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Abstract. We introduce the Three-Layer Hierarchical Ring Network
Design Problem, which arises especially in the design of large telecom-
munication networks. The aim is to connect nodes that are assigned to
three different layers using rings of bounded length. We present tailored
Variable Neighborhood Search (VNS) and GRASP approaches to solve
large instances of this problem heuristically, and discuss computational
results indicating the VNS’ superiority.

1 Introduction

In this paper we present the Three-Layer Hierarchical Ring Network Design (3-
LHRND) problem, which belongs to the research field of network design and
has not been considered in the literature before. 3-LHRND finds applications in
the planning of larger hierarchical communication networks where survivability
in case of failures plays a major role. The nodes of the network are assigned
to different layers—in our case three. The aim is to connect these nodes within
each layer and, additionally, the layers among each other hierarchically using
rings of bounded length for the matter of survivability. As a possible application
one might imagine a telecommunication network, where different technologies
are interconnected, e.g., high-speed fiber for layer 1, low-speed fiber for layer 2
and copper for layer 3.

In the context of survivability fault tolerance is an important issue especially
in the case of wide area networks to guarantee high reliability. A common way
to achieve these demands is the use of so-called self healing rings (often referred
to as rings for short) that ensure connectivity of two nodes in case of the failure
of a third node due to the possible routing in two different directions. Rings are,
in fact, the simplest node-biconnected structures.

With the increasing size of networks a single ring connecting all nodes would,
however, not be efficient anymore. Due to the large diameter of such a network,
capacity requirements of single links as well as communication delays would soon
be too high. Furthermore, simultaneous failures in more than one node would in
general disconnect large parts of the network. This issues can be addressed by
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dividing the network into subnetworks of limited size, i.e., the network consists
of smaller rings that are hierarchically interconnected. Interconnection nodes are
often referred to as hub nodes. When the interconnection is realized by ring struc-
tures the network is called a hierarchical ring network. To ensure survivability
also in case of failures in hub nodes, the rings are interconnected via two different
nodes—a so-called dual homing approach. In our case we consider a hierarchy
spanning nodes on three different layers using dual homing, and consequently
we refer to this problem as the Three-Layer Hierarchical Ring Network Design
problem (3-LHRND). While much work already exists for related problems, 3-
LHRND has so far not been addressed. As we will argue in Section 3, 3-LHRND
is NP-hard and also difficult to solve in practice. In order to approximately
solve larger instances, we propose a Variable Neighborhood Search (VNS) and
a Greedy Randomized Adaptive Search Procedure (GRASP). Both exploit the
special structure of the problem in various ways.

The rest of the paper is organized as follows. In Section 2 we summarize
related work. Section 3 defines the 3-LHRND, and Section 4 presents our VNS
and GRASP. Computational results are discussed in Section 5. Finally, Section 6
concludes this contribution, also pointing out suggestions for future research.

2 Related Work

While network design is a fast growing field of research, 3-LHRND with its strict
definition and constraints has not been considered yet. Nevertheless, a lot of work
has been contributed to similar problems, which contain some (but never all) of
the aspects of 3-LHRND.

In the field of network design, the hierarchical/layered aspect has first been
explicitly considered in 1986, when Current et al. [5] introduced the Hierarchical
Network Design Problem (HNDP). In the HNDP the network consists of two
primary nodes that are connected to a path and secondary nodes that connect
to this path such that the whole network comprises to a tree. The authors present
an Integer Linear Programming (ILP) formulation. Additionally, they designed
a heuristic for the HNDP based on a K-shortest path algorithm, to find the best
path connecting the primary nodes, and a minimum spanning tree heuristic, to
connect the remaining nodes to the best path found.

Balakrishnan et al. introduced theMulti-Level Network Design (MLND) in [3],
which is a generalization of the well-known Steiner network problem [6]. By
definition nodes are assigned to L different levels in MLND. In the core of their
work, the authors focus on the L = 2 case and first present an ILP formulation,
which they later extend to a multi-commodity flow formulation.

