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Abstract. We evaluate the performance of several gradient-free
variable-metric continuous optimization schemes on a specific set of
quadratic functions. We revisit a randomized Hessian approximation
scheme (D. Leventhal and A. S. Lewis. Randomized Hessian estima-
tion and directional search, 2011), discuss its theoretical underpinnings,
and introduce a novel, numerically stable implementation of the scheme
(RH). For comparison we also consider closely related Covariance Ma-
trix Adaptation (CMA) schemes. A key goal of this study is to elucidate
the influence of the distribution of eigenvalues of quadratic functions on
the convergence properties of the different variable-metric schemes. For
this purpose we introduce a class of quadratic functions with parame-
terizable spectra. Our empirical study shows that (i) the performance of
RH methods is less dependent on the spectral distribution than CMA
schemes, (ii) that adaptive step size control is more efficient in the RH
method than line search, and (iii) that the concept of the evolution path
allows a paramount speed-up of CMA schemes on quadratic functions
but does not alleviate the overall dependence on the eigenvalue spec-
trum. The present results may trigger research into the design of novel
CMA update schemes with improved spectral invariance.

Keywords: gradient-free optimization, variable metric, Randomized
Hessian, Covariance Matrix Adaptation, quadratic functions

1 Introduction

Randomized gradient-free (or black-box) optimization schemes are nowadays a
ubiquitous tool for solving many practical problems in science and engineering
where gradient or higher order information about the objective are difficult to
compute or do not exist. Among the first proposed schemes that are still of
considerable (theoretical) importance are adaptive step size random search (aS-
SRS) [1] and the (almost identical) well-known (1+1)-Evolution Strategy (ES) [2]
in Evolutionary Computation (EC). To improve the poor performance of these
schemes on ill-conditioned problems several fully adaptive schemes known as
gradient-free variable-metric methods have been designed in the past 50 years.
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All variable-metric schemes are iterative algorithms that share the idea of
adapting a position vector and a quadratic form that defines a local metric be-
tween search points to best reflect the local structure of the underlying function.
In gradient-free optimization two distinct classes of variable-metric methods are
known: Randomized Hessian (RH) approximation schemes and Covariance Ma-
trix Adaptation (CMA) schemes.

Randomized Hessian schemes closely follow their deterministic counterparts
in nonlinear optimization. However, rather than using exact first- or second-
order information they rely on approximations of gradients or Hessians found by
finite differences or by estimators based on a finite collection of samples. Such ap-
proaches date back at least to 1970’s [3]. In an excellent paper Marti [4] proposed
several randomized Hessian update schemes taking the perspective of optimal
control. Recently, Leventhal and Lewis [5] introduced a genuine RH algorithm
with provable convergence guarantees which we further detail in Sec. 2.2.

Covariance Matrix Adaptation schemes follow the principle of sampling search
points from the multivariate normal distribution and adapting mean and co-
variance according to different design principles. The first scheme of this kind,
Gaussian Adaptation (GaA) [6], follows the principle of maximum entropy. A
very popular modern algorithm is the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [7,8]. One recent instantiation of this scheme comprises a de-
randomization of the sampling termed mirrored sampling [9] which we consider
in Sec. 2.3.

One key strength of variable-metric methods is their invariance property to
affine transformations. In addition (and more importantly in practice), they
achieve the same convergence rate on all functions from the same coset mod-
ulo affine transformations, once the affine transformation has been learned in
the course of optimization. How fast the different schemes learn affine transfor-
mations T is thus of fundamental importance. While theory suggests that the
number of samples needed should be at least quadratic in the dimension, it is not
yet fully understood how the efficiency of different variable-metric schemes de-
pends on the eigenvalue spectrum of TT T . In the EC community a small number
of specific quadratic models have been proposed to probe this dependency. Key
instances are the tablet, the discus, the two-axes, and the cigar function, as well
as ellipsoidal functions with exponentially increasing eigenvalues [7,8]. Rather
than using these specific functions we here propose a novel set of quadratic func-
tions that varies the shape of the spectral distribution (i) in an easy parameteric
manner and (ii) with certain common constraints that ease a simpler interpreta-
tion of performance results. We demonstrate the excellent discriminative power
of the set by numerical experiments with different variable-metric schemes.

