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Abstract. In this paper we address model selection in Estimation of
Distribution Algorithms (EDAs) based on variables trasformations. In-
stead of the classic approach based on the choice of a statistical model
able to represent the interactions among the variables in the problem,
we propose to learn a transformation of the variables before the estima-
tion of the parameters of a fixed model in the transformed space. The
choice of a proper transformation corresponds to the identification of
a model for the selected sample able to implicitly capture higher-order
correlations. We apply this paradigm to EDAs and present the novel
Function Composition Algorithms (FCAs), based on composition of
transformation functions, namely I-FCA and Chain-FCA, which make
use of fixed low-dimensional models in the transformed space, yet being
able to recover higher-order interactions.

Keywords: Function Composition Algorithm, Transformation of Vari-
ables, Minimization of Mutual Information, Chain Model.

1 Introduction

Estimation of Distribution Algorithms (EDAs) belong to the class of meta-
heuristics for optimization where the search is guided by a statistical model
able to capture the interactions among the variables in the problem. When the
model is not given a priori, model selection becomes crucial in order for the algo-
rithm to be able to detect global optimal solutions. Indeed if the model chosen is
not expressive enough, or if the wrong interactions are considered, model-based
search strategies are prone to converge to local optima, cf. [16,10,6].

As a consequence, much of the literature in the EDAs community is focused
on applying efficient algorithms for model selection, able to identify the correct
interactions of the function from a sample of observations. Among the others
we mention algorithms which reconstruct the topology of a Bayesian Network,
as in BOA [12], clustering algorithms for the variables that appear to be corre-
lated, eCGA [8], or model selection for Markov Random Fields (MRFs), as in
DEUM [13]. When no prior information about the problem is available, EDAs
need an efficient and scalable policy for model selection. In the general case
learning an accurate model is exponential in the number of variables thus it is a
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common practice to reduce the search space for the models, for example by lim-
iting the interactions considered to the second order, when learning a MRF, by
constraining the number of incoming edges in a BN or employing variable clus-
tering techniques as in [14]. These restrictions can limit the performance of the
algorithms in presence of certain structures of interactions among the variables.

In this paper we propose an approach to the problem of model selection based
on the idea of applying a transformation of the variables and then employing a
fixed low dimensional statistical model in the new transformed space. Obviously
we moved much of the computational complexity from model selection to the
choice of a good transformation; on the other side it becomes easier to select
models able to capture higher-order interactions among the variables. Instead
of limiting the search up to a given order of interactions, due to the family of
transformations we introduce, we are able to identify non hierarchical models
that can be efficiently employed in an EDAs.

To the best knowledge of the authors, the approach of transforming the origi-
nal variables first appeared in [17], where the UMDA [11] is run over a set of new
variables obtained applying ICA on the selected sample. More recently, Tous-
saint proposed to employ compression algorithms to the sample of promising
solutions [15], Cho and Zhang cluster similar individuals in a group and explain
the high order interactions with latent variables [3], Grosset et al. introduce
physically meaningful auxiliary variables related to the application domain [7].

The paper is organized as follows. In Section 2 we review the MBS approach
to optimization. In Section 3 we present the idea of employing variable trans-
formations to perform model selection. In Section 4 we describe the Function
Composition Algorithms (FCAs) family. First we review and discuss more in de-
tail I-FCA, originally presented in [4], next we introduce a novel algorithm called
Chain-FCA, which makes use of a fixed chain model. In Section 5, we discuss
and compare the preliminary performance of the above-mentioned algorithms.
In Section 6, we conclude by presenting some future directions of research.

2 Model Based Search and Stochastic Relaxation

We are interested in the minimization of a real-valued function f defined over
a vector of binary variables. For mathematical convenience and without loss of
generality we consider values in {±1}, rather than classic 0/1 encoding. Let us
introduce the notation that will be used in the following. Let x = (x1, . . . , xn) ∈
Ω = {±1}n a vector of n binary variables, any f : Ω �→ R can be represented
uniquely as a square-free polynomial, i.e., the finite sum of monomials

f(x) =
∑

α∈F

cαx
α, cα ∈ R

n, (1)

where we employed the multi-index notation α = (α1, . . . , αn) ∈ F ⊂ {0, 1}n,
and xα =

∏n
i=1 x

αi

i . For instance, let n = 3 and f = x1x2 + x2x3, then F =
{(1, 1, 0), (0, 1, 1)}. The monomials {xα} with α ∈ {0, 1}n defines a basis for any
function, while those identified by F correspond to the interactions present in f .
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The paradigm of Model-Based Search (MBS) in stochastic optimization, con-
sists in finding the minimum of f by solving the optimization problem of the
stochastic relaxation of f , i.e., the minimization of the expected valued of f with
respect to a density in a statistical model M.