In [12] Thomadsen and Stidsen give a detailed overview about the advantages
of rings in survivable networks and present a Branch-and-Price approach for the
Hierarchical Ring Network Problem with two levels using single homing, i.e.,
each ring connects to one node of the interconnection ring. The authors assume
that node-to-layer assignments are not prespecified but are to be found during
the design process.
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In the past the attention in hierarchical network design has been primarily
drawn to two level problems. However, in recent years the interest in more gen-
eral multi (> 2) level problems has increased. Trampont, Destré and Faye [13]
describe a three level problem, like our 3-LHRND but with tree structure, where
the authors study a variant of the multi-source Weber problem. In this case
terminals (layer 3) must be connected to a central equipment (layer 1) via con-
centrators (layer 2), which are not fixed at the beginning. The objective is to
find the best location for the concentrators, i.e., determine the layer 2, such that
the overall costs of the network are minimized. To solve this problem the authors
present two stabilized column generation approaches.

The Capacitated m-Ring-Star Problem was introduced by Baldacci et al. in [4].
There the nodes are partitioned into three subsets, one depot node, customer
nodes, and transit points (Steiner nodes). The network consists of m rings of
bounded length and edges connected to the ring. All rings must contain the
depot node and connect the customers directly or via a transit point (i.e., the
additional edges). The authors compare two mathematical programming formu-
lations, namely a two-indexed and a two-commodity flow formulation.

In [2] Aringhieri et al. apply different Metaheuristics to solve two ring network
problems. One is comparable to the previously mentioned [12], the other does
not use an interconnection ring but a set of paths to connect the level two rings.
The authors designed a construction heuristic and two neighborhood structures
embedded in a Tabu Search. Moreover, they consider Path Relinking, “eXploring
Tabu Search”, and Scatter Search approaches.

From another field of research originates the Two-Echelon Location-Routing
Problem [11], which is a combination of the Facility Location Problem (FLP)
and the Vehicle Routing Problem (VRP) but, nevertheless, shares similarities
with 3-LHRND. Here the node set is partitioned in platforms (layer 1), satellites
(layer 2) and customers (layer 3). In this case the locations for the platforms and
satellites to be opened must be determined (i.e., the FLP aspect). Additionally,
two different vehicle fleets transport goods either from the platforms to the
satellites or from the satellites to the costumers (i.e., the VRP aspect). The
main differences to 3-LHRND are that the platforms need not be connected
and not all platforms and satellites need to be opened but only the beneficial
(or sometimes mandatory) ones. The authors present a VNS with a total of 21
specific neighborhood structures.

3 Three-Layer Hierarchical Ring Network Design

This section introduces the 3-LHRND with all its details. We are given an undi-
rected, complete graph G = (V,E) with vertex set V , edge set E, and a cost
function that assigns costs cij ≥ 0 to each edge (i, j) ∈ E. Each vertex is assigned
to one of three layers, i.e., the vertex set is partitioned into three disjoint subsets
V1, V2 and V3 with V1 ∪ V2 ∪ V3 = V and Vi ∩ Vj = ∅, ∀i, j ∈ {1, 2, 3}, i �= j.
A feasible solution to 3-LHRND is a subgraph GL = (V,EL) connecting all the
nodes V and satisfying the following constraints; see Figure 1 for an example.
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(a) (b)

Fig. 1. Schematic representations of (a) a feasible solution and (b) an infeasible solution
(the numbers in parentheses indicate the violated constraints)

1. The nodes in V1 are connected by a single independent ring containing no
other node.

2. The nodes from layers 2 and 3 are connected by two respective sets of paths,
containing no nodes from other layers. Each node appears in exactly one
path.

3. The end nodes of each path at layers 2 and 3 are further connected to two
different nodes (hubs) in the directly preceding layer; i.e., dual homing is
realized. We refer to the edges connecting paths to hubs as uplinks. Conse-
quently, there are no edges directly connecting a node from layer 1 to a node
from layer 3.

