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Abstract. We consider the fundamental property of generalisation of
data-driven models evolved by means of Genetic Programming (GP).
The statistical treatment of decomposing the regression error into bias
and variance terms provides insight into the generalisation capability of
this modelling method. The error decomposition is used as a source of
inspiration to design a fitness function that relaxes the sensitivity of an
evolved model to a particular training dataset. Results on eight symbolic
regression problems show that new method is capable on inducing better-
generalising models than standard GP for most of the problems.

1 Introduction

Reliable learning in the field of Machine Learning (ML) revolves around the
property of generalisation, which is the ability of a learned model to correctly
explain data that are drawn from the same distribution as the training data, but
have not been presented during the training process. This is the very important
property that ML algorithms aim to optimise. The generalisation performance
of a model relates to its prediction capability on an independent test dataset.
Assessment of this performance guides the choice of a model, and provides a
measure of the quality of the ultimately chosen model. The loss of generalisation
is referred to as the problem of overfitting [4].

In the case of learning regression models, the task is to discover a target func-
tion f(X) that map a vector of real-valued inputs X to a real-valued target vari-

able Y . A prediction model f̂(X) is trained on a training dataset
D = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} of size n, where model accuracy on an
individual training case is specified using a loss function for measuring the er-
rors between Y and f̂(X) denoted by L(Y, f̂(X)). Typical choice is the square

error (Y − f̂(X))
2
, and the error over the entire set D is taken as the average of

individual losses. The use of least squares, can lead to severe overfitting if com-
plex regression models are trained over limited-sized datasets [4]. In an example
of polynomial curve fitting [4](pages 4-11), model complexity is measured by the
order of the polynomial. It is shown that a polynomial of a low order and few
coefficients gives poor predictions on test data since the polynomial function has
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too little flexibility to be learning anything at all during training. On the other
hand, a polynomial with too many coefficients has poor generalisation since it
fits to closely to the noise on the training data. The issue of model complexity
is central to overfitting. There is a trade-off between achieving a good fit to the
training data, and obtaining a model which is not very complex, and thus does
not overfit. Significant insight into this trade-off can be obtained by introduc-
ing the statistical concept of bias/variance error decomposition, under which
the generalisation error of a model is decomposed into the sum of bias squared
plus the variance. The bias measures the accuracy of the estimated f̂(X), while

the variance measures the extend to which f̂(X) is sensitive to the particular
dataset D used during training.

Genetic Programming (GP) [9] tackles regression problems by means of search-
ing a model space for the most appropriate functional model-form along with
the optimal coefficients given a training set of input-output pairs. A plethora
methods for learning good-generalising models have been investigated in previ-
ous research; some are reported in the works of [1,2,3,10,11,12].

In this study, we draw inspiration from the bias/variance error decomposition
and devise a method to improve on the sensitivity of an evolved model to a
particular training dataset. The method is based on the bootstrap resampling
method to randomly draw datasets with replacement from the training data,
and calculate the variance of the error on all bootstrap samples. The variance
is then used along with the error on the original training dataset in a single-
objective fitness function that takes the form of their weighted sum that is to be
minimised. Given the two conflicting objectives of bias and variance, a Pareto-
based multi-objective fitness function would be a sensible line of attacking this
problem. At this preliminary study, we chose to aggregate the two objectives in
a scalar fitness function, and explicitly investigate the effect of different kinds of
trade-off for biasing the search towards good-generalising regression models.

The rest of the paper is organised as follows. Section 2 introduces the sta-
tistical concept of bias/variance decomposition of regression error. Section 3
presents a new method for relaxing the sensitivity of evolved models to a par-
ticular dataset used during training. Section 4 presents the symbolic regression
problems that will be used in this study, and details the experiment method.
Section 5 analyses the results, and finally Section 6 draws our conclusions.

2 Bias and Variance for Regression

This section presents the basic background on the statistical concept of
bias/variance regression error decomposition, and motivates the development of
the new method for tackling overfitting. The material is based on the textbook
of Bishop [4] (pages 147-152).