From now on, we consider models M that belong to the exponential family
of probability distributions of the form

p(x; θ) = exp

{
k∑

i=1

θiTi(x) − ψ(θ)

}
, θ ∈ R

k, (2)

where θ = (θ1, . . . , θk) is the vector of natural parameters, Ti(x) : Ω → R are
the sufficient statistics, and ψ(θ) is a normalizing factor. Such choice is not
restrictive, indeed many models used in MBS belong to this family, such as
log-linear models, the Gibbs distribution, and more in general MRFs.

Since the sum of the sufficient statistics is a function defined over Ω, with
no prior information about f , it is convenient to choose the basis {xα} itself
as the set of sufficient statistics. However, the basis has 2n − 1 monomials, so
is computationally intractable. For this reason, we consider lower-dimensional
models identified by a subset of the sufficient statistics identified by a small
subset of indices M ⊂ {0, 1}n, usually polynomial in n. Each monomial in M
identifies one of the possible correlations between groups of variables.

The choice of the model is central in MBS. From a theoretical point of view,
the best choice would be to chose M such that M � F , so that the stochastic
relaxation admits no local minima [16]. Models with smaller number of monomi-
als may admit local minima, so that algorithms are more prone to convergence
to local minima for f . On the other side, larger models imply more computa-
tional costs for parameter estimation. Dealing with the exponential family, one
possible approach for model-selection is to test all possible second-order inter-
actions, and then in case move to higher-order correlations, as in e.g. [13]. The
computational complexity of these techniques grows with the maximum order
of f in Equation (1), c.f. [6]. Dealing with BNs, hBOA [12] solves this issue by
introducing trees between variables, which allow to efficiently learn hierarchies
between variables and thus higher-order correlations. Instead of employing stan-
dard statistical techniques able to learn high-dimensional models directly, we
propose to employ variable transformations to perform implicit model selection.

3 Variable Transformations

In this section we describe an implicit approach to model selection in MBS, and
in particular in EDAs, where the problem of identifying a model is replaced by
a search for a transformation of the variables of f . By employing a fixed model
for the transformed variables, we are implicitly choosing a different model in the
original space, which depends on the transformation. We are interested in those
transformations such that a model in the transformed space corresponds to a
model in the original space which is able to capture the interactions of f .
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Let us introduce a new vector of variables y = (y1, . . . , yn) in Ω and a one-
to-one map h such that y = h(x). We can express f as the composition of a
function g(y) : Ω → R with h, i.e., f = g ◦ h, and g = f ◦ h−1. Since h defines a
permutation of the points in Ω, follows that min g = min f .

We can express h component-wise, i.e., h = (h1(x), . . . , hn(x). Since hi(x) :
Ω → {±1}, each hi admits an expansion as in Equation (1), i.e.,

hi =
∑

α∈Hi

ci,αx
α, 1 ≤ i ≤ n. (3)

Let q(y; ξ) ∈ N be a density for Y from the exponential family in (2), by ex-
panding all the products obtained by substituting yi with hi(x), we obtain a
polynomial in x whose monomials are identified by a set of indices M , i.e.,

exp

{
∑

α∈N

ξαy
α − φ(ξ)

}
= exp

{
∑

α∈N

ξα

n∏

i=1

(hi)
αi − φ(ξ)

}
=

exp

⎧
⎨

⎩
∑

α∈N

ξα

n∏

i=1

( ∑

γ∈Hi

ci,γx
γ
)αi − φ(ξ)

⎫
⎬

⎭ = exp

⎧
⎨

⎩
∑

β∈M

lβ(ξ)x
β − ψ(ξ)

⎫
⎬

⎭ .

(4)

By setting θβ = lβ(ξ) ∈ R, we expressed q(y, ξ) as the probability distribu-
tion p(x; θ) for the original variables, where lβ is a function which maps the
parameters of the two exponential families. Notice that since h is one-to-one the
dimension of the θ and the ξ parameter space are the same.

