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Abstract. Evolution produces gene regulatory networks (GRNs) able
to control cells. With this inspiration we evolve artificial GRN (AGRN)
genomes for the reinforcement learning control of mechanical systems with
unknown dynamics, a problem domain similar in its sparse feedback to
that of controlling a biological cell. From the fractal GRN (FGRN), a suc-
cessful but complex GRN model, we obtain the Input-Merge-Regulate-
Output (IMRO) abstraction for GRN-based controllers, in which the
FGRN’s complex fractal operations are replaced by simpler ones. Compu-
tational experiments on reinforcement learning problems show significant
improvements from the use of this simplified approach. We also present the
first evolutionary solution to a hardened version of the acrobot problem,
which previous evolutionary methods have failed on.

Keywords: Gene regulatory network, IMRO, FGRN, genetic algorithm,
ALPS, control, reinforcement learning, pole balancing, acrobot.

1 Introduction

Gene regulatory networks (GRNs) act as controllers in situations as different
as single cell bacteria and multi-cell organisms, with orders of magnitude of
variation in size. GRNs are a product of evolution, optimised for controlling
their host cell in a myriad ways, depending on context (single-cell vs multi-cell
organism, during development, etc).

However it is generally desirable to avoid unnecessary complexity when de-
veloping systems inspired by nature and hence we will seek here to extract the
key dynamics of the FGRN model, currently the most successful AGRN model
for control, to improve its control capabilities. In parallel with nature we use
artificial evolution, in the form of a genetic algorithm (GA), to evolve AGRNs
for the control of mechanical systems.

This paper focuses on mechanical systems reinforcement learning problems,
in which the system’s dynamics are completely unknown and the reinforcement
feedback is limited. Unknown dynamics is important for real world applications
(for example coal furnace combustion control [5]), and in addition by minimising
domain knowledge we are ensuring the wide applicability of our method. This
work additionally represents the first solution of the double pole and acrobot
problems with an AGRN system.
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2 Related Work on Artificial GRNs

Surprisingly, given the role of natural GRNs in biological control, AGRN appli-
cations were initially focused only on development. But recently AGRN models
have known increased use for control: Nicolau et al[12], and Lopes and Costa[11],
have applied GRNs based on a binary genome to single pole balancing, while
Joachimczak and Wróbel[8] used a GRN based on a linear genome for evolving
simple foraging behaviours.

The FGRN system, introduced by Bentley[2], is a complex evolutionary model
of a GRN in which proteins are bitmaps generated from the Mandelbrot set frac-
tal. The FGRN was originally devised as a developmental system with applica-
tions such as pattern generation, or an algorithm producing increasingly precise
estimations of π[9], though it also had clear potential for control purposes. There
have been a number of previous FGRN control applications, evolving behaviours
such as wall-following[1], grid-world box-pushing[17], and robotic locomotion[16].
In particular Krohn and Gorse[10] have applied the FGRN system to multiple
versions of the single pole balancing problem, a starting point for the more am-
bitious work to be presented here.

3 Problem Domain: Reinforcement Learning

Reinforcement learning consists of discovering what actions to take for any given
environmental state in order to maximise a scalar reward[15]. In this paper the
focus will be on problems in which the full state of the environment is given, but
in which, as discussed above, the environmental dynamics are unknown. Figure 1
displays the problems considered in this work.

(a) Polebalancing (b) Double pole balancing (c) Acrobot

Fig. 1. Reinforcement learning problems considered in this work
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3.1 Pole Balancing

Pole balancing is a well-known, well-studied control problem that has been used
as a benchmark for the design and test of many controllers[6]. Consequently,
standard equations of motion and constants have arisen; these will be used in
the current work and are described in ref [6].

The single pole version, shown in Figure 1a, is usually (and here) defined to be
the problem of keeping the angular position θ of the 1.0m tall hinged pole within
12◦ of vertical, and the distance x of the cart on which it is mounted within 2.4m
of the centre of the track, using only ‘bang-bang’ control (a force F of ±10N
being applied to the cart at each time step). The system state information given
to the controller consists of x, ẋ, θ, θ̇.

The double pole version, shown in Figure 1b, consists of simultaneously bal-
ancing two poles of different size, with different starting angles, on the cart.
The poles are respectively 1.0m and 0.1m tall, and the acceptable range for pole
angles θ1 and θ2 is here within 36◦ of vertical. In this case the system state is
composed of x, ẋ, θ1, θ̇1, θ2, θ̇2. Most other studies involving double pole bal-
ancing use as integration method two-step fourth order Runge-Kutta, and for
consistency this will be used throughout the current work.