4. The two hub nodes a path is connected to must themselves be connected
by a simple path at their layer; i.e., the connection to a ring may not be
established via more than two layers.

5. The lengths of layer k ∈ {2, 3} paths in terms of the number of nodes is
bounded below and above by specified limits blk ≥ 2 and buk ≥ 2, respectively.

The objective is to find a feasible solution with minimum total costs c(EL) =∑
(i,j)∈EL

cij .

Considering these definitions, we observe that finding the layer 1 ring re-
sembles the classical Traveling Salesman Problem (TSP), which can be solved
independently. In contrast, optimal structures of layers 2 and 3 strongly depend
on each other. Only a suitable, concerted choice of layer 2 and layer 3 paths allow
for efficient uplinks and overall connectivity. Thus, the layers 2 and 3 cannot be
treated separately. The rings connecting layer 2 with layer 1 consist each of at
most 	|V1|/2
+ bu2 + 1 nodes and edges, while the rings connecting layer 3 and
layer 2 have up to bu2 + bu3 nodes/edges.

3-LHRND obviously is NP-hard even when looking at each layer indepen-
dently: As mentioned, for layer 1 the subproblem directly corresponds to the
TSP. Concerning layers 2 and 3, the classical capacitated vehicle routing prob-
lem (CVRP) can be reduced to each by assuming all nodes of the preceding layer
are connected via a single ring and together represent the CVRP’s depot.
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4 A VNS and GRASP for 3-LHRND

As already mentioned, the problem to connect all layer 1 nodes to a single ring
resembles the TSP and can be solved independently. We apply the Concorde TSP
solver [1] and focus in the following only on the more interesting layers 2 and 3.

Due to the 3-LHRND’s complexity and relations to other network design
problems and CVRP variants, we decided to solve it approximately using VNS
and GRASP, as these techniques are known to work well in these domains, see,
e.g., [11]. At first we designed a simple construction heuristic, which we used to
create initial solutions for the VNS and then randomized for the GRASP. For
general introductions to VNS and GRASP, we refer to [8,10].

4.1 Construction Heuristic

Our construction heuristic is inspired by the simple nearest-neighbor heuristic
for the TSP. To create the layer 2 paths we start with an unvisited layer 2 node
i, search for the nearest hub node h ∈ V1 according to the edge costs cih, and add
the uplink eih to our solution. Then we determine in layer 2 the closest unvisited
node j to our current node i, add the edge eij to our solution, mark i as visited,
and make j our current node. We repeat this procedure until the given upper
bound for layer 2 paths bu2 is reached. Then we search for the nearest hub node
different from h back to layer 1 and add this uplink to our solution. Following
this approach we add layer 2 paths to our solution until all layer 2 nodes are
marked as visited. In case that the length of the last path would be less than
the lower bound for layer 2 paths bl2 we make the second to last path shorter to
satisfy all constraints.

To create the layer 3 paths we apply the same procedure, but now we further
have to ensure that the second uplink connects to the same layer 2 path as the
first uplink.

4.2 Variable Neighborhood Descent

Variable Neighborhood Descent (VND) [8] extends simple local search by system-
atically considering a set of different neighborhood structures in a deterministic
way until a solution is reached that is locally optimal w.r.t. all of them. Thus,
the improvement potential strongly relies on the neighborhood structures and
the order of their application.

Our VND, which is used within VNS as well as GRASP, searches eight neigh-
borhood structures that are induced by the following operators in the given order.

