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Abstract. We investigate the properties of locally geometric semantic
crossover (LGX), a genetic programming search operator that is approxi-
mately semantically geometric on the level of homologous code fragments.
For a pair of corresponding loci in the parents, LGX finds a semantically
intermediate procedure from a library prepared prior to evolutionary run,
and creates an offspring by using such procedure as replacement code. LGX
proves superior when compared to standard subtree crossover and other
control methods in terms of search convergence, test-set performance, and
time required to find a high-quality solution. This paper focuses in partic-
ular the impact of homology and program semantic on LGX performance.
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1 Introduction

In a broad sense, a program is a sequence of symbols (instructions), where each
symbol has a particular, given a priori, semantics. The semantics of an instruc-
tion determines its effect : how its output should be determined (computed)
from a given input. A human programmer familiar with programming language
knows that semantics and can use it to anticipate combined behavior of two
concatenated instructions or substituting one instruction with another. How-
ever, the algorithms considered in genetic programming (GP) have no access to
such information. From their perspective, a program is a purely symbolic struc-
ture, where opcodes associated with particular instructions have no particular
meaning.

On one hand, this is consistent with the evolutionary aspect of GP: in the end,
natural evolution does not ‘know’ the phenotypic expression of genes. On the
other hand, the knowledge of semantics is definitely one of factors that makes
human programming so effective. Therefore, equipping GP algorithms with some
semantic extensions can lead to substantial progress in automated programming,
and this opportunity attracted notable interest in recent GP research [4,8,11].

In [3] and [5] we proposed methods that make GP alert to certain semantic
aspects of programs. The locally geometric semantic crossover (LGX, [5]) finds
a semantic approximation of an intermediate (‘medial’) procedure for a pair of
procedures (subtrees) located in parent programs and uses it as a replacement
for the parent programs. In this follow-up study, we investigate the properties
of this method, in particular the impact of homology on its performance.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 397–406, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



398 K. Krawiec and T. Pawlak

2 The Method
The proposed approach exploits the compositional character of programs, by
which we mean that not only complete programs, but also parts of programs
and program conglomerates have valid interpretation in many programming lan-
guages. We also assume that the fitness function captures the divergence between
program output and some known desired output. This is consistent with GP stan-
dards, where individuals are usually tested on a set of fitness cases, and fitness is
some form of error built upon the outcome of these tests. Formally, a metric || · ||
calculating such error is given. The consequence of this assumption is a convex
surface of fitness landscape, spanned over the space of vectors holding program
outputs. Convexity allows designing recombination operators that are likely to
yield offspring of good quality [10,3]. This is easy to demonstrate for Euclidean
metric: given a point x corresponding to the desired output of a program and
a pair of points x1, x2 representing parent solutions, any point on the segment
between x1 and x2 cannot be further from x than max(||x1 − x||, ||x2 − x||).

The proposed method exploits this property locally, i.e., on level of program
fragments, rather than entire programs. It operates in two major phases. Prior to
evolutionary run, it creates a library of short programs, calculates their semantics
and builds upon them an index for fast access. Then, during an evolution, the
library is used by the crossover operator to modify the fragments of parents’
programs in a semantically-aware way.

Building the Library of Procedures. The input to the method is a set of in-
structions I, each of them being an operator of arbitrary arity. The first step con-
sists in creating from I a library L of short programs, called procedures in following
discussion. The library is purposed to provide semantically diverse code fragments
for the crossover operator. The choice of procedures in L can be done along dif-
ferent criteria, but here, for simplicity, L contains all trees of height at most h.

Next, the semantics s(p) of every procedure p ∈ L is calculated. Throughout
this paper, by semantics we mean a vector of d outcomes produced by a program
for all d inputs (fitness cases). Any two procedures p1, p2 that have the same
semantics (||s(p1), s(p2)|| = 0) do the same thing, which is redundant from the
viewpoint of the method. Therefore, we discard from L procedures that duplicate
the semantics of other procedures, leaving only the shortest ones.

