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Abstract. Some Genetic Programming (GP) systems have fewer struc-
tural constraints than expression tree GP, permitting a wider range of
operators. Using one such system, TAG3P, we compared the effects of
such new operators with more standard ones on individual fitness, size
and depth, comparing them on a number of symbolic regression and tree
structuring problems. The operator effects were diverse, as the origina-
tors had claimed. The results confirm the overall primacy of crossover,
but strongly suggest that new operators can usefully supplement, or even
replace, subtree mutation. They give a better understanding of the fea-
tures of each operator, and the contexts where it is likely to be useful.
They illuminate the diverse effects of different operators, and provide
justification for adaptive use of a range of operators.
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1 Introduction

Many diverse genetic operators are used in evolutionary computation. In clas-
sical Genetic Programming (GP) [11], and most other tree-based GP systems
(e.g. Context Free Grammar (CFG) GP [19]) there is less flexibility: constraints
on tree structures restrict the available operators, and most of those since de-
fined (e.g. [L12/17]) are sub-operators of Koza’s. However a number of GP systems
do permit more varied operators: for example, linear GP representations such
as Grammatical Evolution (GE) and Gene Expression Programming (GEP),
which has led to claims that these more varied operators support better search,
with some level of supporting analysis [8/3]. Similarly, Tree Adjoining Grammar-
Guided GP (TAG3P) [6] permits greater structural flexibility than other tree
representations. The resulting range of operators were claimed in [6] to be both
diverse and beneficial, but beyond some tailoring of operators to specific prob-
lems, there has been little analysis. One is entitled to scepticism. Perhaps the
new operators merely overlap each other in functionality, without greatly chang-
ing the search. We aim to characterise the effects of these operators, determining
the extent of their problem specificity. This forms part of a wider stream of work,
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investigating the combination of a diverse range of operators with operator rate
self-adaptation. It focuses on TAG3P [10] as an example of a much wider range
of such algorithms.

There is already extensive research in Genetic Algorithms (GA) into how
genetic operators affect individuals and move them in the solution space [14].
Related research in GP has been more limited [5], and restricted to a fairly
narrow range of operators. Thus the (potentially) more diverse operators of
TAG3P form an interesting field of study in its own right. In GA, the issues
to consider are relatively limited — because the complexity of individuals does
not change, the main interest lies in how fitness distributions change under the
effect of operators. While this is also important in GP, there are other important
dimensions of change, notably the change in complexity [13], as measured for
example by individual size and/or depth. Our objective is to study these effects.

In section 2] we provide additional background on previous studies of operator
effects in GP, and also on genetic operators supported by TAG3P. Section [
details the methods we used, including the experimental regime and parameters.
Section Ml presents the results of the experiments. In section Bl we discuss their
implications, concluding in section [l with the assumptions and limitations of our
study, a summary of the general conclusions, and directions for further work.

2 Background

2.1 Genetic Operators and the Solution Space

Evolutionary algorithms operate on a search space, moving individuals toward
optima by applying genetic operators such as crossover and mutation. GA re-
searchers have analysed the effect of operators in the search space (e.g. [20/14]).
The flexible chromosome structure makes this more complex in GP; nevertheless
a schema theory has been derived (e.g. [I8/I6] and others [5] have presented a
new operator-based distance measure for GP, implicitly analysing the effects of
genetic operators on individuals in the search space.

2.2 Genetic Operators in Tree Adjoining Grammar Guided GP

Tree Adjoining Grammar-Guided GP (TAG3P) is a grammar-guided GP [6],
based on Tree Adjoining Grammars (TAG) [9]. It is based on the adjunction
operator, which models the way elements such as adjectives (’big’, 'black’) and
phrases ('preening its fur’) — 8 trees in TAG terminology — may be inserted into
basic sentences ("The cat sat on the mat’) — « trees — so as to generate new, more
complex sentences ("The big black cat sat on the mat preening its fur’). TAG3P’s
key property is flexibility: the representation is less constrained than other tree-
based GP systems Thus it is possible to extend typical GP operators to TAG3P,

! Specifically, it is always possible to delete any subtree from a TAG3P tree while re-
taining its feasibility, and it is always possible to adjoin to any unoccupied adjunction
site; this property is not shared by other GP tree representations.
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but also to define a range of further genetic operators, including some based more
directly on classical GA operators, and others modelling features of biological
genetic phenomena. In this respect, it resembles linear GP representations more
than it does other tree-based GP systems.