The reminder of this paper is structured as follows. In Sec. 2 we outline a
standard randomized optimization framework and revisit several representative
RH and CMA schemes. In Sec. 3 we introduce the design of the quadratic func-
tion set. We also review the Rosenbrock function that serves as a test model
with smoothly changing Hessian. In Sec. 4 we summarize the key results of the
empirical study. We discuss these results and conclude the paper in Sec. 5.
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2 Variable-Metric Gradient-Free Optimization Schemes

We here present all optimization methods considered in this study. We first de-
tail two non-adaptive randomized schemes, a specific (1+1)-ES and Random
Pursuit (RP) [10], that serve as base algorithms. We then show how to couple
these algorithms with Leventhal and Lewis’s RH scheme. We then detail one in-
stance of GaA [11,12] and (1,4)-CMA-ES with mirrored sampling and sequential
selection [9] with and without evolution path as representative CMA schemes.

genericSearch(x0, H0, N, [ε, μ, σ0, p])

1 for k = 1 to N do
2 if variable metric then
3 Hk ← updateHess(Hk−1,xk−1, ε)

4 else Hk ← Hk−1

5 uk ∼ N (0,H−1
k )

6 if line search then
7 xk ← lineSearch(xk−1,uk/‖uk‖, μ)

8 else (xk, σk)← aSS(xk−1,uk, σk−1, p)

9 return xN

aSS(x,u, σ, p) (adaptive step size)

1 if f(x + σu) ≤ f(x) then
2 x+ ← x + σu; σ+ ← σ · exp(1/3)

else

3 x+ ← x; σ+ ← σ · exp
(
− p

3(1−p)

)

4 return (x+, σ+)

updateHess(H,x, ε)

1 u ∼ Sn−1

2 Δu ← f(x+εu)−2f(x)+f(x−εu)

ε2
− uTHu

3 if J := H + Δu · uuT psd then
4 H+ ← H + Δu · uuT

else
5 v ← smallestEVec(J)

6 Δv ← f(x+εv)−2f(x)+f(x−εv)

ε2
− vTJv

7 H+ ←
(
H + Δv · vvT

)
+ Δu · uuT

8 return H+

lineSearch(x,u, μ)

let x∗ := x + arg minλ f(x + λu) · u
1 if relative accuracy then
2 find x+ ∈

[
(1− μ)x + μx∗,x∗]

else
3 find x+ ∈

[
x∗ − μu,x∗ + μu

]

4 return x+

Fig. 1. Basic building blocks for variable-metric gradient-free optimization

2.1 Isotropic Gradient-Free Optimization Schemes

We consider two basic optimization schemes that iteratively generate a sequence
of approximate solutions to the optimization problem minx f(x) for f : R

n �→ R.
In each step a search direction is drawn u ∼ N (0,1n). The choice of the step
size λ ∈ R is the key difference between the two schemes.

In Random Pursuit (RP), first proposed in [13] and analyzed in [10], the step
size λ is determined by minimizing the objective function in direction u, i.e.
λ ≈ argminc f(x + cu). For quadratic functions f(x) := 1

2x
TAx with Hessian

A, the expected one-step progress can be estimated as:

E [f(x+) | x] ≤
(
1− κ(A−1)/n

)
f(x) , (1)

where x is the current iterate, x+ := x+λu the next iterate, and κ(A−1) denotes
the condition number of A−1. This statement can also be generalized to arbitrary
smooth convex functions [10]. Stich et al. [10] showed that both relative and ab-
solute errors in the line search do not hamper the convergence guarantees of RP.
We use the built-in MATLAB routine fminunc.m with optimset(’TolX’=1e-4)

as numerical gradient-free line search method with absolute tolerance μ.
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In the (1 + 1)-ES the step size is dynamically controlled such as to approx-
imately guarantee a certain probability p of finding an improving iterate. De-
pending on the underlying test function different optimality conditions can be
formulated for the probability p. Schumer and Steiglitz [1] suggest the setting
p = 0.27 which is considered throughout this work. We use immediate exponen-
tial step size control as explicitly formulated in the aSS sub-routine in Fig. 1.
Jägersküpper [14] showed that, for quadratic functions, the dependence of the
expected one-step progress of the (1+1)-ES on κ(A) is almost identical to the
one shown in Eq. (1).