Consider we wish to model the underlying generator of a dataset, so that the
best possible predictions for the target vector t can be made when a trained
model is presented with a new value of the input vector x. For that, we are
estimating a model y(x) for a target function 〈t|x〉 using a training dataset D,
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where 〈t|x〉 denotes the conditional average of the target data, so that
〈t|x〉 =

∫
tp(t|x)dt. The most general descriptor of the generator of D is in

terms of the probability density p(x, t) = p(t|x)p(x) in the joint input-target
space. Our training algorithm minimises the sum-of-squares error function, thus
each individual error is calculated as {y(x)−〈t|x〉}2, and depends on the training
dataset D and on the particular datapoint x. Integrating this quantity over x
will give the usual sum-of-squares error measure.

Suppose we have a large ensemble of datasets of the same size, each drawn
independently from the distribution p(t, x) of D. We can eliminate the depen-
dency of a model on a particular training dataset by measuring the performance
of a model using the average of the ensemble of datasets, which we write as:

ED[{y(x)− 〈t|x〉}] (1)

where ED[·] denotes the expectation, or ensemble average, which represents the
error of model y(x) when trained over equal-sized samples of D. If the trained
model was a perfect predictor of the target function 〈t|x〉, then this error would
be zero. Nevertheless a non-zero error can occur for two distinct reasons. It may
be that the estimated model y(x) is different from the target function 〈t|x〉,
which is called the bias. Alternatively, it may be that the method is sensitive on
the particular sample training dataset, and as a result, at a given x its prediction
is either larger or smaller than the target t depending on the dataset used for
training. This is called the variance. We can decompose Equation 1 into bias and
variance using the notion of an average model ED[y(x)], which is the average of
all predictions at point x of various models trained on different samples of D:

{y(x)− 〈t|x〉}2 = {y(x)− ED[y(x)] + ED[y(x)] − 〈t|x〉}2
= {y(x)− ED[y(x)]}2

+2{y(x)− ED[y(x)]}{ED[y(x)]− 〈t|x〉}
+{ED[y(x)]− 〈t|x〉}2 (2)

By taking the expectation of both sides over the ensemble of datasets, we can
express the expected squared difference as:

ED[{y(x)− 〈t|x〉}2] =
{ED[{y(x)]− 〈t|x〉}2
︸ ︷︷ ︸

(bias)2

+ED[{y(x)− ED[y(x)]}2]
︸ ︷︷ ︸

variance

(3)

The first term, the bias, measures the extent to which the averagemodel ED[y(x)]
differs from the target function 〈t|x〉. The second term, the variance, measures the
extent to which a model trained on a specific dataset varies around the average
model, and hence measures the sensitivity of a particular model to the particular
choice of dataset. There is a trade-off between bias and variance, with very flexible
models having low bias and high variance, whereas relatively rigid models having
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highbias and lowvariance.Thenext section introduces a simplemeasure thatquan-
tifies the sensitivity of a model to a particular training dataset, and presents a new
fitness function to relax this sensitivity in pursue of better generalisation.

3 Minimising the Error Variance on Bootstrap Datasets

Suppose we have a model y(x) trained on a dataset D = {(x1, t1), . . . , (xN , tN )}
using an error function that takes the form of mean Canberra distance (C).

C(D) =
1

N

N∑

i=1

abs(y(xi)− ti)

abs(y(xi)) + abs(ti)
(4)

where abs returns the absolute value of its argument, y(xi), ti are the predicted and
target values respectively for input xi, andN is the size ofD. Canberra distance is
preferred toMeanSquaredError (MSE)because it implicitly normalises the output
within the [0.0, 1.0] interval, which is necessary for applying weights in the same
interval during the aggregation of the objectives into a scalar fitness function.