Gomez et al. have produced an extensive comparison of the performance of
machine learning methods on the single and double pole balancing problems
with or without velocities included in the inputs[6]. Controllers developed using
the pole balancing problem have also been used in a variety of real-world control
applications[5].

3.2 Acrobot

The acrobot, shown in Figure 1c, is a two-link underactuated robot[13]; it is
roughly analogous to a gymnast hanging from a bar and only able to act by
bending at the hips. The acrobot has been extensively studied both as a control
and machine learning problem.

Unlike the pole balancing problem the acrobot problem definition varies sig-
nificantly from one study to the next. However acrobot goals can be put into
two broad categories: swing-up and handstand. Swing-up consists of generating
actions such that the acrobot’s tip (the gymnast’s feet) reaches a one link height
above the bar in the shortest possible amount of simulated time. Handstand is
the harder task of swinging up the acrobot and then keeping both links vertically
balanced; all solutions to the acrobot handstand problem have so far included
pre-existing knowledge of the problem, e.g. the equations of motion, the desired
energy level of the goal position, or the coordinates of the target position[3]. Solu-
tions to the swing-up problem have frequently also involved pre-existing domain
knowledge, though Sutton[14] successfully applied a combination of SARSA with
coarse input coding to the 5Hz swing up problem, with bang-zero-bang.

More recently, and most significantly for the current work, da Motta Salles
Barreto and Anderson[4] have introduced a harder version of the acrobot swing-
up problem by multiplying by four the frequency of control actions (using a 20Hz
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rather than 5Hz control frequency), reporting successful results with a SARSA-
based method and a policy iteration algorithm but being unable to obtain any
viable solution using several evolutionary methods. In contrast this paper will
show that by extracting key operational features from the FGRN model, and by
using for inputs the continuous state representation sin θ1, cos θ1, sin θ2, cos θ2,
θ̇1, and θ̇2, it is indeed possible to address this more challenging version of the
problem using an evolutionary method.

4 System Description

4.1 Input-Merge-Regulate-Output (IMRO) System

The IMRO system is an abstraction of the GRN model that underpins the
FGRN. An IMRO genome is a set of genes with one of three possible types (input,
regulatory, or output). An IMRO controller is the combination of a genome and
a merging module which, similarly to a biological cell, provides the environment
for the ‘execution’ of the genome. The merging module takes in proteins and
merges them into a cell state that changes with the addition of new proteins.
The cell state is an array of real values of length N .

An input gene takes in a scalar input and produces a protein output; it is
equivalent to a combination of the FGRN’s environmental and receptor genes.
Both regulatory and output genes take in the cell state, outputting proteins in
the case of the former, and a scalar in the case of the latter. The outputs of the
genes are functions only of their latest input, whereas the merging module stores
past proteins until they have decayed by the mechanism to be described below.

One control iteration of the IMRO controller (in which the controller receives
input and gives output) consists of the following steps: (i) the existing proteins
are decayed; (ii) for each scalar input a corresponding input protein is generated
and added to the existing proteins in the merging module; (iii) these proteins
are combined into a new cell state by the merging module; (iv) the cell state
determines the activation of the regulatory genes, which output proteins to the
merging module, and also the activation of the output genes, which produce the
controller’s scalar outputs.

Fig. 2. The IMRO system. Left, the data flow of a controller. Right, the internal details
of the a) Input, b) Regulatory, and c) Output genes. Key: P = protein, S = cell state,
R = real scalar
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Proteins and Cell State. A protein is composed of an array of integers L of
length N , a lifespan τ and a real value v. L is an array of levels, determining how
prominently the protein will feature in the cell state; τ is the protein’s time to
live; and v determines how the protein will influence, through the cell state, the
activation of regulatory and output genes. Proteins are decayed by decreasing τ
by one; when τ = 0 the protein is deleted.

The cell state array is generated by taking, for each i in N , the value v of the
protein with the highest level Li for that index (or the average of the v values, if
several proteins have the same maximum Li); if for the index i there is no existing
protein value Li superior to a fixed threshold set to 0, the corresponding value
in the cell state is set to 0. This allows the evolution of proteins which only
influence part of the cell state.

4.2 Gene Components

As detailed in Figure 2, the genes are composed of combinations of four compo-
nents: promoter, activation, protein-output, and scalar-output. All component
parameters are subject to evolution.

Gene Promoter. The role of a natural gene’s promoter section is to regulate
the activation of the gene based on the presence/absence of certain proteins or
combinations of proteins. The IMRO gene promoter accomplishes this regulatory
role by masking away part of the merged protein cell state, and then producing
a matching score that is used further on to determine the activation of the gene.

