final solution quality (tfinal), respectively.

Parameter Internal parameter Default Range Tuned

(tuning) tanytime tfinal

a Init pop size: λ0 = 4 + �a ln(D)� 3 [1, 10] 3.676 9.600
b Parent size: μ = �λ/b� 2 [1, 5] 1.750 1.452
c Init step size: σ0 = c · (B − A) 0.5 (0, 1) 0.325 0.603
d IPOP factor: ipop = d 2 [1, 4] 1.840 3.292
e stopTolFun = 10e −12 [−20,−6] −9.653 −8.854

f stopTolFunHist = 10f −20 [−20,−6] −10.000 −9.683
g stopTolX = 10g −12 [−20,−6] −9.528 −12.550

in addition to the previous range, also includes all objective function values in
the last generation; and stopTolX, which is a lower threshold on the standard
deviation of the normal distribution.

For tuning IPOP-CMA-ES, we have exposed seven parameters that directly
control the internal parameters of IPOP-CMA-ES defined above. These seven
parameters are given in Table 1, together with the internal parameter of IPOP-
CMA-ES controlled by each of them, their default value and the range considered
here for tuning. As tuner we use irace [9], a publicly available implementation
of the automatic configuration method Iterated F-Race [2]. The budget of each
run of irace is set to 5 000 runs of IPOP-CMA-ES. The other inputs of irace
are the parameter ranges given in Table 1 and a set of training instances.

As benchmark instances, we consider the 19 functions from the SOCO bench-
mark set [4] and the 25 functions from the CEC’05 benchmark set [13]. In order
to avoid over-tuning, the training set of instances used for tuning is different from
the test sets used for analyzing the results of the tuning. Training instances are
a subset of the functions in the SOCO benchmark, with dimension D ∈ [5, 40].
The training functions are then sampled in a random order from all possible such
functions [8]. For analyzing the results, we use three test sets: 19 SOCO bench-
mark functions, but the 10-dimensional (SOCO-10D) and the 100-dimensional
(SOCO-100D) versions, and the CEC benchmark functions with dimension 50
(CEC-50D).

We follow the protocols suggested by the authors of the SOCO and CEC
benchmarks [4, 13], that is, the maximum number of function evaluations is
5 000·D for the SOCO functions and 10 000·D for the CEC functions. Each run of
IPOP-CMA-ES is repeated 25 times on each function with different random seed.
We report error values defined as f(x)− f(x∗), where x is a candidate solution
and x∗ is the optimal solution. Following the recommendation of the authors of
the CEC benchmark, we use 10−8 as the minimum error (zero threshold), and
lower values are clamped to this minimum.
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5 Experimental Results

We automatically configure the parameters of IPOP-CMA-ES according to any-
time behavior. For each run of IPOP-CMA-ES, every time a solution better than
the best of the current run is found, we record the number of function evalua-
tions (FEs) performed so far and the quality of the new best solution. In this
manner, each run produces a nondominated set of points of quality versus FEs.
We restrict the minimum number of FEs to D, that is, we start recording the
solution quality after D FEs, in order to avoid the bias of the initial random sam-
pling of IPOP-CMA-ES. All nondominated sets under comparison for the same
benchmark function are normalized to the interval [1, 2]. Then, we compute the
hypervolume of the normalized nondominated sets using (2.1, 2.1) as the refer-
ence point. We integrate this procedure into irace, and use the hypervolume to
evaluate each run of IPOP-CMA-ES. In this manner, we obtain a configuration
of IPOP-CMA-ES called henceforth tanytime (Table 1).

Next, we run both tanytime and the default configuration of IPOP-CMA-ES
(henceforth, default) on each benchmark function of the three test sets. Each
run is repeated 25 times with different random seed. We compute the mean hy-
pervolume of these runs using the same procedure described above. The results
reported in Table 2 show that the tuning works, that is, the tanytime configura-
tion obtains better (larger) hypervolume values than default in most functions,
even when testing on functions with different dimensionality or from a different
benchmark set. Nonetheless, it was not possible to improve the hypervolume on
all functions at the same time with a single parameter setting. We performed
a two-sided Wilcoxon matched-pairs signed-rank test at the 0.05 α-level, which
indicates that the differences in favor of tanytime are significant in each of the
three test sets. Therefore, we have found a configuration of IPOP-CMA-ES with
better anytime behavior according to the hypervolume.