2.2 Randomized Hessian Approximation Schemes

Assume that the random search direction u is not chosen from the standard
normal distribution, but rather u ∼ N (0, H−1) for a positive definite matrix H .
Then a standard analysis [5] shows that the factor of the one-step RP progress in
Eq. (1) changes to (1− κ(HA−1)/n) for quadratic functions. A refined analysis
by Stich et. al. [15] shows a dependence on Tr(AH−1). Hence, if a suitable matrix
H with AH−1 ≈ 1n can be found, the convergence of RP will be linear with the
optimal rate (1− 1/n). Leventhal and Lewis [5] proposed the following iterative
scheme to generate a sequence of Hessian estimates H that converge to A. In
each step, a new iterate H+ is generated as follows:

H+ = H + uT (A−H)u · uuT , (2)

where u ∼ Sn−1 is a uniform random unit vector and uTAu is calculated by:

uTAu = (f(x+ εu)− 2f(x) + f(x− εu)) /ε2 , (3)

for arbitrary ε > 0. Whilst equality only holds for quadratic functions, for gen-
eral twice differentiable functions the value can be approximated by choosing ε
sufficiently small. It can be shown [5, Thm. 1] that

E [‖H+ −A‖F ] ≤ (1− 2/(n(n+ 2))) ‖H −A‖F , (4)

holds, and the sequence (Hk)k≥1 of estimates Hk → A a.s for (k → ∞).
Unfortunately, H+ generated by Eq. (2) is not necessarily positive definite.

We thus propose an additional correction step in our implementation of the
update. If H+ is not positive definite we perform a second deterministic update
in the direction of the eigenvector that corresponds to the smallest (and the
only negative) eigenvalue of H+. By standard results from matrix perturbation
theory, the resulting ”twice updated” matrix will be positive (semi-)definite. The
algorithm is also illustrated in Fig. 1. As we directly operate on the Cholesky
decomposition of H , the condition on line 3 can be efficiently checked. For all
quadratic functions we arbitrarily set ε = 1, for the Rosenbrock function (see
Section 3) we use ε = 1e-9.

Combining the Hessian update with the different step size update schemes
from the previous section, we arrive at two variable-metric gradient-free opti-
mization schemes. We will refer to them as RH RP (Randomized Hessian Ran-
dom Pursuit) and RH (1+1) (Randomized Hessian with aSSRS).
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2.3 Covariance Matrix Adaptation Schemes

CMA schemes are conceptually different from the presented RH scheme. New
search points are sampled from a multivariate normal distribution whose pa-
rameter are updated in each iteration based on the information present in the
evaluated samples. Many different adaptation schemes exist today. The covari-
ance matrix can be adapted using different rank-1 [6,7] or rank-k updates [8]. In
addition, the CMA-ES scheme is augmented by an auxiliary variable called evo-
lution path that takes into account the correlation of successive means taken over
a finite horizon. This is similar in spirit to Rao-Blackwellization techniques in
Marko Chain Monte Carlo methods [16] and Polyak’s heavy ball method in first-
order optimization [17]. We here select two specific instances of CMA schemes:
(i) one that is as close as possible to the described RH scheme and (ii) one that
is the fastest scheme for quadratic functions known today. The first scheme is a
variant of GaA [12] in the (1+1) setting. In every iteration a single sample xk ∼
N (mk, σ