In other words, suppose we apply a transformation from x to y and consider
an exponential family N = {q(y; ξ), ξ ∈ R

k} over Y identified by the sufficient
statistics in N . By Equation (4), q(y; ξ) = p(x; θ), with y = h(x) and θ = l(ξ),
thus N maps into the exponential family M for X , identified by a different set
of sufficient statisticsM . Such mapping is one-to-one, so that Ep[f ] = Eq[g], and
minq∈N Eq[g] = minp∈M Ep[f ], so that the minimization of stochastic relaxation
of f with respect to M is equivalent to those of g with respect to N . Consider
the following example. The function f = x1x2 + x2x3, x ∈ {±1}3 admits two
global minima x = (−1, 1,−1) and (1,−1, 1). Let us apply following one-to-one
map y = h(x) and its inverse h−1

h :

⎧
⎨

⎩

y1 = x1x2
y2 = x2x3
y3 = x3

h−1 :

⎧
⎨

⎩

x1 = y1y2y3
x2 = y2y3
x3 = y3

Let N be the exponential family defined over Y with {y1, y2, y3} as sufficient
statistics. By expanding q(y; ξ) ∈ N we have that

N � q(y, ξ) = exp {ξ1y1 + ξ2y2 + ξ3y3 − φ(ξ)} =

= exp {θ1x1x2 + θ2x2x3 + θ3x3 − ψ(θ)} = p(x, θ) ∈ M,

where θ = ξ and ψ(θ) = φ(ξ). The sufficient statistics of M include the interac-
tions on f , i.e., F ⊂M . Follows that the stochastic relaxation of f with respect
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to M does not admint local minima, for every p ∈ M the gradient of Ep[f ]
points into the direction of the global optimum of the relaxed problem, c.f., [10].
We can explicitly compute g(y) = f ◦ h−1. Since in the binary case x2i = 1,
g = h−1

1 h−1
2 +h−1

2 h−1
3 = y1+ y2, which is linear in y. The minimization of f can

thus be performed considering the stochastic relaxation of g with respect to N .
This problem is simpler than the original one since we are minimizing the ex-
pected value of a linear function with respect to the independence model and the
stochastic relaxation does not admit local minima, c.f., [9]. This example shows
how the use of a properly chosen variable transformation can greatly affect the
complexity of an optimization problem from the point of view of model-based
search strategies.

4 Function Composition Algorithms

In this section we present the idea of learning a transformation of the vari-
ables before estimating the parameters of a fixed low-dimensional model in the
transformed space. Such approach to model selection is applied to the EDAs
paradigm, leading to a novel family of algorithm called Function Composition
Algorithms (FCAs). Preliminary work appeared in [4].

Recall the basic iteration of an EDA,

Pt selection−−−−−→ Pt
s

estimation−−−−−−→ p(x; θt) ∈ M sampling−−−−−→ Pt+1.

At each iteration t of an EDA, a subset Pt
s of the population Pt is selected

according to a given selection policy. Then, a statistical model M is learned
from the subsample, and the parameters of a distribution p(x; θt) are estimated.
Finally, a new population Pt+1 is generated by sampling. Some algorithms, such
as PBIL [1] or UMDA [11], make the assumption of independent variables, others
use low-dimensional models, such as the chain model, see MIMIC [5], while more
powerful EDAs, e.g., hBOA [12] or DEUM [13,2] perform model selection in a
larger class of models, able to capture higher-order correlations among variables.

In FCA, we implicitly learn a model by first choosing a variable transforma-
tion, and then using a fixed model for the new set of transformed variables. We
introduce the following variation of the iteration of an EDA. Estimation and
sampling are preceded and followed by two transformations. First a one-to-one
map y = h(x) is applied to each individual in the selected population obtaining
P̃t
s, then after sampling from the estimated distribution, the population P̃t+1 is

transformed back to the original space by means of h−1, i.e.,

Pt
s

h−→ P̃t
s

estimation−−−−−−→ q(y; ξt) ∈ N sampling−−−−−→ P̃t+1 h−1−−→ Pt+1.

From Equation (4), estimating a probability distribution q(y; ξ) ∈ N for the
transformed sample P̃t

s is equivalent to estimate a distribution p(x; θ) ∈ N for
Ps. In general N and M are different, since the latter depends on the map h
employed, so that the choice of h corresponds to choice of a model M.
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4.1 Independence-FCA

In the following we briefly review I-FCA, first introduced in [4]. I-FCA employs
the independence model for the transformed variables y, and if the map h is
properly chosen, the resulting low-dimensional model M can achieve a better
approximation of the sample Ps with respect to the independence model for x.

The non-linear maps used in I-FCA are defined as follows. Consider the maps
h indexed by j, k ∈ {1, . . . , n}, with j 	= k, such that each hi is defined as

h
(j,k)
i :

{
yi = xixk if i = j
yi = xi otherwise.