Two-Edge-Exchange (2EE): Based on the well known operator for the TSP
this operator investigates all feasible candidate solutions that differ in at
most two edges. In this case 2EE is applied to each layer 2 and layer 3 path
separately starting with the first uplink and ending with the second. The
number of neighbors and, consequently, the runtime for completely searching
this neighborhood is bounded by O((buk)

2 · �Vk/b
l
k�) for k ∈ {2, 3}.
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Three-Edge-Exchange (3EE): After the use of 2EE a reduced form of three-
edge-exchange is applied to all layer 2 and layer 3 paths. This reduced form,
as presented in [9], only deals with the cases that are not covered by 2EE, i.e.,
when indeed three edges are replaced by three new edges. This limitation and
the fact that the number of neighbors lies in O((buk)

3 · �Vk/b
l
k�), k ∈ {2, 3},

makes searching 3EE relatively fast in relation to the standard three-edge-
exchange for the TSP. Like 2EE this operator is applied to all edges of a
path including the uplinks, and only feasible solutions are considered.

Split-Rings (SR): This operator splits one path into two subpaths and relinks
the end of the first and the beginning of the second subpath back to the
preceding layer. Care must be taken as some layer 2 nodes along a split path
might serve as hub nodes for layer 3 paths. If the split is performed between
two hub nodes of an attached layer 3 path, this layer 3 path would not be
connected to the same layer 2 path anymore. Each layer 3 path affected in
this way is therefore relinked by determinig its cheapest feasible pair of hub
node connections. Additionally, the splitting point must be chosen so that
both subpaths exceed blk, k ∈ {2, 3}.

Two-Node-Exchange (TNE): As the name indicates this operator considers
all solutions in which two nodes from different paths on the same layer are
exchanged. If an exchange on layer 2 affects a hub node, then the attached
layer 3 paths must be relinked as described above. This is achieved be relink-
ing either within the old or within the new path of the exchanged hub node.

One-Node-Move (ONM): This operator moves a single node from one path
to another, i.e., the node is removed from its old path and inserted in
another path from the same layer when the corresponding path length
bounds blk and buk are satisfied. Again, if a layer 2 hub node is moved then
relinking is necessary for the attached layer 3 paths. All nodes as well as all
feasible insertion points are considered.

Append-Rings (AR): This operator represents the complement to SR. It
connects two paths on the same layer. The length of the new path must not
exceed the upper bound buk. For layer 2 the existing uplinks can be used but
relinking of layer 3 paths might be necessary, when two layer 3 paths are
merged, which are connected to different layer 2 paths.

Change-Uplinks (CU): The CU operator optimizes the uplinks for all layer 2
and layer 3 paths. For each path, the overall cheapest pair of hubs is
determined, taking care that the two hub nodes must be different and the
hub nodes of each layer 3 must appear in the same layer 2 path.

Merge-Rings (MR): This operator provides an additional opportunity to
merge short paths into a new one. While AR only considers their appen-
dance, MR tries to insert one path between any two nodes of another path
from the same layer, providing the path length limit is not exceeded.

We implemented the VND with its eight neighborhood structures with three dif-
ferent step functions, namely classical next and best improvement and, addition-
ally, we used a function that applies a move immediately, when an improvement
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was found (like next improvement) but then (in contrast to next improvement)
stick with this operator until no further improvement can be found within this
neighborhood.

4.3 Variable Neighborhood Search (VNS)

A general VNS, as used for this paper, is a stochastic algorithm that combines
VND as local search procedure with an outer search mechanism performing
random moves in typically larger neighborhoods in order to escape the local
optima of the VND. The outer random moves are also called shaking [8].

In preliminary tests we searched for the best combination of shaking neigh-
borhood structures. It appeared that only slight changes in the solution lead to
a better and smooth improvement during the VNS.

Larger moves perturbated the solution in a way so that the VND could not
steadily improve this solution. We finally ended up with the following four shak-
ing operators based on TNE and ONM: (1) exchange two random nodes between
layer 3 paths, (2) exchange two random nodes between layer 2 paths, (3) move
one random layer 3 node to another path, and (4) move one random layer 2
node to another path. In all cases, only moves respecting all the constraints are
performed.

Since, TNE and ONM are used later within the VND, the previous operators
(2EE, 3EE, SR) typically already found improvements for the affected paths so
that TNE orONMwill not simply undo the changes performedwithin the shaking.