We assess how much this improvement is visible when evaluating the anytime
behavior according to SQT curves, computed as mean error value versus FEs.
Figure 1 shows the mean SQT curves, where error values are averaged over 25
runs, on a few test functions of two configurations of IPOP-CMA-ES: default
and tanytime. Both axes are in logarithmic scale. Other plots are available as
supplementary material [10]. The first observation is that for those functions
where the SQT curve of tanytime is clearly better than the one corresponding
to default, the hypervolume of tanytime is always higher, which confirms the
numerical results. In the few cases where default has a higher hypervolume than
tanytime, the SQT curves look like the two plots in the right column of Fig. 1.

Next, we analyze the overall quality reached at a number of termination cri-
teria. We define termination criteria FE1, FE2, FE3, FE4, and FE5, which
correspond, respectively, to {1D, 10D, 100D, 1000D, 5000D}FEs for SOCO func-
tions and {2D, 20D, 200D, 2000D, 10000D} FEs for CEC functions. In order
to measure the overall quality, we need to summarize error values from different
benchmark functions, but the range and distribution of error values varies ex-
tremely from function to function. Depending on the scenario, one could assume
that the error values are comparable, and compute summary statistics directly
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Table 2. Hypervolume values on the SOCO benchmark functions of dimensions 10
(10D) and 100 (100D), and on the CEC’05 benchmark functions of dimensions 50
(50D). Each number is the mean hypervolume over 25 runs.

SOCO benchmark

10D 100D

Funs default tanytime default tanytime

fsoco1 1.198402 1.199056 1.185412 1.190244
fsoco2 1.187217 1.186541 1.195947 1.197192
fsoco3 1.209725 1.209742 1.209607 1.209758
fsoco4 1.194014 1.19501 1.171771 1.18795
fsoco5 1.208867 1.208925 1.204043 1.20496
fsoco6 1.129921 1.125299 1.115378 1.115365
fsoco7 1.209906 1.209913 1.209999 1.21
fsoco8 1.206128 1.206206 1.200541 1.200248
fsoco9 1.129397 1.129854 1.091057 1.113938
fsoco10 1.206764 1.207165 1.208304 1.208677
fsoco11 1.186655 1.201123 1.181395 1.195451
fsoco12 1.209611 1.209574 1.209227 1.209338
fsoco13 1.20989 1.209898 1.209687 1.209814
fsoco14 1.193432 1.193597 1.15417 1.166172
fsoco15 1.209983 1.209996 1.209998 1.21
fsoco16 1.209613 1.209635 1.209009 1.209123
fsoco17 1.209997 1.209987 1.209807 1.209899
fsoco18 1.208043 1.20837 1.207676 1.20822
fsoco19 1.208811 1.209075 1.209992 1.21

Num of best 4 15 2 17

CEC (50D)

Funs default tanytime

fcec1 1.190977 1.193059
fcec2 1.199888 1.199974
fcec3 1.208823 1.208888
fcec4 1.196578 1.202285
fcec5 1.198765 1.201426
fcec6 1.209755 1.209822
fcec7 1.207348 1.206793
fcec8 0.545673 0.577091
fcec9 1.193229 1.196095
fcec10 1.199903 1.201255
fcec11 1.180708 1.182876
fcec12 1.205898 1.207761
fcec13 1.209852 1.209925
fcec14 0.610495 0.713652
fcec15 1.153601 1.154691
fcec16 1.191556 1.190394
fcec17 1.132624 1.111859
fcec18 1.155031 1.15255
fcec19 1.147348 1.147457
fcec20 1.181023 1.182817
fcec21 1.078023 1.120791
fcec22 1.183588 1.185362
fcec23 1.050566 1.111973
fcec24 1.206570 1.206478
fcec25 1.208004 1.207968

Num of best 6 19

on the error values, or analyze how many runs achieve a particular error value.
Instead, we consider that the error values of different functions are not directly
comparable, and we use a non-parametric approach based on blocking, that is,
algorithm runs are ranked per function with respect to the error value, and we
compute the mean rank over all test functions in each benchmark set. Fig. 2
shows the mean rank, at each termination criterion, of the default configuration
and the tanytime configuration. The other configurations shown will be explained
later. The plots show that tanytime configuration ranks better than the default
configuration for almost all termination criteria in all benchmark sets.