In detail, the IMRO promoter consists of a pair of evolvable arrays of the same
size N as the cell state: a boolean vector M acting as a mask, and a real vector
W providing weights for the corresponding values in the cell state. Formally, the
matching score mi,t of the promoter of gene i at time step t of a given simulation

(e.g. a pole balancing run) is mi,t =
∑N

j=1 Mi,jWi,jSj,t, where Mi,j ∈ {0, 1} is
the jth element of the promoter mask vector of gene i; Wi,j ∈ R is the jth
element of the promoter weight vector of gene i; and Sj,t ∈ R is the jth element
of the cell state at time t.

Gene Activation. The gene activation function of IMRO regulatory and out-
put genes is similar to the FGRN’s activation function, but removes the need
for arbitrary constants. The activation function of gene i is defined by its scale
αi and its threshold θi ∈ [−1, 1]. For gene i at time t, the activation ai,t ∈ [0, 1]
is given by

ai,t =

{
max(vi,t,θi)−θi

1−θi
if θi > 0

min(vi,t,|θi|)
|θi| if θi < 0

,where vi,t =
tanh(αimi,t) + 1

2
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This allows for a large variety in the direction and scale of the activation function,
while preserving the general shape of its natural equivalent : a 0 or 1 plateau,
followed or preceded by a smooth curve to/from the other end of the [0, 1] range.
This function also preserves both the digital aspect of natural gene activation (a
gene can be activated or not), and the analog aspect (once activated, a variable
amount of protein can be produced, depending on the activation level).

Protein Output. When in a regulatory gene, the protein output component
generates a protein on activation (when the activation value is non null). The
component defines the protein’s L level array, as well as its initial time-to-live τ .
The protein’s value v is determined from the combination of a scaling factor β
and the activation value. For gene i at time t, the protein value is vi,t = βiai,t, and
similarly when in an input gene, except an external scalar input then replaces the
activation value. In randomly initialised genomes, the protein output components
of input genes are initialised with a τ of one, and only have one positive value
amongst the levels, to avoid a flooding of the cell state.

Scalar Output. The scalar output component determines the return value of
an output gene. If a boolean value is desired, the output of gene i at time t is
oi,t = 0 iff ai,t = 0, otherwise 1. If a real value is desired, the component has a
scale parameter β, and a threshold parameter T ; the output of gene i at time t
is then oi,t = max(ai,t, 0) iif T ≥ 0, and |T | −min(ai,t, |T |) otherwise.

5 Experiments

In this section we first give some relevant parameter settings and experimental
details, before presenting some preliminary experiments along with their results,
and finally detailing the results of the pole balancing and acrobot experiments.

5.1 Parameter Settings and Experimental Details

A maximum of 10,000 genomes are evaluated per run for the preliminary exper-
iments and the pole balancing. For the acrobot, following ref [4], a maximum of
3,000 genomes is evaluated per run. All experiments are run 50 times.1

Genetic Algorithm. IMRO and FGRN genomes are evolved using the ALPS
genetic algorithm[7] with a layer size of 25 and an age gap of 10. Tournament
selection is used in each layer, with a tournament size of 4 and with elitism set to
3. Parents are selected from the top 40% of each layer, except in one percent of
cases, where a parent is selected randomly. The gene component mutation rate
is 0.1, and uniform crossover is always applied. ALPS was found to increase the
reliability with which successful FGRN controllers were found[10].

1 The source code for all the experiments and systems described in this paper is
available at http://github.com/susano/ppsn2012

http://github.com/susano/ppsn2012
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FGRN. The FGRN genomes evolved are composed of four regulatory genes,
one receptor gene, one behavioural (output) gene, and as many environmental
genes as there are inputs. The zero centered input-mapping[10] is used.

IMRO. The IMRO genomes evolved are composed of two regulatory genes,
one output gene, and as many input genes as required by the problem. The
size of the cell state N is set to eight. The allocation of more regulatory genes
to FGRN genomes than to IMRO genomes followed preliminary experiments in
which FGRN performances were poorer with fewer than four regulatory genes.

5.2 Preliminary Experiments

The initial test[2] of the FGRN model’s developmental capabilities was to at-
tempt to evolve genomes able to produce specific activation patterns (see Fig-
ure 3), no input was given. The fitness of a genome was the number of matches
between its activation output and the pattern. The ability to generate a variety
of activation patterns, independently of any input, can allow the exploration of
otherwise closed regions of the space of possible controllers, and we therefore
applied both FGRN and IMRO genomes to this task.