Typical TAG3P Genetic Operators include:

1. Size-Fair Crossover (X) is directly analogous to that in other tree-based
GP, permitting exchange of random subtrees with roots having matching
nonterminals, and (in size-fair form [12]) of the same size.

2. Subtree Mutation (M) selects a random point in the tree, deletes the subtree
below it, and replaces it with a subtree built with the initialisation algorithm.

3. Duplication and Truncation (D/T) randomly choose a node. In duplication,
the subtree below is copied to a matching location in the individual; in
truncation, it is removed. These operators have opposite size and depth
biases, so they are used paired: Duplication or truncation is randomly chosen
with 0.5 probability. They are useful for coarse adjustment.

4. (Point) Insertion and Deletion (I/D) randomly choose a node. Insertion se-
lects an open node (a location that has not been adjoined), randomly chooses
a matching (3 tree, and adjoins it. Deletion chooses a closed node and deletes
its child. As with the duplication and truncation operators, they are used
paired. They are useful for fine-tuning the size of an individual.

5. Relocation (R) disconnects a random subtree from the tree, and randomly
re-adjoins it at another open location with the same label. By design, it is a
deterministically size-fair operator.

6. Replication copies a parent to its child, preserving it for the next generation.

3 Methods

This work aims to characterise the effect on fitness, size or depth of the various
evolutionary operators. The change depends on the state of the system, hence
we wanted to see how that change itself varied over the course of an evolutionary
run. We did this by conducting typical GP runs. At each generation, in addition
to the normally-created children which were actually used in the evolutionary
run, we generated extra children simply to evaluate the effects of the different
operators, but not otherwise used in the run.

In each generation, we took 200 additional samples for each operator (in
addition to those used for evolution) — of the same order as the number of real
trials of each operator in a generation. We selected the parents for these trials
using the selection mechanism. Thus we were examining the children actually
reachable after selection.

3.1 Test Problems

We used a family of symbolic regression problems [11] and Lid problems [4[T5/[T].
In the symbolic regression problems, the target was a polynomial F,, = X7 jx?,
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n € {3,6,9,12,15}. We evaluated candidates f on 20 random points X C [—1,1];
fis a hit if, for some predefined ¢,Vz € X : |F,(z) — f(z)| < e. The ob-
jective was, using {+, —, X, +, sin, cos, exp, log}, to construct a hit, with fitness
(f) = 2 sex [Fu(x) — f(z)|. Among Lid problems, we used the Majority and
Order problems. The target for Majority is a tree in which the number of nodes
P; is larger than of nodes N; for all i; the target for Order is a tree in which
there is a P; before each N;, in preorder traversal, for all i. All trees in these
problems are binary trees, using only one function {JOIN} and 2n terminals
{P;,N; : i = 1...n} . The fitness function is {the number of i satisfying the
condition}. We used n € {25,30} for both problems.

3.2 Experimental Settings

Figure [ shows the elementary trees defining the TAG grammar used by
TAG3P [7l6]; we ran 100 trials for each problem. Table [Il shows the detailed
parameter settings. Typical GP systems use high rates of crossover and lower
rates of other operators for best performance. But our aim was to examine the
behaviour of the system; a high crossover rate would imply low rates for other
operators. We used a compromise rate of 0.5 for crossover, other operators 0.1
in creating the 'normal’ children that were actually used in evolution.

Table 1. Experimental Settings (Left: Symbolic Regression; Right: Lid)

Target Function F3, Fg, Fo, Fi2, Fis M25,M30,025,030
Fitness Cases 20 Random Points from [—1,1]
Fitness Function Sum of MAE of cases # of satisfied ¢
Success Predicate Error <0.01 on all fitness cases n fitness value
Function Set +, —, X, =, sin, cos, exp, log JOIN
Terminal Set X Pi,...Py, N1, ..Np
Generations 50 Population Size 500 Tournament Size 3
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Fig. 1. TAG ElementaryTrees for Experiments for Symbolic Regression

Table 2. Overall Problem Performance

Problem Success Hit Time Problem Success Hit Time Problem Success Hit Time

F3 100% 145  Fio 7% 48.84  Masg 12% 48.15
Fs 57% 30.96 Fis 6% 48.72 O2s 97% 23.11
Fy 23% 45.03 M5 28% 42.98  Osp 80% 33.72
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Fig. 2. General Performance