We employ the bootstrap resampling method [6] to randomly draw B datasets
with replacement from D, each sample the same size as D. For each of the
bootstrap datasets D∗b we calculate the error value C(D∗b), thus the mean

error over all dataset is given by C∗ =
∑B

b=1 C(D∗b)/B.
The variance of the error from the bootstrap sampling is then simply:

V ar(D∗) =
1

B − 1

B∑

b=1

(C(D∗b)− C∗)2 (5)

The error variance can be seen as a measure of the sensitivity of a model to
the training dataset D, with overfitted models achieving a large error variance
on the bootstrap datasets, whereas more general models obtaining a lower error
variance. In order to relax the dependence on a particular dataset, a new fitness
function to be minimised is defined as:

fitness = wbC(D) + wvV ar(D∗) (6)

which is the weighted sum of the mean error on the original dataset plus the
variance of error on the bootstrap datasets, and wb, wv are the coefficients for
error and variance respectively.

It is important to note that previous work investigated a bias/variance de-
composition in GP [8] from the point of view of ensemble learning methods like
Bagging. The output of an average model was calculated by averaging the out-
puts of an ensemble of models so that the expected generalisation error of the
ensemble reduced to the bias error alone. In addition, the work of [5] success-
fully employed a Pareto-based bi-objective fitness function that was based on the
MSE and the variance of the independent squared errors over a single training
dataset. Our fitness function differs substantially from the one used in [5] in that
we calculate the variance over a collection of bootstrap datasets.
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4 Experiment Design

We designed a set of experiments to assess the effectiveness of the new method
(BVGP) on the generalisation ability of evolved models. The method is con-
trasted against standard GP (SGP). We used three datasets: training, valida-
tion, and testing. The training dataset is used to fit the models. At the end of
every generation the best model on training data is stored in an elitist-list. At
the end of evolution, the validation set is used to estimate the prediction error of
every element of the elitist-list in order to perform model selection. The test set
is used for assessing the generalisation error of the final chosen model. The size
of training and validation sets is the same for a problem, and the three datasets
share no common elements. In the case of BVGP, the bootstrap resampling is
performed on the training dataset.

Table 2 presents eight symbolic regression problems that are tackled in this
work. Problems F2, F4, F5, F7 were chosen from [13] due to their pronounced
difficulty as test problems for GP. Problems F8, F9, F10, F11 were chosen from [7].
For these four problems we deliberately used small training datasets (20 points)
in order to render the GP systems more prone to overfitting.

Table 1 summarises the setup of the GP systems. For the fitness function of
BVGP in Equation 6, both C(D) and V ar(D∗) are normalised into the same [0.0,
1.0] interval. We considered an exhaustive set of combinations with a step of 0.1
for the wb and wv, in order to test the effect of different trade-offs. On the other
hand, SGP used Equation 4 as the fitness function. Note that the number of
program evaluations are exactly the same in both fitness function calculations.
This is because Equation 6 needs to calculate C(D) on the original training
dataset D, and afterwards the calculation of every bootstrap C(D∗b) can be
based on the individual losses that were cached during the program evaluation
with the training cases of D.

We performed 50 independent evolutionary runs for each GP system on each
problem. Statistical significance of the differences in performance is evaluated
using the Mann-Whitney U-test, considering a confidence of 95% and a pairwise
Bonferroni correction for the value of α.

Table 1. GP systems setup

GP systems under comparison BVGP, SGP
EA used in GP systems elitist, generational, expression-tree representation
Function set +, −, ∗, / (protected)
Terminal set Regressor variables, 5 random constants in [0.0, 1.0]
No. of generations 51
Population size 500
Tournament size 4
Tree creation ramped half-and-half (depths of 2 to 6)
Max. tree depth 20
Subtree crossover 30% (90% inner nodes, 10% leaf-nodes)
Subtree mutation 40%
Point mutation 30%

Fitness function
BVGP: Equation 6 (no. of bootstrap datasets: 500)
SGP: Equation 4
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Table 2. Symbolic regression problems with the respective data sampling ranges for
training, validation and test datasets. Notation x=rand(a,b) means that the x variable
is sampled uniform randomly from the interval [a, b]. Notation x1 = (a1 : c1 : b1),
x2 = (a2 : c2 : b2) determines a uniform mesh with step length (c1, c2) on an interval
[a1, b1] × [a2, b2]. Both training and validation sets are of the same size for a problem.

