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Abstract. In metaheuristic optimization, understanding the relation-
ship between problems and algorithms is important but non-trivial.
There has been a growing interest in the literature on techniques for
analysing problems, however previous work has mainly been developed
for discrete problems. In this paper, we develop a novel framework for
characterising continuous optimization problems based on the concept of
length scale. We argue that length scale is an important property for the
characterisation of continuous problems that is not captured by existing
techniques. Intuitively, length scale measures the ratio of changes in the
objective function value to steps between points in the search space. The
concept is simple, makes few assumptions and can be calculated or esti-
mated based only on the information available in black-box optimization
(objective function values and search points). Some fundamental prop-
erties of length scale and its distribution are described. Experimental
results show the potential use of length scale and directions to develop
the framework further are discussed.

Keywords: Continuous optimization, Problem properties, Problem
characterisation, Fitness landscape analysis.

1 Introduction

A continuous optimization problem with a simple symmetric boundary con-
straint is to find a solution vector x∗ such that:

f(x∗) ≤ f(x), ∀x ∈ S (1)

where S = [bl, bu]
n ⊆ IRn. Given a metaheuristic algorithm, a standard ques-

tion is how well will the algorithm perform at solving a given problem (in other
words, how well-suited is the algorithm to the problem)?. For some types of
problems, it is possible to answer these questions rigorously (e.g. if f is convex,
smooth and differentiable, then Newton-based algorithms converge rapidly to-
wards the optimum). However if little can be assumed (e.g. f is a ‘black-box’
problem), then the questions are much more difficult to answer. Metaheuris-
tics utilise multiple heuristics, complex models and randomness, while problems
may be high-dimensional, noisy, or have features such as many local optima or
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other complex structures. The relationship between problems and algorithms in
practice is the result of interactions between these factors.

Metaheuristics research has been dominated by the development of algo-
rithms, but a recent focus has been to better understand both the relationship
between algorithms and problems, and the nature of the problems themselves.
For example, fitness landscape analysis has produced a theoretical framework
and techniques for studying problems. However, this work has mainly been de-
veloped for discrete or combinatorial problems.

In this paper, we develop a framework for characterising continuous optimiza-
tion problems based on the concept of length scale. While previous techniques
from fitness landscape analysis can be applied, we argue that length scale is a
critical concept for continuous problems that is not captured by these techniques.
Sec. 2 reviews previous work on problem analysis with a focus on applicability
in the continuous case. In Secs. 3 and 4 we define and develop the notion of
problem length scale and its distribution. Illustrative experiments are provided
in Sec. 5, and discussion is given in Sec. 6.

2 Discrete and Continuous Fitness Landscape Analysis

The notion of f as an (n-dimensional) ‘fitness’ landscape defined over S has
been widely used as a model in evolutionary biology and computation. A fitness
landscape is defined using f and a graph, G representing S (i.e S is discrete).
Edges in G can be defined by a move operator and induce a neighbourhood in
S. Properties of the landscape can be defined in this framework, e.g. a (strict)
local optimum is a point x′ where all neighbours have a fitness worse than f(x′).
For a discrete S, it is possible to determine whether or not x′ is a local opti-
mum by exhaustive evaluation of its neighbours. For all but very small problem
sizes, enumeration of the landscape is impractical. Fitness landscape analysis
typically uses random, statistical or other sampling methods to obtain points
of interest (and/or their fitness values) from a landscape. Examples include the
distribution of f values (density of states), fitness distance correlation (FDC)
between the sample and a point (typically the global optimum), autocorrelation
and correlation length statistics of random walks in S. Information content aims
at quantifying landscape ruggedness based on transitions observed in f values
[15,14]. Previous research has also focussed on problem-specific techniques to
characterise properties of combinatorial problems such as the travelling sales-
man problem. Comprehensive reviews of fitness landscape and problem analysis
techniques can be found in [9,10,13].

If S is continuous, landscape features conceptually similar to the discrete case
can be defined mathematically (as suggested in [9]), but evaluating them in
practice is problematic. Each solution has an infinite number of neighbours in
theory, yet a finite but extremely large number in practice due to finite-precision
floating-point representation. Another significant difference between discrete and
continuous landscapes is tied to the distance between points in S (using some
metric). For a discrete landscape, the minimum possible distance will occur be-
tween a point and one of its neighbours, with a finite set of possible distance
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values between all points in G. For a continuous landscape, the minimum dis-
tance between points can be made arbitrarily small (in practice until the limit
of precision is reached) and the number of possible distance values is infinite.