Indexing the Library. The semantics s(p) of a procedure p is a point in a d-
dimensional space. Distances between such points reflect the semantic differences
between procedures. Semantically similar procedures are located close to each
other, while the very different ones occupy distant positions.

To efficiently search this space for procedures that are as close as possible to
an arbitrarily selected point, we employ spatial index, a data structure designed
for geographic databases. As in this study we limit our interest to symbolic
regression, the space of consideration is Euclidean and the semantic distance
|| · || becomes a norm, which allows us to employ the R-trees [1].

Locally Geometric Semantic Crossover. After the library is built and
equipped with an R-tree index, a GP run is launched. It proceeds as regular GP,



Quantitative Analysis of Locally Geometric Semantic Crossover 399

except for employing a homologous crossover operator, termed locally geometric
crossover (LGX). Given two parent programs p1, p2, LGX first identifies the struc-
turally common region for them, which is defined as in one-point crossover by Poli
and Langdon [13], i.e., a set of node locations (loci) that occur in both parents.
The common region can be considered as an intersection of the parents, where the
opcodes are ignored – only the tree structure matters (taking the opcodes into
account would often render the common region almost empty). The subtree can
embrace at most all locations in both parents, but typically it is smaller.

Next, LGX selects a random location (locus) in the common subtree, intended
to serve as crossover point. This choice follows the same rules as in the canonic
Koza-style GP [2]: an internal node is selected with probability 0.9 and a leaf
with probability of only 0.1, to reduce bloat. Subsequently, LGX identifies the
subtrees p′1 and p′2 rooted in the selected location in p1 and p2, respectively. As
they are independent executable programs, their semantics s(p′1) and s(p′2), are
known (technically: cached during individuals’ evaluation), which allows us to
determine the midpoint between them in the semantic space:

sm =
s(p′1) + s(p′2)

2
(1)

This point represents the semantics of a hypothetical procedure p : sm = s(p),
which, when inserted into parents at the appointed location, would make the
resulting offspring programs semantically intermediate at the point of crossover
(cf. [3]). However, finding p in general requires solving an inverse problem p =
s−1(sm), which is a separate program induction problem in itself. Also, as sm is a
combination of semantics of two, potentially big trees, it may not be represented
by a program available within the assumed program space.

This is where the library comes at help. Instead of looking for a procedure
whose semantics is exactly sm, we find in L the procedure that is semantically
most similar to sm, i.e.:

p = arg min
p′∈L

||s(p′) − sm|| (2)

Finding p is facilitated using the R-tree index. The procedure p replaces then the
subtrees p′1 and p′2 in the parent solutions, which so become the two offspring.
This step concludes the crossover act.

Properties of the Approach. An important property of the proposed ap-
proach is completeness. As the library contains representatives of all semantic
equivalence classes obtainable from given set of procedures, LGX can produce
any tree. The semantic search space is not constrained.

The computational overhead compared to the standard GP approach is the
sum of the time required to prepare the library (generation of procedures, cal-
culation of semantics, elimination of semantic duplicates, and construction of an
R-tree) and the time of querying the R-tree in LGX. According to [12], the worst-
case complexity of the latter component is linear w.r.t. the number of objects
(here: library size |L|), but usually the query time is significantly lower. This
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cost depends also on the number of fitness cases and the number of procedures
to be stored in the library, which in our case is a function of h. For large h, it can
be substantial, thus, to keep the computational cost at bay, we use h ∈ {3, 4}.
Related Research. The past contributions that have something common with
the approach presented here can be grouped according to two features: the use
of a library and the semantically-aware modification of solutions. Concerning
the former, LGX can be likened to run transferable libraries [14], which are
repositories of program fragments intended to be used across multiple GP runs
applied to different problem instances. However, [14] does not involve semantics.
Concerning the latter, McPhee et al. were probably the first to study the impact
of crossover on program semantics and so-called semantic building blocks [8]. In
[9], Moraglio et al. considered properties of semantic spaces for different metrics
and provided guidelines for designing semantically geometric crossovers. The
semantically-aware crossover by Quang et al. [11] swaps a pair of subtrees in
parent solutions that have similar, yet not too similar, semantics.