4 Results

4.1 Overall Performance

Before analysing operator effects, we first present an overview of the system
performance. Figures 2] and Table B illustrate the performance (hit time is the
first generation that a hit occurs). Figures [2 shows both the median (over all
runs) of the best fitness (left axis), and the cumulative success rate (right axis).
System performance on all problems decreases as n increases: the problems be-
come tougher with n, but at a decreasing rate. The fitness curves are typical
for evolutionary processes — an initial steep fall to about generation 10, then
gradual convergence. The cumulative success curves are also typical, with little
success at first, an increasing rate in the middle region, and a final tailing off.
Based on this, to condense the immense amount of data generated, we divided
the generations into three stages: begin (1-10), middle (11-25), end (26-50).

4.2 Detailed Analyses

We conducted detailed analyses on all experiments, but can only show Fy and O3
due to space. Fy is intermediate in difficulty and typical of both extremes, while
O and M problems behaved similarly to each other. Fy and Oz are sufficient to
summarise the general trends, though we will mention some more detailed obser-
vations when appropriate. For brevity, we denote a plot for function X,, calcu-
lated from the fittest n% of children as X%, with n € {10, 30,50, 70,90} and
X € {F,M,O}. The figures show how the genetic operators change the proper-
ties of individuals in each learning stage. The horizontal bars indicate means over
100 runs, while the vertical lines show their standard deviations.

All plots show how each operator changes the specific property for individuals
(the difference between child and parent values — for fitness, negative values
indicate improvement). Replication is omitted because it deterministically has
no effect.

Fitness Analysis: The results in Fig. 3] overall reflect our understanding of
evolutionary behaviour: the operators have a larger range of effect in early
search (they are more exploratory), whereas later on, elite children resemble their
parents much more.



392

M.H. Kim et al.

Q& G o & NP
\Q\Q\Q\S‘:\\\Q:‘ig \é:‘hi‘\i‘\é\\ S ) ‘\@\3‘\““\‘3‘ '&\&‘D\Q‘@“ RIS &
S S S S N b\\ts\b\q"b“? %%%%Q\bb\bbh.thb“b\&b\
@é""’%“‘@‘@‘:*\*&@@“é“Q@ FFLLFFTFTFTF TS
3 1 o 05 1 t
1 1 1 |
2 I I o [t e +—
1 1 ‘ 1 + 1 + .|.|
T 1 + 1 § 1 |
o |+ 1 + 1 =+ 0.5 9 1 |
M n # | |
1 ] ] 1 T 1
-2 4 ' | |
1 1 -15 =1 }
-3 T T | [
- 1 1 5 1 1
YN
LR oo O Ve S e o S @ o
& 5\:(&\@“@@0&@&6&&-6& a"\é\b&éb&é\‘p‘(\\\ T Q;\Qrg“\a;@i;@@&-\b&e\b&e\b“\i é\bbe\&ﬁ\\ S
P T I T T S TP T o o W W T T T
5 1 1 06 } |
8 ) ) I I
; 1 1 o i | I
5 1 1 0z 1 T 1
5 i ! I o + T + 1= 1l +
i i ] LK
4 i i 02 i i
A S B S 3, S o S R | i
o ! T, e DT 08 ! I
1 1 1 4 1 1

Fig. 3. Fitness Change for Selected Parents
Top: 30% Elite; Bottom: 70% Elite; Left: Fy; Right: Oso

The most notable differential effect in Fig.[3lis the much larger range of effect
of the traditional M and X operators: the new TAG3P operators have a much
smaller overall range of effect, suggesting that they are much less exploratory. In
the early stages, X is on average much more beneficial than mutation — for Fy,
most of the 30% elite children are an improvement on their parents, while much
fewer M children are; any benefit from M comes from rarer positive mutations.
While M is overall constructive for problem Osg, it is still substantially less
so than X. However the effect of X rapidly diminishes, especially for Ozg; M
remains effective longer.

I/D are generally beneficial in early stages (the 30% elite see some worthwhile
improvement on their parents. I/D retains small but very slightly beneficial
effect until the end stages, befitting its proposed role as a fine-tuning operator.

D/T behave similarly to I/D on Fy, though any beneficial effect disappears
by the end stages. Their effect on Osg is rather different, being slightly damaging
in the early stages of search, very slightly beneficial in the mid stages, and losing
all effect at the end.

R throughout has a relatively small effect, disappearing almost entirely by
the end stages (deterministically, it had no effect in the majority problem, since
it cannot change the fitness).