2
kCk) is drawn. The aSS sub-routine is employed for step size adapta-

tion. If f(xk+1) ≤ f(xk) the meanmk+1 = xk+1 and the covariance matrix is up-
dated according to Ck = (1−α)Ck+α(xk+1−mk)(xk+1−mk)

T with α = log(n+
1)/(n+1)2 [12]. This constitutes the simplest covariance update without evolu-
tion path. The second scheme considered here is the (1,4)-CMA-ES with mirrored
sampling and sequential selection. Brockhoff and co-workers state that this
scheme “is unbiased and appears to be faster, more robust, and as local as the
(1+1)-CMA-ES” [9]. We also refer to [9] for a full description of this scheme and
all parameter settings used. For the (1,4)-CMA-ES scheme has been retrieved
from http://coco.gforge.inria.fr/doku.php?id=bbob-2010-results.
We used the GaA code from http://www.mosaic.ethz.ch/Downloads/GaA.

3 Benchmark Functions

For the presented variable-metric methods there is either theoretical or a large
body of empirical evidence that, on quadratic functions, the sequence of esti-
mated Hessians (or inverse Hessians, respectively) will converge after sufficiently
many iterations. A reasonable assumption is that the difficulty of the approxima-
tion task is mainly determined by the distribution of the eigenvalues of the un-
derlying Hessian. Thus far, this influence has been extensively studied for CMA
schemes on specific quadratic model functions such as the tablet, the cigar, or
ellipsoidal functions with exponentially increasing eigenvalues (see, e.g., [7,8]).
The exact dependency of variable-metric schemes on the spectral distribution
remains, however, largely elusive because the spectral properties such as trace
and condition are not constant across experiments. For RH schemes, we are not
aware of any systematic empirical study. From the theory of RH schemes we
know, however, that the expected progress for a fixed Hessian estimate H de-
pends on κ(AH−1) as well as on Tr(AH−1) where A denotes the Hessian [5,15].
We thus propose a class of quadratic functions with different spectra under the
constraint of equal trace and condition number L. The functions are constructed
as follows: We choose the distribution of the Hessian eigenvalues according to
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Table 1. List of benchmark functions. All functions are quadratic except fRosen. For
fSigm(a) we use a = 15, 8, 5, 2.8 and for fFlat(a) we use a = 6, 3.2, 2, 1.25. The spectra of
all the quadratic functions are depicted in Fig. 2b.

fSigm(a)(x) =
∑n

i=1 normalizei

((
1 + ea−

2a(t−1)
n−1

)−1

+ 1
2

)
(xi − 1)2

fFlat(a)(x) =
∑n

i=1 normalizei

(
− log

((
10−a + (t−1)(1−2·10−a)

n−1

)−1

− 1

))
(xi − 1)2

fLin(x) =
∑n

i=1 normalizei
(

2t
n+1
− 1

)
(xi − 1)2

fNes(x) =
∑n

i=1 normalizei
(

sin
(

tπ
n+1
− π

2

))
(xi − 1)2

fRosen(x) =
∑n−1

i=1

(
100(xi+1 − x2

i )2 + (xi − 1)2
)

normalizei(f(t)) = L−1
2

f(i)
|f(1)| + L+1

2

three specific parametric functions outlined below. We then normalize the spec-
tra such that the smallest eigenvalue equals 1, the largest equals L, and the trace
equals n(L+1)/2 where n denotes the dimension. The function set is summarized
in Tab. 1. For fLin the eigenvalues are linearly spaced. For fSigm the eigenvalues

lie on the sigmoidal curve (1 + e−t)
−1

resulting in many eigenvalues being close
to 1 or close to L with only a few intermediate eigenvalues. By distributing the
eigenvalues proportional to the inverse of the sigmoid function log(1/t − 1) we
find a family of suitable quadratic functions where most eigenvalues are concen-
trated around the mean L/2. The exact parameterizations are summarized in
Tab. 1. The shape of the spectra is depicted in Fig. 2b. For large a we note that
(i) fSigm(a) becomes similar to the two-axes function [8] (half of the eigenvalues
are 1, half of them are L) and (ii) fFlat(a) gets close to a cigar-like function (with
one small eigenvalue and all others on the order of L). Another important feature
of our parametric family is the fact that the sigmoidal function can closely ap-
proximate Nesterov’s worst case function fNes [18] which has been used to show
a lower complexity bound for first-order optimization (see again Fig. 2b for a
sketch). Note that the present trace constraint prohibits the design of quadratic
functions with exponentially distributed eigenvalues.