In the context of these contributions, LGX remains unique in combining three
elements: the choice of program fragments w.r.t. their semantic properties, ho-
mologous character of crossover, and the use of a library of procedures.

3 The Experiment

The experiment is aimed at verification whether the semantic properties of LGX
influence the efficiency of GP search. The experimental framework is symbolic
regression, with instructions {+,−,×, /} and a terminal representing indepen-
dent variable x. Semantics is defined as a vector of values returned by a program
for 20 fitness cases distributed equidistantly in the interval [−1, 1].

We consider two libraries, for the maximum procedure height h ∈ {3, 4}. For
h = 3, there are 81 procedures, but only 38 of them are semantically distinct, so
|L| = 38. For h = 4, these figures amount to 21385 and 1697, respectively.

We examine LGX with two types of control setups. The first of them is stan-
dard Koza-style GP [2], which involves conventional tree-swapping crossover that
uses the same probability distribution as LGX for node selection (0.1 for leafs
and 0.9 for internal nodes). Like other considered operators, it never replaces the
root node. The latter, called RX (random crossover), is intended to verify if the
observed results are due to the geometric character of crossing over performed
by LGX. To certain extent, RX operates as LGX (Section 2), however its choice
of procedure from L is purely random. Thus, RX is similar to LGX in terms of
mode of operation, but it is completely blind to the structure of semantic space.

To sum up, there are 5 setups in total: canonical GP, RX and LGX for h ∈
{3, 4}, further referred as GP, RX3, RX4, LGX3 and LGX4.

We solve 6 univariate symbolic regression problems shown in Table 1: 3 poly-
nomials and 3 rational functions taken from [6]. For each configuration, 150 runs
are carried out, each starting from different initial population of size 1024 and
lasting for 250 generations. Fitness is minimized and defined as the absolute error
of the output produced byof an individual w.r.t. the desired output, summed for



Quantitative Analysis of Locally Geometric Semantic Crossover 401

Table 1. Test problems

Problem Definition (formula) Problem Definition (formula)

Sextic x6 − 2x4 + x2 R1 (x + 1)3/(x2 − x + 1)

Septic x7 − 2x6 + x5 − x4 + x3 − 2x2 + x R2 (x5 − 3x3 + 1)/(x2 + 1)

Nonic x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x R3 (x6 + x5)/(x4 + x3 + x2 + x + 1)

Table 2. The absolute error with 0.95 confidence interval, committed by the best-of-
run individuals on training set (mean of 150 runs)

Sextic Septic Nonic R1 R2 R3
GP 0.002 ±0.001 0.159 ±0.040 0.122 ±0.041 0.441 ±0.102 0.231 ±0.040 0.184 ±0.026

RX3 0.002 ±0.001 0.130 ±0.039 0.128 ±0.040 0.175 ±0.039 0.130 ±0.028 0.164 ±0.027
LGX3 0.003 ±0.001 0.109 ±0.034 0.114 ±0.041 0.170 ±0.033 0.086 ±0.020 0.179 ±0.024

NHX3 0.001 ±0.001 0.138 ±0.047 0.085 ±0.039 0.292 ±0.073 0.145 ±0.033 0.141 ±0.030

RX4 0.005 ±0.002 0.102 ±0.024 0.130 ±0.035 0.140 ±0.035 0.101 ±0.019 0.076 ±0.014

LGX4 0.001 ±0.001 0.044 ±0.011 0.043 ±0.009 0.061 ±0.014 0.041 ±0.013 0.028 ±0.007
NHX4 0.002 ±0.001 0.084 ±0.022 0.063 ±0.014 0.102 ±0.022 0.060 ±0.014 0.045 ±0.010

GPtime 0.002 ±0.001 0.102 ±0.031 0.070 ±0.024 0.210 ±0.041 0.137 ±0.028 0.085 ±0.015

the 20 fitness cases. The selection method is tournament of size 7, crossover like-
lihood is 0.9 and reproduction likelihood is 0.1. There is no mutation involved.
Other parameters are set to defaults used in the ECJ package [7], which served
as experimental environment.