Size Analysis. While we saw different trends between 30% and 70% elite chil-
dren in the fitness plots, there was no such difference for size — size effects were
independent of child fitness; we display the results for the 50% elite. R and X
do not change size at all, so we omit them from discussion.
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Fig. 4. Size Change, Left: F3°%; Right: 0397

D/T generally causes a size change over the run (Fig. M), with the scale
increasing gradually. However the effect is reversed between the problems: D/T
decreases size for Fy but increases it for O3 (similar, but less pronounced, effects
were seen with other operators). The difference may be because most individuals
were near the size bound in Fy, so that many larger duplications would fail, while
most truncations would succeed, introducing a bias.

M began by slightly increasing the size of individuals, but the scale decreased
to zero for Oszg, and M eventually became reducing for Fy. I/D (by design)
made only very small size changes throughout.
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Fig. 5. Depth Change, Left: F 50% ; Right: 050%

Depth Analysis. We omit analysis of X because, as with size, most operator
applications result in no change in depth, so there is little to see.

The general trends are similar to size (Fig. Bl), but on a reduced scale (because
of the logarithmic relationship between depth and size). The shapes of the plots
are generally very similar. The only exception is with operator R, which shows
a slight bias toward depth reduction, increasing in scale over time.

5 Discussion

From the perspective of fitness change, crossover appears to be the most effective
operator at the start of a run. However, insertion/deletion may be preferable at
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the end because of its ability to fine-tune results. On the other hand, subtree
mutation is not particularly effective when we consider fitness change. It has very
low probability of improving individuals; but it does cause the biggest changes
in fitness. It appears from these results that other operators (not available in
most tree-based GP systems) may be more effective. Duplication/truncation
does theoretically similar work to insertion/deletion: it adds or deletes a sub-tree
in the individual. Because insertion/deletion uses just one elementary tree, but
duplication/truncation uses a sub-tree, duplication/truncation seems to work
similarly but with a larger step size. On the other hand, there are no obviously
strong points for relocation in terms of fitness: It may not have much effect on
learning, at least in these problems.

Size and depth effects appear to be largely independent of fitness. This may
have some implications for theories of the cause of GP bloat. There is little
difference between the operators in their effects on size and depth (except for
operators specifically designed not to affect them). At first, all operators that are
free to do so increase size and depth. At the end of a run, however, the reverse
occurs, and the operators decrease size and depth in the symbolic regression
problem. Our hypothesis at this point is, in interacting with the size bound, the
genetic operators and selection reach an equilibrium — selection increasing size
and depth, with the genetic operators decreasing them.

While mutation caused the greatest change in fitness, duplication/truncation
led to the biggest changes in both size and depth, while relocation was able to
change depth without affecting size. Thus when a problem requires structural
change, duplication/truncation and relocation may be useful, but they can be
correspondingly wasteful on problems such as Order.

6 Conclusions

6.1 Summary

We investigated the roles genetic operators play and what they are useful for.
We confirmed that crossover is an effective operator in the early stages of GP,
but it is not effective throughout a run. Subtree mutation, another well known
operator, causes large changes in fitness, even in the middle of a run, but the
changes are generally negative. Insertion/deletion may be a useful alternative,
leading to smoother fitness search — It is effective for fine-tuning, but at the risk
of getting stuck in local optima. Duplication/truncation and relocation may be
useful when structural change is needed, but can also have negative effects on
poorly-matched problems.

More generally, we may conclude that there is value in having a diverse range
of operators: they really do perform different tasks, either in different problems,
or at different times in the evolution of solutions for the same problem. Since we
will not, in general, have a priori knowledge of which operator is most suitable a
any specific time, this motivates and justifies research into operator adaptation
in evolutionary algorithms in general, and in GP in particular.
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6.2 Assumptions and Limitations

Our study was limited to TAG3P; conclusions are likely to extend to other more
flexible GP representations, but have limited relevance to standard expression
tree or CFG-based GP. While the problems considered are very different, yet
generally yielded similar results, they may extend to other problem domains,
but a wider sample would be desirable in future. Although we saw something of
the gross structural effect of operators (on size and depth), we did not investigate
their effect on tree shape in detail.

6.3 Future Directions

Our extensions will have two main directions. We will look more closely at the
shapes of solutions, to better understand operator effects, including working with
structure-only problems such as Daida’s Lid problem [2]. We also aim to extend
our analysis to a range of other GP test problems.
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