Problem Training/Validation Test

F2 f(x) = e−xx3cos(x)sin(x)(cos(x)sin2x − 1) 100 points 221 points
x=rand(0.05, 10) x=(-0.5 : 0.05 : 10.5)

F4 f(x1, x2, x3) = 30
(x1−1)(x3−1)

x2
2(x1−10)

300 points 2,701 points

x1, x3=rand(0.05, 2) x1, x3=(-0.05 : 0.15 : 2.1)
x2=rand(1, 2) x2 = (0.95 : 0.1 : 2.05)

F5 f(x1, x2) = 6sin(x1)cos(x2) 50 points 961 points
x1, x2=rand(0.1, 5.9) x1, x3=(0.05 : 0.02 : 6.05)

F7 f(x1, x2) =
(x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10
50 points 1,157 points

x1, x2=rand(0.05, 6.05) x1, x2=(-0.25 : 0.2 : 6.35)

F8 f(x1, x2) =
x1x2 + sin((x1 − 1)(x2 − 1)) 20 points 361,201 points

x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

F9 f(x1, x2) = x1
4 − x1

3 + x2
2/2 − x2 20 points 361,201 points

x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

F10 f(x1, x2) = 8
2+x1

2+x2
2 20 points 361,201 points

x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

F11 f(x1, x2) = x1
3/5 + x2

3/2 − x2 − x1 20 points 361,201 points
x1, x2=rand(-3, 3) x1, x2=(-3 : 0.01 : 3)

5 Results

Table 4 summarises the performance statistics accrued from 50 independent runs
of each experiment setup. The median value is preferred over the mean as it is
more robust to outliers. The table reports the training Root Mean Squared Er-
ror (RMSE) obtained at the end of an evolutionary run, the test RMSE of mod-
els selected based on the validation set, the best-generalising model size in terms
of number of tree-nodes, and the generation number when model selection took
place. For the case of test RMSE theminimumvalue indicates the best-generalising
model out of 50 runs. Table 3 summarises the p-values obtained by comparing the
differences in the median test RMSE, median model size, median generation of
model selection of BVGP against SGP using the Mann-Whitney U-test.

Observing the training error obtained by the different GP systems, results
suggest that for all problems considered, both BVGP and SGP obtained a similar
fit during training. Interestingly, the different trade-offs created by the different
coefficient combinations did not seem to affect the training accuracy. When
comparing the generalisation performance of BVGP against SGP we observe
that in six out of eight problems BVGP outperformed SGP. The differences
in median test RMSE are statistically significant (Table 3). For the remaining
two problems the use of BVGP was deemed equivalent with that of SGP. It
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Table 3. The p-values obtained by comparing the differences in the median test RMSE,
median model size, median generation of model selection of BVGP against SGP using
the Mann-Whitney U-test. Bold face indicates confidence of at least 95%.

SGP
Test RMSE Model size Model selection generation

BVGP

F2 0.45 0.15 0.36
F4 0.49 0.24 0.18
F5 0 0.22 0.23
F7 0.04 0.20 0.47
F8 0.0004 0 0
F9 0.02 0.12 0.14
F10 0.0034 0.14 0.31
F11 0.001 0.13 0.08

is important to note that for the problems F8, F9, F10, and F11, where small
training sets were employed, all systems overfitted the training data. This is
evidenced by the large degradation in test error as opposed to the cases of F2,
F4, F5, and F7. However, the use of BVGP system appeared more resilient to
overfitting. When inspecting the trade-off between error and variance that is
required to enhance model generalisation, we observe no apparent trend to the
combination of wb and wv coefficients that yields the best generalisation. The
trade-off necessary to counteract overfitting appears to be problem dependent.
Finally, the minimum test RMSE that is accrued from 50 independent runs of
each system configuration suggests that for the majority of problems, BVGP
produced the best-generalising model as opposed to SGP.