+ + + + +
+ + +++ ++++ ++++

Pattern 1 Pattern 2 Pattern 3

Fig. 3. Test activation patterns from ref [2]. Patterns 1 and 2 require two separate
output genes per genome

Table 1. The percentage of successfully generated patterns, and the mean number of
evaluations required to success (standard deviation in parenthesis).

FGRN IMRO

Pattern 1 100% 810(894) 100% 275(244)
Pattern 2 100% 619(562) 100% 398(364)
Pattern 3 34% 6095(2797) 100% 1794(1758)

The results are impressive: IMRO genomes can be evolved significantly faster
(p < 0.001) to produce the desired pattern than FGRN genomes, and in the case
of pattern 3, much more reliably. (It should be noted that the FGRN results
on pattern 3, despite being significantly worse than the IMRO results, are an
improvement on Bentley’s initial results for this pattern [2], where an additional
guidance component needed to be added to the fitness to successfully evolve this
pattern. We attribute this to the use here of the ALPS genetic algorithm, and
to an improvement in the FGRN settings we use[10])
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5.3 Pole Balancing and Acrobot Experiments

The setup of the pole balancing and acrobot problems is detailed in Section 3.
The controllers are run on the pole balancing problems for 100,000 simulated
timesteps (≈ 30 minutes). For the acrobot, each controller is run for a maximum
of 4,000 timesteps; this was necessary instead of the 1,000 timesteps to allow the
genetic algorithm to find initial solutions from which to start improving. The
fitness for pole balancing is the number of timesteps before a pole falls down.
For the acrobot it is the number of timesteps until swing-up, inversed.

Pole balancing. The results are detailed in Table 2. Both FGRN and IMRO
genomes were able to evolve successful controllers at every run for the single pole
balancing problem, but only IMRO genomes were able to evolve the ability to
solve the double-pole balancing problem, the most successful FGRN controller
only balancing the poles for 172 timesteps (≈ 3 seconds) out of 100,000.

Table 2. Number of failures/evaluations before a successful controller is found. Key:
SD = Standard Deviation

FGRN IMRO
Mean(SD) Best Worst Mean(SD) Best Worst

Single Pole 729(787) 50 5129 480(356) 33 1985
Double Pole - - - 2200(1486) 487 8155

Acrobot. Table 3 details the results of the IMRO and FGRN systems on
the acrobot, as well as those of the SARSA-RGD system, an online learning
method, and of LSPI, a policy iteration method, on the same problem. The
IMRO system performed significantly better than both the FGRN system and
LSPI (p < 0.001), finding on average significantly shorter trajectories. But it per-
formed worse than SARSA-RGD, though SARSA-RGD was less reliable, failing
in some of the runs to find any swing-up trajectory. Figure 4 shows the trajectory
of an acrobot controlled by the IMRO system.

Table 3. Length of the shortest trajectory found to acrobot swing-up, sorted by short-
est average trajectory. The results for SARSA-RGD and LSPI are taken from ref [4].

Mean(SD) Best Worst

SARSA-RGD 276.56(106.62) 238 -
IMRO 307.68(40.42) 266 500
LSPI 335.90(12.11) 315 343
FGRN 357.26(69.92) 257 588
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Fig. 4. An example acrobot swing-up trajectory produced by the IMRO system. Top,
the position of the acrobot at each time step. Bottom, the force applied at each
timestep. Long periods of the same activation, and limited use of the null force ac-
tion, are typical of efficient swing-up solutions.

6 Discussion

This paper has introduced IMRO, a simplified abstraction of the GRN model
underpinning the successful but complex FGRN system. These simplifications,
already desirable in themselves, resulted in greatly improved performance on
control tasks of a widely different nature: while the pole balancing is a stabil-
isation problem, the acrobot is the exact opposite, requiring the controller to
destabilise the system until it reaches a remote region of the state-space.

The performance of the FGRN system in the same experiments, and partic-
ularly the combined failure on the double pole balancing problem and in the
generation of pattern 3, and its limited success on the acrobot, lead us to believe
the FGRN system to be more suitable for control problems not requiring very
precise control sequences, but having a large variety of possible complex control
strategies. This might find its root in the original developmental nature of the
FGRN system, where the complexity of the system might be more useful.

Future work with the IMRO system will focus initially on finding harder
control problems to which it can be applied. If it proves necessary to make
changes to the system this will be facilitated by its modularity and the clearly
defined interfaces between its components. However we do not seek complexity
for its own sake, but to abstract from biology only those elements that prove
useful in problem solving, which may indirectly also throw light on why nature’s
solutions to problems are frequently so effective.
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