The reason for these difficulties lies in the difference between continuous and
discrete problems. Consider a combinatorial problem with binary representation,
S = [0, 1]n. To solve the problem is to determine whether each variable xi in the
solution vector should take the value 0 or 1. A metric (e.g. Hamming distance)
can be defined, but there is no notion of the scale of xi. For a continuous problem
however, finding an appropriate scale for each xi is critical (e.g. does the objective
function vary in a significant way with changes in xi of order 103? 10−3? 10−30?).
Fitness landscape techniques originating from the assumption of a discrete S do
not capture such information because it is not relevant for the discrete case.

Despite these issues, there have been some adaptations of landscape analy-
sis to continuous problems. Gallagher calculated FDC for the training problem
in multi-layer perceptron neural networks [4]. For the learning tasks considered
(student-teacher model), the global optimum is known, however this would not
normally be the case for such a problem. Points were sampled from within a
specified range around the global optimum. Wang and Li calculate FDC in the
context of a continuous NK-landscape model and on some standard test func-
tions [16]. Müller and Sbalzarini [7] analyse the CEC 2005 benchmark function
set using FDC on points uniformly sampled from S. While these results show
interesting structure and differences between problems, the limitations of FDC
noted for discrete problems remain (e.g. [7] concludes that FDC alone is not
sufficient for problem design or measuring difficulty).

Dispersion is a recently-proposed problem metric [6] which measures the av-
erage distance between pairs of high quality solutions. Quality is determined by
sampling points and retaining a percentage with the best fitnesses (according
to a specified threshold). Dispersion is shown to be a useful metric in studying
the performance of CMA-ES on a number of functions. Dispersion makes only
limited use of the f values of points via the threshold used to produce the sam-
ple. Pairwise distances between solutions have also been analysed in samples of
apparent local minima for multi-layer perceptron training [4].

In summary, there are some important limitations of existing techniques for
the analysis of continuous problems, stemming from the adaptation of techniques
developed for discrete problems and/or a limited use of the available information
from sampling solution and their fitness values.

3 Length Scale in Optimization

We aim to develop a framework to study the topological/structural character-
istics of a problem landscape independent of any particular algorithm. Impor-
tantly, the framework should utilise all information available in the black-box
optimization setting, be estimated easily from data and be amenable to statistical
and information theoretic analysis.
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Definition 1. Let xi and xj be two distinct solutions in the search space (xi �=
xj) with corresponding objective function values f(xi) and f(xj). The length
scale, r, is defined as:

r : [0,∞) =
|f(xi)− f(xj)|

‖xi − xj‖ (2)

The length scale intuitively measures how much the objective function value
changes with respect to a step between two points in the search space. In this
paper, we use Euclidean distance, however any appropriate metric can be used.
Length scale is defined simply as a magnitude over a finite interval in the search
space: directional information about a step from xi to/from xj is not considered.

Our definition of r is related to the difference quotient (also known as Newton’s
quotient and is a generalisation of finite difference techniques) from calculus and

numerical analysis. The difference quotient is defined as f(x+h)−f(x)
h , and can be

used to estimate the gradient at a point x, as h → 0 [8]. Implementations of
gradient-based algorithms utilise approximations of this form if the gradient
of f is not available. Finite difference methods are widely used in the solution
of differential equations, but are not directly related to this paper. Length scale
is also related to the Lipschitz constant, defined as a constant, L ≥ 0, where
|f(xi)− f(xj)| ≤ L‖xi − xj‖, ∀xi,xj [17]. However, r does not assume that f is
continuous and captures information about all rates of change of f over x.

In some cases, it is possible to derive a simple expression for the length scale
of a problem, as illustrated by the following examples.

Example 1. 1-D linear objective function

Given f = ax where (x, a ∈ IR), the length scale between xi and xj is:

r =
|f(xi)− f(xj)|

‖xi − xj‖
=

|axi − axj |
|xi − xj |

= |a|

For this function, r captures the intuition that any step in S will be accompanied
by a proportional change in f . The length scale of any finite set of samples from
the search space (e.g. the points visited by an optimization algorithm) is invariant
to the location(s) in S or the order in which the points were taken. The length
scale of a (n-D) neutral or flat landscape is also a special case of this.

For most continuous problems, r will not be a constant over S. In different
regions of the space, the length scale value will depend on the local topology of
the fitness landscape (varying slope, basins of attraction, ridges, saddle points,
etc.).
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Example 2. 1-D quadratic objective function

Given f = ax2 where (x, a ∈ IR), the length scale between xi and xj is:

r =
|f(xi)− f(xj)|

‖xi − xj‖
=

‖axi2 − axj2‖
‖xi − xj‖

=
|a|‖(xi − xj)(xi + xj)‖

‖xi − xj‖
= |a|‖xi + xj‖

Here, steps between points that are relatively close to the optimum result in
relatively small length scales compared to the same-sized steps further from the
optimum. This suggests that an algorithm needs to reduce the size of the steps
it makes to successfully approach the optimum of this function (e.g. gradient
descent). To illustrate the richness of length scale information we construct an
artificial 1-D function with a variety of different topological features.