4.4 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP [10] marks another metaheuristic approach to avoid getting trapped in
local optima. A construction heuristic is randomized in order to create diverse
initial solutions, and each of which is successively optimized by local search. The
randomization of a construction heuristic is usually performed by turning from
a pure greedy selection of the next component by which a partial solution is ex-
tended towards using a Restricted Candidate List (RCL) of promising candidate
components and choosing from it at random.

For our purpose we randomized the construction heuristic from Section 4.1.
In each iteration, when a new edge is added to a path from the current node
i to the next node j, this randomized heuristic creates an RCL that contains
the r-nearest neighbors of i, with r being a strategy parameter. Node j is then
chosen randomly from the RCL, based on a uniform distribution. For r, i.e., the
length of the RCL, we set buk/2, k ∈ {2, 3}. However, we still choose for each
path the best uplinks deterministically. Due to the fact that the choice of the
uplinks is a local decision with respect to each path we know that in the end the
CU neighborhood structure will find the best uplinks for all paths. Therefore,
a randomized choice of the uplinks would not meaningfully increase our search
space but cause needless effort. After the randomized heuristic created an initial
solution, it is improved by the previously described VND. This procedure is
repeated until a given time-limit is reached.
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Table 1. The underlying TSPLIB instances of the test set with the number of generated
test cases, upper bounds, time limits and the average objective values for initial and
final solutions and corresponding standard deviations obtained from VNS and GRASP
(30 runs per test case).

VNS GRASP

TSPLIB # buk t[s] init dev final dev init dev final dev

ulysses22 1 5-7 150 166.82 0.00 128.28 1.70 166.82 0.00 129.56 0.00
att48 4 5-7 150 76560.30 4406.66 61721.55 1053.39 82084.04 4146.29 63527.21 2120.45
eil51 4 5-7 150 1043.27 36.85 756.75 21.60 1075.17 50.44 779.55 36.27
berlin52 4 5-7 150 19078.36 1233.71 13709.26 428.23 19800.12 939.20 14309.64 769.90
eil76 12 5-12 150 1227.28 59.19 933.07 40.52 1462.40 130.43 971.26 37.23
gr96 18 5-12 300 1220.23 76.19 964.20 43.04 1514.36 172.12 1045.29 43.34
kroA100 18 5-12 300 59707.86 5263.22 41742.56 1584.33 74798.61 6745.93 46171.74 2974.85
kroB100 18 5-12 300 59259.01 6148.42 41796.04 1644.53 73918.06 8229.28 46204.49 2656.25
bier127 12 8-15 300 263995.65 8274.02 209636.01 3386.62 385901.48 24744.77 228707.75 5359.88
ch150 18 8-15 300 15589.56 575.06 12286.63 440.28 24454.02 1784.15 13988.46 436.43
kroA200 18 8-15 300 73801.91 3111.26 55314.71 1371.25 113770.39 8222.59 65670.67 1904.39
kroB200 18 8-15 300 75040.20 3855.24 58406.59 1665.32 118601.24 9128.76 66267.41 2340.33
gr229 12 12-20 600 3858.00 166.33 3008.36 59.19 7559.52 619.88 3588.33 141.86
pr299 12 12-20 600 116878.18 4526.67 96944.53 1507.31 246754.55 19372.46 119237.01 4592.66
lin318 18 12-20 600 100782.81 3423.72 83170.33 1789.88 204233.35 15512.07 104900.96 4322.02
gr431 18 12-20 900 4544.14 163.13 3651.96 105.69 9230.29 829.13 4525.99 258.50
pr439 18 12-20 900 267944.92 11269.23 222507.49 10831.91 560935.73 46642.47 287415.51 17304.18

5 Experimental Results

For testing purposes we created a benchmark instance set based on TSPLIB1. We
used 17 TSPLIB instances and performed a k-means clustering to determine the
layer 1 and layer 2 nodes. By varying the number of nodes in the layers we derived
42 instances. All graphs are complete, with the exception that edges between
layer 1 and layer 3 were removed as they cannot appear in feasible solutions.