Finally, we also include the standard Rosenbrock function fRosen in the test
set. The function serves as a test model with smoothly changing Hessian in order
to study the valley-following abilities of the different variable-metric schemes.

4 Empirical Study

We now highlight the key results of our empirical study. All algorithms and func-
tions have been implemented in MATLAB and will be made publicly available at
the authors’ website. The (1,4)-CMA-ES with mirrored sampling and sequential
selection (referred to as CMA-ES in the following) has been run both with and
without evolution path (setting CMA.ccum=1 in the referred MATLAB code).
The latter variant is referred to as CMA-ESnp. For all performed experiments
the initial settings were x0 = 0, H0 = 1n (m0 = 0, C0 = 1n, respectively).
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Fig. 2. (a): Relation between method performance and spectral distribution in n = 50
for L = 1e6. We recorded #FES needed to reach accuracy 1e-9 on all parametrized
functions fSigm, fFlat and fLin; the median of 51 runs is indicated by a marker.
(b): Shape of the spectra of the quadratic benchmark functions. Thin blue lines show
fSigm(a) and fFlat(a) for intermediate a values.

The initial step size of the algorithms with adaptive step size control was (em-
pirically) set such that the target success probability p = 0.27 is met for x0.
As performance measure we count the number of function evaluations (#FES)
needed to reach a target function value below 1e-9.

We first demonstrate the general influence of the spectral distribution on the
performance of all introduced variable-metric schemes. Experimental set-up and
results are summarized in Fig. 2. For all CMA schemes (CMA-ES, CMA-ESnp,
and GaA) we see a strong monotone dependence of their performance on the
spectral shape. The sigmoidal-shaped eigenspectrum presents the hardest prob-
lem, the flat spectrum the easiest. Both CMA-ES and GaA show the strongest
run time dependence on the spectra with CMA-ES being the fastest algorithm
on all functions and CMA-ESnp the slowest one. The performance of both RH
schemes is much less dependent on the shape with RH (1+1) being almost invari-
ant to the spectral distribution. We observe that RH (1+1) achieves the same
performance on fSigm(15) (the leftmost datum in Fig. 2a) as CMA-ES.

To study the influence of the condition number L on the qualitative con-
vergence behavior of the different algorithms we present results on fNes as
representative example in Figs. 3 and 4a for fixed dimension n = 50. The
same qualitative behavior has been observed for the other quadratic functions.
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(b) fNes, n = 50, L = 1000

Fig. 3. Evolution of function value vs. #FES on fNes for L = 100 (a) and L = 1000 (b).
We recorded #FES needed to reach accuracy 1e-9. The median trajectory of 11 runs
is depicted; mean and one standard deviation are indicated by markers.
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(a) fNes, n = 50, L = 10000
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(c) fFlat(6), n = 50, L = 10000

0 50 100 150 200

1e-8

1e-4

1

1e4

#FES / n2                               

fu
nc

tio
n 

va
lu

e

 

 
RH RP
RH (1+1)
(1+1)-ES
RP
GaA
CMA-ES
CMA-ESnp

(d) fRosen, n = 50

Fig. 4. Evolution of function value vs. #FES for different functions. We recorded #FES
needed to reach accuracy 1e-9. The median trajectory of 11 runs is depicted; mean and
one standard deviation are indicated by markers.