Example 3. 1-D ‘mixed-structure’ function defined as follows and shown in
Fig. 1(a).

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if 1 ≤ x < 1.5
50(x− 1.75)2 − 4.15 if 1.5 ≤ x < 2
5.125x− 11.25 if 2 ≤ x < 3
50(x− 3.25)2 + 1 if 3 ≤ x < 3.5
0.75(x− 4.35)2 + 3.583 if 3.5 ≤ x < 5
3 log(|x − 5.6|) + 5.5 if 5 ≤ x < 5.5
3 log(|x − 5.4|) + 5.5 if 5.5 ≤ x < 6
0 otherwise

(3)

Since f is a 1-D problem (x ∈ [0, 6]) it is possible to enumerate length scales over
the entire search space to a certain level of numerical precision. Fig. 1(b) shows
the length scales calculated between pairs of points, xi, xj , at increments of 10−3

across S. We have coloured the values using a logarithmic scale to better visualise
magnitudes of change. The plot is symmetric across the diagonal, which follows
from the definition of r. The thin black line along the diagonal is approximately
a zero-length step (xi = xj). The two flat regions of the function produce black
squares where r = 0. The dark lines and curves in the plot show steps in the
space where f(xi) ≈ f(xj), e.g. moving from a point on one side of a basin or
funnel to a point on the other side of the minimum at the same height. Within
the plot, it can be seen that components of the function combine to produce
different patterns and gradients of r values.

Overall, it is clear that r reflects the structure of f : if f has complex structure
then this will also be captured in r. In addition, Fig. 1(b) gives an indication
of how much variety is contained in the search points and f values that an
algorithm encounters as it attempts to search a landscape effectively.
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Fig. 1. (a) 1-D ‘mixed-structure’ function. (b) Enumeration of length scales in the 1-D
‘mixed-structure’ function.

4 Length Scale Distribution

Length scale values produce information about problem structure. While it is
possible to enumerate r over a large set of values for a 1-D problem, this is clearly
infeasible for higher dimensions. One possibility is to summarise the values of r
that occur over a given landscape. A good summary of r may be usable to predict
the values of r we will see if further exploration of the landscape is conducted
(particularly if the sampling technique is the same).

Definition 2. Consider r as a continuous random variable. Then, let the length
scale distribution be defined as the probability density function p(r).

Consider again Example 1. Since r = |a|, p(r) is a Dirac delta function:

p(r) =

{
1 if r = |a|
0 otherwise

It follows that the n-D flat function also results in a Dirac delta function with a
spike at r = 0.

Now reconsider Example 2. Let Z be the sum of two independent, continu-
ous uniform random variables bounded by [bl, bu]. This produces a triangular
distribution [5]:

pZ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z−2bl
(bu−bl)2

if 2bl ≤ z ≤ (bl + bu)

2bu−z
(bu−bl)2

if (bl + bu) < z ≤ 2bu

0 otherwise

The length scale distribution for Example 2 is the absolute value of pZ(z):

p(r) = |pZ(r)| = pZ(r) + pZ(−r), ∀r ≥ 0
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Therefore, p(r) of the 1-D quadratic function is a ‘folded’ triangular distribution.
While p(r) can be derived for some functions, in general it can be approxi-

mated using probability density estimation based on r values sampled from the
landscape (see Sec. 5). The length scale distribution is not unique for a problem
but will vary depending on the structure present in that problem.

We can utilise concepts from information theory to compare landscapes via
their length scale distributions. Shannon entropy is used as a measure of the
uncertainty of a random variable [2]. Entropy measures the expected amount of
information needed to describe the random variable. The entropy of p(r) is:

h(r) = −
∞∫

0

p(r)log2
(
p(r)

)
dr (4)

We conjecture that problems with structure of similar complexities should yield
a similar h(r), and hence, h(r) is potentially very useful for categorising prob-
lems. The Dirac delta function has the smallest entropy of all density functions,
meaning the n-D flat and 1-D linear functions minimize h(r). The uniform den-
sity function (in a bounded region) has the largest entropy of any other density
function bounded within the same region. To obtain a uniform p(r), there must
be length scales of uniformly varying size, e.g. random noise functions. There-
fore, random noise functions maximize h(r). This results in two extreme values
of h(r) that any given landscape is within.