Moreover, we defined combinations of useful upper bounds for the path lengths
depending on the number of nodes in the graph, which resulted in 223 overall
test cases. As a lower bound we assumed a minimum length of two for all paths.

For each of the test cases we performed 30 runs executed on a single core of
an Intel Xeon (Nehalem) Quadcore CPU with 2.53 GHz and 3GB of RAM. As
stopping criterion we used the same CPU time limits for both VNS and GRASP
as indicated in Table 1. We always applied next improvement as step function,
which provided the best results according to preliminary tests. These tests also
indicated that creating initial solutions with more restricted path lengths of
up to buk − 2, k ∈ {2, 3}, only instead of buk yields slightly worse solutions but
with a significantly higher improvement potential. Consequently, we followed
this strategy in our VNS and GRASP. In the following section we describe our
results based on this test set.

5.1 Test Results

Results are summarized in Table 1. The columns have the following meaning:
TSPLIB indicates the underlying instances our derived test cases are based on

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Fig. 2. Relative number of total improvements achieved by the individual neighbor-
hood structures within VND

(the number at the end of the name denotes the number of nodes in the graph);#
denotes the numbers of different test cases for each TSPLIB instance; buk lists the
range of used upper bounds for layer 2 and 3; t describes the CPU-time limits
in seconds; for the VNS and GRASP sections init lists the average objective
values of the initial solutions together with their standard deviations labeled by
dev, while final denotes the average objective values of the final solutions found
in each run, again together with corresponding standard deviations dev.

Since, in GRASP initial solutions are generated by the randomized con-
struction heuristic, the significantly worse initial objective values and higher
standard deviations are natural. As can be seen easily, the successive VND
could improve these initial solutions dramatically, also leading to substantially
decreased standard deviation.

Concerning VNS, it can be easily seen that it clearly outperforms GRASP. In
fact, average final objective values from the VNS are always smaller than those
from GRASP. Student t-tests indicated the statistical significances of these dif-
ferences with error probabilities smaller than 1%. Since, there is no opportunity
for GRASP to escape local optima during local search, the GRASP approach
cannot easily break up the path structure of the initial solution as is done by the
shaking in VNS. On the other hand, it appears that the randomized construction
heuristic cannot easily provide promising path structures from the beginning.

In VND, all eight neighborhood structures contribute to the overall success,
although the impacts vary. Figure 2 shows for three exemplary cases, which
reflect the typical behavior well, how many times the application of each neigh-
borhood structure led to an improved solution in relation to all improvements
achieved. The test settings were for berlin52 |V1| = 4, |V2| = 10, bu2 = 5, bu3 = 7;
for bier127 |V1| = 10, |V2| = 40, bu2 = 12, bu3 = 15; for gr229 |V1| = 12, |V2| = 80,
bu2 = 17, bu3 = 20. One can further see here that the success of neighbor-
hood structures only loosely depends on the upper bounds for the path lengths.
The highest improvement was achieved by 2EE, which is also applied first, while
3EE had only a minor impact. TNE proves to be an important operator, followed
by ONM. MR was rarely successful.
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6 Conclusions and Future Work

We introduced the Three-Layer Hierarchical Ring Network Design Problem and
presented a VNS and GRASP for solving it heuristically. Both strategies use
a common construction strategy as well as a VND for local improvement. The
VND explores eight tailored neighborhood structures, which have been shown
to augment each other well. In our experiments, the VNS clearly outperformed
GRASP. In the future we will investigate alternatives for the construction heuris-
tic, e.g., based on the prominent savings heuristic from vehicle routing problems,
as well as study further potentially more powerful neighborhood structures for
VND/VNS. In particular, we expect further improvements by considering larger
neighborhood search concepts such as cyclic exchanges over more than two paths,
as well as hybrid techniques involving mixed integer linear programming for solv-
ing reasonably sized subproblems. An important practical necessity is to test the
approaches also on more realistic sparse graphs.
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