We see that the non-adaptive schemes RP and (1+1)-ES are (as expected) not
even competitive for L = 100. We will thus concentrate on variable-metric
schemes in the further discussion. For L ≥ 1000 we observe that the conver-
gence behavior of all variable-metric methods can be divided into three phases,
(i) an initial short tune-in phase with rapid progress, (ii) a learning (or adap-
tation) phase with marginal progress in function value (of length quadratic in
n), and (iii) a convergence phase with strong function value decrease (of length
linear in n). Moreover, we see that the slope of the trajectory at the level of
the target accuracy is distinct for all schemes. This measured convergence rate
reflects the efficiency of the adaptation process of the different schemes at this
function value level. CMA-ES and RH (1+1) show the steepest descent, CMA-
ESnp and GaA the flattest one. For L = 10000 CMA-ESnp and the non-adaptive
methods do not reach the target accuracy within a FES budget of 60n2. These
observations are generally confirmed on other quadratic functions having dif-
ferent spectral shapes with a few notable exceptions. We here exemplify the
performance of the schemes on the two most extreme functions fSigm(15) and
fFlat(6) (with L = 10000 in n = 50) as well as on fRosen (as shown in Fig. 4). On
fFlat(6) (cf. Fig. 4c) the Hessian is well-approximated by all convergent schemes.
The convergence rate in phase (iii) is best for CMA-ES followed by RH (1+1)
and GaA. RH RP’ convergence takes longer because per line search 5-10 FES
are needed on average. CMA-ESnp is still in the adaptation phase within the
displayed FES budget. On fSigm(15) (cf. Fig. 4b) we observe that CMA-ES’ con-
vergence rate is slower than the one of RH (1+1) above accuracy 1e-7 eventually
converging at optimal rate below this level. This indicates that CMA-ES is still
in adaptation phase even at low function value level. Both CMA-ESnp and GaA
are still in the adaptation phase within the displayed FES budget. Inspection
of the convergence trajectories also reveals that the length of learning phase is
responsible for CMA-ES’ observed dependence on the spectral shape.
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(c) fFlat(6), L = 10000
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Fig. 5. #FES to reach the target accuracy vs. dimension n in log-log scale. The median
of 11 runs is depicted by a marker for all converged runs within the considered #FES
budget. Thin lines indicate quadratic scaling (top) or linear scaling (bottom) .

The experiments on fRosen confirm that all variable-metric schemes (except
GaA) can efficiently learn a smoothly changing Hessian (without tune-in phase)
confirming and extending known results for RH schemes [5] and CMA schemes
[7]. We finally show the scaling behavior of the algorithms on selected functions
in Fig. 5. All algorithms show the expected quadratic scaling with dimension (for
n ≥ 20) with two notable exceptions. While GaA and CMA-ESnp on fSigm(15)

and GaA on fRosen exhibit scaling of higher order than quadratic, CMA-ES
shows super-linear convergence on fFlat(6). The latter result is in full agreement
with the empirical tests of CMA-ES on the cigar function [7,8].

5 Discussion and Conclusions

We have empirically tested the performance of several randomized gradient-free
variable-metric optimization schemes on a novel set of quadratic functions whose
spectral distribution ranges (for any fixed dimension n and condition number L)
from a near-flat distribution to a sigmoidal shape under constant trace con-
straint. Using this benchmark set we have been able to show a clear monotonic
dependence of the performance of CMA schemes on the shape of the spectrum.
From the data we also conclude that the concept of the evolution path allows
a paramount speed-up of CMA schemes but does not alleviate the dependence
on the eigenvalue spectrum. The presented Randomized Hessian (RH) approx-
imation schemes [5], on the other hand, have been shown to be less dependent
or almost invariant to the specific distribution of eigenvalues. Our empirical
results also indicate that coupling our novel, numerically stable implementa-
tion of the RH scheme with adaptive step size control is more efficient than a
scheme with approximate line search on all tested problems. We believe that
the present results may trigger research into the design of novel CMA update
schemes with improved spectral invariance. We also advocate the embedding
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of the proposed function set (most prominently the sigmoidal ones) in modern
black-box optimization benchmark test suites. Investigating quadratic function
sets under constant determinant and condition constraints (thus allowing expo-
nentially distributed eigenvalues) will be subject of future research.
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