5 Length Scales of the BBOB’10 Test Functions

In this section we examine length scales of the Black-Box Optimization Bench-
marking 2010 (BBOB’10) test functions [3]. We aim to investigate whether or
not there is a relationship between the ‘difficulty’ of functions (as measured by
the best performing algorithms in BBOB’10) and length scale. Problems with
largely varying length scales may contain a richer, more complex structure, and
may be more difficult to solve. The methodology used in these experiments is
general and can be easily applied to other black-box problems. Source code used
is available at http://www.itee.uq.edu.au/∼uqrmorg4/length-scale-bbob.html.

We use a random Levy walk to sample S and corresponding f values. Levy
walks generally yield good coverage of the search space at varying magnitudes
of step sizes [12]. The Levy distribution pertaining to step size is parameterised
by scale (γ) and location (δ) parameters, here both set to 0.001. This type of
walk has frequent small steps (with 0.001 being the minimum), and infrequent
large steps.

A Levy walk of 105 steps was conducted for each of the BBOB’10 functions.
Walks were bounded by [−5, 5]10, with proposed steps outside the boundary
rejected. Length scales were calculated for each pair of solutions, producing
50005000 values of r. Kernel density estimation was then used to estimate
p(r). The kernel bandwidth was calculated using the ‘solve-the-equation plug-in’
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Fig. 2. Examples of similar length scale distributions estimated on BBOB’10 functions

method [11]. The resulting length scale distributions were quite varied across the
problems, however there were a few notable similarities, shown in Fig. 2.

Fig. 2(a) shows p(r) for Sphere (F1) and Rastrigin (F3). We do not expect
these distributions to be identical, however since the global structure of F3 is
F1, we observe some similarity. In Fig. 2(b), we see almost identical length scale
distributions, resulting from sampling Rastrigin-like functions. The length scale
distributions for Rosenbrock (F8) and Rosenbrock Rotated (F9) can be seen
in Fig. 2(c). The larger peak in the F9 distribution indicates that there are
more low-valued length scales. Both functions are variations of Rosenbrock and
we observe similar changes in fitness, and hence similar ranges of length scales.
This observation is also true for the Schaffer F7 (F17) and Shaffer F7 Moderately
Ill-Conditioned (F18) distributions (Fig. 2(d)). It is clear that problems with
similar structure have similar length scale distributions, while problems with
vastly different structure have different length scale distributions.

To examine the relationship between r and problem difficulty, we use the
expected running time (ERT) for the best-performing algorithm in the BBOB’10
results [1] as a proxy for problem difficulty. We use the results within a precision
of 10−8 of the global optimum (e.g. the BFGS algorithm performs best on F1
with an ERT of 23, and so we use ‘23’ to indicate problem difficulty). Given
the kernel density estimate of each p(r), we can estimate h(r). Fig. 3 shows
h(r) vs ERT for the BBOB’10 functions. There is an interesting relationship
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Fig. 3. Length scale distribution entropy vs ERT for BBOB’10 problems. F1 to F5 are
◦, F6 to F9 are �, F10 to F14 are ×, F15 to F19 are + and F20 to F24 are �.

between h(r), ERT and the function type. Separable functions are denoted by
◦; low to moderately conditioned functions by �; high and uni-modal functions
by ×; multi-modal with adequate global structure by +; and multi-modal with
weak global structure by �. Fig. 3 clearly shows clustering of problems within
categories, e.g. F10-12, F6-7 and F15-19. In fact, for problems F6-12, ERT is
incapable of distinguishing the categories, while h(p(r)) can. This illustrates
that length scales capture valuable information about problem structure.

In Fig. 3, there is a great distinction between the uni-modal (◦, � and ×) and
multi-modal functions (+ and �). In general, multi-modal functions are more
difficult, and so we expect ERT to separate uni-modal functions from multi-
modal functions. This is observed, however we can additionally see that h(r) is
capable of characterising uni-modal and multi-modal functions.

6 Summary and Conclusions

We have proposed a framework for characterising continuous optimization prob-
lems using the notion of length scale and its distribution. The framework is based
on utilising all available information in black-box optimization and is readily cal-
culated using points from S and their f values. This paper has discussed some
properties of length scale, presented examples and experimental results using
the BBOB’10 competition results.

We believe that there is considerable scope for future work. It should be pos-
sible to explore the relationship between features such as landscape modality or
ruggedness and the shape of p(r). Entropy was used to summarise the distribu-
tion, but other ideas from statistics and information theory deserve investigation.
Our experimental results assume that the sampling methodology used produces
a representative sample of the search space. This requires quantification. It would
be interesting to analyse different real-world and benchmark continuous prob-
lems using length scale. The set of points that an algorithm evaluates during a
run could also be analysed to examine the length scales visited by the algorithm.
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