Anytime Behavior vs. Final Quality. Now we consider the possibility that
the default parameters of IPOP-CMA-ES may not be the best for the benchmark
sets and the maximum number of function evaluations considered here. There-
fore, we tune the parameters of IPOP-CMA-ES according to the final quality
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Fig. 1. SQT curves for two configurations of IPOP-CMA-ES. Plots on the left (right)
show cases where tanytime obtains a better (worse) mean hypervolume than default.

obtained at the end of the run. In this way, we obtain a configuration that we
call tfinal. We run this configuration on the test benchmark sets, and report the
results in Fig. 2. The plots show that tfinal is able to obtain better final quality
than both tanytime and default, but at the cost of worse anytime behavior. We
carry out a Friedman test at each termination criterion to test for the signif-
icance of the differences between the best ranked configuration and the other
two configurations. Here, we only report the results of the Friedman tests over
all benchmark functions (Table 3); results per benchmark set are given as sup-
plementary material [10]. The Friedman tests confirm these observations, that
is, tfinal becomes much worse than tanytime and default if stopped earlier (ter-
mination criteria FE1, FE2, FE3) than the termination criterion that was used
for tuning (FE5). The other configurations shown in the plots (and in Table 3)
are explained in the next paragraph. The fact that there is a strong trade-off
between final quality and anytime behavior suggests that there are still oppor-
tunities for improving the balance between fast convergence and exploration in
IPOP-CMA-ES.

Hypervolume Applied to Logarithmic Transformations. The plots in
Fig. 1 use a logarithmic scale in both axes, as usually done when comparing
continuous optimizers. Yet, we compute the hypervolume on a linear scale, as



364 M.López-Ibáñez, T. Liao, and T. Stützle

Table 3. Configurations of IPOP-CMA-ES ordered according to the sum of ranks ob-
tained at each termination criterion FEi. The numbers in parenthesis are the difference
of ranks relative to the best configuration. ΔRα is the minimum significant difference
according to the Friedman test at significance level α = 0.05. Configurations that are
not significantly different from the best one are indicated in bold face.

All 63 functions (SOCO-10D, SOCO-100D, CEC-50D)

FEs ΔRα Configurations (ΔR)

FE1 27.34 tany-lx-y (0), tanytime (35.5), tany-lx-ly (38), default (116.5), tany-x-ly (158), tfinal (222)
FE2 20.39 tany-lx-y (0), tanytime (72.5), tany-lx-ly (78), default (98.5), tany-x-ly (214.5), tfinal (271.5)
FE3 38.32 tanytime (0), default (26), tany-lx-ly (32), tany-lx-y (37), tany-x-ly (57.5), tfinal (120.5)
FE4 32.28 tfinal (0), tany-x-ly (12), tanytime (67.5), tany-lx-ly (75.5), tany-lx-y (115.5), default (125.5)
FE5 30.51 tfinal (0), tany-x-ly (21), tanytime (38.5), tany-lx-ly (77.5), tany-lx-y (86), default (101)
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Fig. 2. Mean ranks obtained by configurations default, tanytime and tfinal at each
termination criterion (FE1 to FE5)

commonly done in multi-objective optimization. Nonetheless, we can also ap-
ply a logarithmic scale for FEs, error values or both, before computing the
hypervolume. Such transformations define a particular preference among oth-
erwise incomparable nondominated sets, and, hence, lead to different anytime
behaviors.
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Fig. 2 provides an overall comparison of these alternatives (individual SQT
plots are available as supplementary material [10]). Three additional configura-
tions of IPOP-CMA-ES were obtained by tuning as described above, but using
a modified hypervolume where either the number of FEs (tany-lx-y), the error
values (tany-x-ly), or both (tany-lx-ly) were converted to a logarithmic scale. The
plot shows that the configuration tany-lx-y (log. FE) performs better for short
termination criteria, whereas the tany-x-ly (log. error values) obtains better re-
sults when running for longer FEs. Interestingly, there is no much difference
between applying a logarithmic transformation to both objectives or to none of
them. Our conclusion is that logarithmic transformations of only one objective
(either quality or computational effort) introduce a strong bias, which should be
taken into account to not defeat the purpose of tuning for anytime behavior.

6 Conclusions

In this paper, we have investigated whether the anytime behavior of IPOP-CMA-
ES can be improved by automatically tuning its parameters. We have applied
a recently proposed technique that integrates the hypervolume quality measure
into an automatic configuration method (irace). Our results have shown that
the anytime behavior of the default parameters of IPOP-CMA-ES can be sub-
stantially improved. Moreover, we have also shown that simply tuning IPOP-
CMA-ES according to the quality achieved at a large termination criterion does
improve the results at that particular termination criterion; however, it compro-
mises the results for shorter termination criteria, becoming even worse than the
default configuration of IPOP-CMA-ES. Therefore, if the specific termination
criterion is not known in advance, it is better to tune IPOP-CMA-ES according
to anytime behavior than for a very large termination criterion.

Our results also suggest that, despite the adaptation of the population size
and the restart step in IPOP-CMA-ES, its results are not ideal in terms of
anytime behavior. Therefore, we plan to investigate in the future whether the
anytime behavior of IPOP-CMA-ES can be further improved by adapting other
parameters or making some parameters time-varying.
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