We have n(n − 1) different h(j,k) transformations. It is easy to see that they
are one-to-one and that h−1 = h, since x2i = 1. Next we extend the class of
transformations we consider by allowing elements h to be the composition of a
finite number m of maps of the form h(j,k):

h = h(j1,k1) ◦ . . . ◦ h(jm,km) ◦ . . . ◦ h(jm,km). (5)

Since the inverse of each transformation in the sequence of compositions is the
element itself, it is easy to see that h−1 is the composition of all the h(jm,km) in
the reversed order. Moreover, if the sufficient statistics of N are monomials in
y, the sufficient statistics of the resulting model M for X are monomials in x.

In I-FCA we propose a strategy for the choice of map h based on the maxi-
mization of the likelihood of the transformed selected sample P̃s with respect to
the estimated distribution q(y, ξ̂) ∈ N , where N is the independence model for
Y . This is equivalent to minimize the Kullback-Leibler divergence between the
empirical distribution representing the selected population and its projection on
the independence model (i.e. KLD[P̃s‖q(y, ξ̂)] = −H [P̃s]−L[P̃s‖q(y, ξ̂)]), which
gives a measure of the loss of information which occurs when P̃s is approximated
with q(y, ξ). Note that since h is one-to-one H [P̃s] does not depend oh h.

In order to make the search for h feasible, we choose a greedy approach. We
initialize h to be the identity map y = x, then we iteratively examine all the
n(n − 1) maps h(j,k) and compose the h map obtained at the previous step
with the map h(j,k) which better improves the likelihood of (h ◦ h(j,k))(Ps) with
respect to the independence model. The iteration stops when no improvement in
the likelihood is achievable composing further maps of the form h(j,k) or when
the maximum number m of transformations in h has been reached.

The representation of h as a composition of maps of the form h(j,k) is highly
redundant, i.e., there exists more than one sequence of indices (jm, km) which
transforms the independence model N to the same exponential family M. As
a consequence, in order to reduce the complexity of the search strategy for h,
we discard maps that produce models already examined in earlier stages of the
search process. Each time a new map h(j,k) is considered, the sufficient statistics
yi are transformed and the corresponding monomials xβ = yi with β ∈ M
are computed. Next, maps for which the monomial xβ does not contain xi, i.e.,
βi = 1, or, for all i, the degree of xβ decrease when h(j,k) is applied, are discarded.
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The worst case time complexity of the greedy search strategy for h isO(n2mN),
where n is the number of variables in f and N is the population size. Note that it
is possible to take advantage of the following log-likelihood decomposition:

L[P̃s‖q(y, ξ̂)] = 1

N

∑

y∈P̃s

log
( n∏

i=1

qi(yi; ξ̂i)
)
=

1

N

n∑

i=1

Li︷ ︸︸ ︷∑

y∈P̃s

log qi(yi; ξ̂i),

since q belongs to the independence model. When a new map h(jm,km) is con-
sidered, since yi = xi, for i 	= j, we do not need to compute the terms Li and
the values already evaluated at the previous step m− 1 can be used.

4.2 Chain-FCA

The variable transformation paradigm is general, and different models can be
chosen for transformed variables. In the following we introduce Chain-FCA, a
novel algorithm in FCAs family, where we fix a model with interactions, rather
than the independence model, as in I-FCA. Consider the family of probability
distributions for which the joint probability function factorizes as

p(y, ξ) = p(y1)

n∏

j=2

p(yj|yj−1). (6)

This is a chain model whose structure is fixed and each variable except the first
depends only on the previous one. The parameter vector ξ has 2(n − 1) + 1
components, one for the marginal probability of y1, and two for each of the
conditional probabilities, and can be easily estimated by means of max-likelihood
estimation. The log-likelihood of a sample with respect to this model is given by

L[P̃s‖q(y, ξ̂)] =
n−1∑

j=1

I(Yj |Yj+1)−
n∑

j=1

H(Yj), (7)

where H(Yj) is the marginal entropy and I(Yj |Yk) is the mutual information.
Chain-FCA employs the chain model defined in (6) and a greedy search strat-

egy to choose the sequence of maps h(j,k) which maximizes the likelihood of the
transformed set of selected individuals P̃s. The order of the variables in the chain
is fundamental. For this reason the class of the maps h is enriched by allowing
the swap of couples of variables. This operation is equivalent to the composition
of three maps h(j,k). Consider for example two variables x1, x2 and the map

y = h
(1,2)
1 ◦ h(2,1)2 ◦ h(1,2)3 . It turns out that y1 = x2 and y2 = x1, in fact