Early research on the relationship between model size and generalisation has
advocated an intrinsic interaction between the two. The sixth column of Table 4
shows the median size of best-generalising models. For all the problems but F8,
we found no statistically significant differences in the sizes of the expression-trees
representing the evolved models (Table 3). This is in accordance to the latest
findings on the relationship between the expression-tree size and overfitting [5],
ascertaining that in light of bloat in variable-length GP representations, model
complexity is not directly associated with the number of tree-nodes.

Finally, the generation number when model selection is performed shows the
point within an evolutionary run in which overfitting is becoming apparent. Ta-
ble 4 shows that for the problems of F2, F4, F5, F7 that use intermediate to large
training sets ranging from 50 to 300 data points, there appears to be a relation-
ship between the size of the training set and the speed of generalisation loss.
Contrasting between the case of F4 that used a training set of 300 points against
the cases of F2, F5, and F7 that employed smaller training sets (sizes of 50 and
100), we noted that the smaller the training dataset, the quicker the model se-
lection needs to be performed in order to avoid overfitting. On the other hand,
for the cases of F8, F9, F10, and F11 that utilised the smallest training datasets
of size 20, this trend is not apparent; all GP systems were allowed to train for
longer than those for the problems of intermediate sized training datasets of 50
points. Summarising, for the problems studied, we noted that the cases of very
small and large training datasets allowed the models to train for longer before
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Table 4. Summary of results. Statistics based on 50 independent runs. Train RMSE
is the end-of-run training root mean squared error. Test RMSE is the generalisation
root mean squared error of models selected in each run. Model size is the size of the
best-generalising models in terms of number of tree-nodes. Model selection generation
is the generation number when model selection is performed. Highlighting indicates
that a statistically significant difference was found in the median generalisation RMSE
between BVGP and SGP (Table 3).

Problem wb wv Train RMSE Test RMSE Test RMSE Model size Model selection generation
(median) (median) (minimum) (median) (median)

F2

0.2 0.8 0.29 0.32 0.26 15.00 2.00
0.3 0.7 0.29 0.32 0.25 13.00 2.00
0.4 0.6 0.29 0.32 0.26 31.00 1.00
0.5 0.5 0.29 0.32 0.26 15.00 3.00
0.6 0.4 0.29 0.32 0.27 45.00 3.00
0.7 0.3 0.29 0.32 0.26 11.00 1.00
0.8 0.2 0.30 0.32 0.26 15.00 2.00
SGP 0.29 0.32 0.28 31.00 3.00

F4

0.2 0.8 0.22 0.25 0.05 83.00 39.00
0.3 0.7 0.22 0.26 0.04 81.00 40.00
0.4 0.6 0.21 0.25 0.08 85.00 38.00
0.5 0.5 0.22 0.26 0.09 87.00 40.00
0.6 0.4 0.20 0.26 0.06 81.00 42.00
0.7 0.3 0.23 0.27 0.14 99.00 39.00
0.8 0.2 0.22 0.27 0.11 57.00 40.00
SGP 0.19 0.22 0.09 81.00 37.00

F5

0.2 0.8 3.45 3.03 2.66 19.00 3.00
0.3 0.7 3.42 3.46 2.68 31.00 3.00
0.4 0.6 3.61 3.41 2.82 25.00 2.00
0.5 0.5 3.43 3.57 2.94 19.00 2.00
0.6 0.4 3.66 3.59 2.36 19.00 2.00
0.7 0.3 3.39 3.41 2.63 15.00 1.00
0.8 0.2 3.39 3.75 2.52 29.00 2.00
SGP 3.52 3.66 2.54 21.00 2.00