Search Progress. Figure 1 presents the fitness of best-of-generation individuals
averaged over 150 runs, along with 0.95-confidence intervals shown as shading.
LGX4 is an unquestionable winner in terms of speed of convergence, while LGX3

makes much slower progress. This may be explained by the fact that the library
it uses is almost two orders of magnitude smaller than that of LGX4 (38 vs.
1697 procedures). As a consequence, the semantic diversity of the procedures
inserted into offspring (the number of unique semantic) is here much lower,
which deteriorates the algorithm’s ability to perform effective exploration.

The fact that LGX outperforms RX is the main result of this study. It demon-
strates that introducing ‘medial’ tendency in crossover makes the search process
converge faster towards good solutions. It is particularly remarkable when we
recall that LGX never affects the root node. Therefore, the effects of geometric-
aware changes introduced into deeper tree nodes must propagate to its root, and,
on average, improve the fitness of offspring more than for the other methods.
This confirms the conclusion of our former study that dealt with a problem of
more discrete nature [3].

Last but not least, the confidence intervals for LGX are much narrower than
those for the other methods. The behavior of this method is thus much more
predictable, and, in convenient circumstances, it should be possible to estimate
the expected number of generations required to attain an assumed fitness level.

Importance of Homology. LGX adds two elements to standard subtree
crossover: homology and the semantically geometric choice of procedures. Its
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Fig. 1. Best-of-generation fitness graphs averaged over 150 evolutionary runs
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superiority of LGX to RX demonstrates that the latter is essential. However,
would LGX perform equally well if it was not homologous? To settle this is-
sue, we prepared an additional control setup that uses a non-homologous but
locally geometric crossover operator (NHX). NHX mimics LGX except for the
choice of loci to be affected, where it works as the standard tree-swap crossover,
i.e., selects them in both parents randomly and independently. Then it finds
the semantically most medial procedure in the library and inserts it into both
parents.

Table 2 compares the final (end-of-run) fitness of best-of run individuals
evolved by NHX with the other methods. For h = 3 (small library), the duel
between NHX and LGX is inconclusive, methods win or lose depending on the
problem. However, for h = 4 the conclusion is clear: LGX yields lower error rate
and not worse variance than NHX. Homology is then an essential component for
this operator that significantly contributes to its performance.

Impact on Tree Size. By being homologous, LGX can be expected to affect
also tree size. Figure 2 depicts the mean number of nodes per individual, calcu-
lated over all individuals in populations and averaged over 150 runs. The results
are very similar across all benchmark problems. The methods using large library
(h = 4) suffer from substantial bloat that is more severe than for the small li-
brary (h = 3). This can be easily explained. The mean tree depth of procedures
in the library is greater for h = 4 than for h = 3. On average then, every act of
crossover brings more genetic material to the population in the former case.

Another observation following from Fig. 2 is that RX suffers from bloat more
than LGX. This suggests that the semantically close-to-geometric procedures
inserted by LGX are on average shorter than the procedures selected from the
library at random by RX. Our explanation for this phenomenon pertains to the
relation between lengths of procedures and their location in the semantic space.
Typically, short procedures will have semantics of small magnitudes, as it is
unlikely to produce large values using arithmetic instructions that operate on
numbers form interval [−1, 1] (with obvious exception of the division operator).
Such semantics will crowd closely around the origin of semantic space. On the
contrary, longer procedures are capable of producing larger output values, which
correspond to semantics that are distant from the origin. Also, every long pro-
cedure that is semantically equivalent to a shorter procedure is discarded when
the library is being built (see Sec. 2). LGX, which looks for procedures that
are semantically medial with respect to parents’ subtrees (cf. sm in Eq. (2)), is
more likely to generate sm that is close to the origin of semantic space. As a
consequence, it selects shorter procedures more frequently.