{x1, x2} h(1,2)⇒ {
y1︷︸︸︷
x1x2,

y2︷︸︸︷
x2 } h(2,1)⇒ ⇒ {

y1︷︸︸︷
x1x2,

y2︷︸︸︷
x1 } h(1,2)⇒ {

y1︷︸︸︷
x2 ,

y2︷︸︸︷
x1 }

The map h implies the swap of the variables x1 and x2. Notice that this was
useless in I-FCA since the order of the variables is not relevant in the indepen-
dence model, and such maps are discarded a priori. On the other hand, in Chain-
FCA this allows to implicitly adapt the fixed structure of the interactions among
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Fig. 1. Scalability of I-FCA and Chain-FCA

the variables in the chain model to the ones appearing in the set of candidate
solutions. Notice that if the search for h is restricted to consider only variables
swaps the result is a model selection algorithm very similar to MIMIC [5].

By means of a fixed structure chain model and a greedy search strategy for
the choice of the transformation, Chain-FCA is able to implicitly learn a richer
model compared to I-FCA, characterized by 2(n− 1)+ 1 parameters. The worst

case time complexity of Chain-FCA is O(n2mN), since only n(n−1)
2 variables

swaps have to be examined, along with the n(n− 1) maps of the form h(j,k).

5 Experimental Results

In this section we present the results of a preliminary scalability evaluation
for I-FCA and for the novel Chain-FCA algorithm, over a set of well known
benchmarks functions: Alternated Bits, Trap3, Trap3 overlapping, and Trap5.
In Alternated Bits the variables interact in a chain structure and higher fitness
is given to the instances for which the variables take opposite values with respect
to their neighbors in the chain. Trap3 and Trap5 are deceptive functions and are
composed of independent blocks of 3 and 5 variables, respectively. Each block has
a global optimum and a deceptive local optimum. Trap3 overlapping is similar
with respect to Trap3 but the blocks fully overlap.

In our algorithms we perform truncation selection and we choose the best S
individuals. After a preliminary parameter tuning we fix S = 10n for I-FCA and
S = 5n for Chain-FCA for all the problems considered, independently from the
population size. Experiments show that in the case of I-FCA no improvement is
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achievable when m > n. This result is also supported by an empirical analysis on
the set of models M which can be obtained mapping the independence model
into the original space through h. In the case of Chain-FCA the class of the
models that can be obtained by means of h is wider, so we set m = 4n.

For each problem and for each dimension we determine the population size
which ensure at most one failure out of 24 run. Then we estimated the average
number of fitness evaluations performed when the global optimum for f first
appears in the population. The results are presented in Figure 1, along with
an asymptotic estimation obtained by means of a least square fit of the curve
anb. Notice that, with the only exception of Alternated Bits, these functions
are not solved by other EDAs based on a fixed or low-dimensional model such
as PBIL, UMDA, or MIMIC, and in general one has to move to more EDAs
which perform model selection on a large class of complex models, such as BOA
or DEUM. I-FCA solves Alternated Bits and Trap3 while Chain-FCA robustly
solves all the benchmark functions considered. This proves the viability of the
variable transformations approach. Both algorithms are part of the Evoptool
toolkit. Source code and the detailed experimental settings are public availabe1.

6 Conclusions and Future Works

Variables transformations can be employed as an alternative approach to model
selection in MBS. In this paper we presented theoretical foundations of such
approach, and proposed a novel algorithm in the FCA family, called Chain-
FCA, which chooses a variable transformation maximizing maximum likelihood
with respect to a fixed chain model. Both I-FCA and Chain-FCA choose the
variable transformation to apply by iteratively composing basic modular maps.
Besides the usual EDAs parameters, selection policy and population size, these
algorithms have one more parameter which is the length of the composition se-
quence in the variable transformation, even though we argue that this parameter
is problem independent and could be fixed a priori.

A preliminary experimental evaluation of the performances of Chain-FCA
compared to I-FCA showed that these algorithms are able to solve functions
characterized by higher-order interaction yet only employing fixed low dimen-
sional models. This shows the viability of the variable transformation approach.

Some directions of future works include testing on different and more complex
benchmark functions, experimenting more expressive classes of variables trans-
formations and different models for the transformed variables, such as Chow-Liu
trees. Performance enhancements could also come by the replacement of the
greedy search strategy for h with more advanced policies.
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