F7

0.2 0.8 1.57 2.00 1.43 15.00 3.00
0.3 0.7 1.55 2.41 1.77 17.00 4.00
0.4 0.6 1.56 2.00 1.58 19.00 3.00
0.5 0.5 1.56 1.97 1.69 15.00 2.00
0.6 0.4 1.56 2.09 1.53 15.00 3.00
0.7 0.3 1.58 1.98 1.44 21.00 4.00
0.8 0.2 1.58 1.97 1.58 19.00 4.00
SGP 1.58 2.65 1.73 15.00 3.00

F8

0.2 0.8 0.50 0.68 0.68 17.00 11.00
0.3 0.7 0.50 0.84 0.68 71.00 16.00
0.4 0.6 0.50 17.46 0.68 57.00 11.00
0.5 0.5 0.50 42.16 0.65 91.00 13.00
0.6 0.4 0.50 17.74 0.63 75.00 14.00
0.7 0.3 0.50 30.03 0.68 115.00 14.00
0.8 0.2 0.49 27.52 0.67 123.00 27.00
SGP 0.50 56.90 0.68 151.00 38.00

F9

0.2 0.8 0.29 13.28 4.66 67.00 15.00
0.3 0.7 0.30 12.76 3.03 103.00 14.00
0.4 0.6 0.29 10.96 2.66 111.00 24.00
0.5 0.5 0.31 11.02 1.75 97.00 18.00
0.6 0.4 0.29 48.54 1.55 135.00 24.00
0.7 0.3 0.29 10.52 2.64 79.00 24.00
0.8 0.2 0.31 27.90 2.96 99.00 32.00
SGP 0.28 13.57 2.40 119.00 31.00

F10

0.2 0.8 0.22 94.31 4.13 173.00 47.00
0.3 0.7 0.20 116.14 1.99 151.00 47.00
0.4 0.6 0.16 40.22 5.64 167.00 46.00
0.5 0.5 0.19 32.66 0.97 175.00 46.00
0.6 0.4 0.19 48.36 3.69 171.00 49.00
0.7 0.3 0.20 27.27 0.41 143.00 48.00
0.8 0.2 0.21 85.04 0.77 157.00 43.00
SGP 0.21 35.36 4.71 161.00 48.00

F11

0.2 0.8 0.61 12.07 1.37 135.00 33.00
0.3 0.7 0.62 23.50 1.44 127.00 40.00
0.4 0.6 0.61 5.54 1.69 117.00 20.00
0.5 0.5 0.63 5.25 1.26 115.00 23.00
0.6 0.4 0.62 12.81 1.18 117.00 29.00
0.7 0.3 0.62 18.54 1.44 93.00 26.00
0.8 0.2 0.63 41.35 2.39 127.00 17.00
SGP 0.62 16.36 2.32 107.00 34.00
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they overfitted, as opposed to the cases of intermediate-sized training datasets,
where overfitting was evident very quickly. Whether this is problem dependent
remains to be seen in future studies.

6 Conclusions

The decomposition of regression error in bias and variance terms suggests that
the generalisation error is due to the degree of difference between the average
model (over all datasets) and the target function, as well as the degree of sensi-
tivity of the particular model on the training dataset. We drew inspiration from
this error decomposition and devised a method to relax the inherent sensitivity
to the data used for training. In this method, boostrapping was employed to
create an ensemble of datasets, and the variance of the error on the ensemble
was used in combination with the error on the original dataset to form a new
fitness function. Results on a suite of symbolic regression problems are encour-
aging, showing that this method is able to induce better-generalising models for
most of the problems considered as opposed to standard GP.

The task of inducing a model from real-world data usually suffers from two
problems: the degree to which the underlying data-generating distribution is sta-
tistically under-represented, and the degree of noise in the data points. Tackling
noisy as well as unbalanced datasets is the immediate plan for future application
of our method to classes of ill-defined learning environments.
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