Test-Set Performance. To assess the generalization capability of the con-
sidered methods, we employed a test set composed of 20 cases drawn randomly
from the interval [−1, 1], with uniform distribution. The best-of-run individ-
ual for each run is executed on these cases, and its generalization capability is
expressed in the same terms as for the training process – the absolute error.
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Fig. 2. Number of nodes (population mean) averaged over 150 evolutionary runs
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Table 3. The absolute error with 0.95 confidence interval, committed by the best-of-
run individuals on test set (mean of 150 runs)

Sextic Septic Nonic R1 R2 R3
GP 0.009 ±0.007 0.233 ±0.068 0.182 ±0.070 0.483 ±0.120 0.302 ±0.109 0.230 ±0.040

RX3 0.004 ±0.002 0.140 ±0.040 0.146 ±0.047 0.191 ±0.044 0.129 ±0.028 0.167 ±0.037
LGX3 0.005 ±0.002 0.122 ±0.038 0.117 ±0.045 0.226 ±0.069 0.086 ±0.020 0.163 ±0.020
RX4 0.029 ±0.031 23.443 ±42.628 0.262 ±0.102 8.025 ±14.853 0.196 ±0.055 0.316 ±0.149

LGX4 0.003 ±0.002 0.116 ±0.032 0.099 ±0.026 0.102 ±0.027 0.077 ±0.032 0.103 ±0.029

Table 3 presents the test-set errors of the best-of-run individuals averaged over
all runs. Comparison of these figures with fitness values achieved on the training
set (Table 2) leads to conclusion that all methods suffer from overfitting. In terms
of the ratio of test-set error to training-set error, GP is superior. However, in
absolute terms, LGX4 attains the lowest error on the test set for all problems
and has also the lowest variance. This is particularly interesting, because LGX4

yields substantially bigger trees than GP (Fig. 2).

Time Complexity. The benefits of LGX come at extra computational cost of
creating the library and searching for the semantically similar procedures. While
the former turns out to be low (1–2 seconds compared to 100–150 seconds of the
cost of entire run), the latter cannot be ignored. The roughly 250 × (1024/2)×
0.9 = 115, 200 R-tree queries per run make LGX substantially slower. In effect,
its overall runtime is on average 2.8 times longer than GP’s. This, together
with the curves in Fig. 1, urges us to ask the question: will LGX maintain its
superiority to GP with same time allocated to both methods?

To verify this possibility, we conducted an additional experiment, which con-
sisted in giving GP the same amount of time as corresponding LGX runs took.
By comparing the results of these runs, presented in the last row of Table 2
(GPtime) with the final fitness values of LGX, we conclude that GP, despite
having more time, cannot catch up LGX4, although it manages to reach the per-
formance level of LGX3 for some problems. Therefore, LGX can be considered
attractive not only from theoretical viewpoint, but also in practical perspective.

4 Conclusion

The main conclusion of this study is that search operators that are at the same
time homologous and semantically medial can improve the efficiency of GP search
and cause the evolved programs generalize better. The experimental analysis
suggests that both these properties are essential. It can be hypothesized, though
remains to be verified that, with time of evolution, LGX causes emergence of
a common semantic blueprint in the population, with the subprograms located at
particular loci specializing at solving certain subproblems of the original problem.
This hypothesis sounds very attractive, as it implies a capability for discovering
semantic modules in the structure of the problem, which in turn could provide
the possibility of problem decomposition.
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LGX has been presented and verified here in the context of symbolic regres-
sion, but it has wider applicability. Any domain for which semantics are com-
putable and a semantic metric is available, can be subject to this approach. In
particular, if the metric || · || is not a norm, there are alternative ways in which
a crossover can be made semantically medial [3].
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