

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 510–518, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Spanning Tree-Based Encoding of the MAX CUT
Problem for Evolutionary Search

Kisung Seo1, Soohwan Hyun1, and Yong-Hyuk Kim2,*

1 Dept. of Electronic Engineering, Seokyeong University, Seoul, Korea
ksseo@skuniv.ac.kr, xjavalov@shhyun.com

2 Dept. of Computer Science and Engineering, Kwangwoon University, Seoul, Korea
yhdfly@kw.ac.kr

Abstract. Most of previous genetic algorithms for solving graph problems have
used vertex-based encoding. In this paper, we introduce spanning tree-based
encoding instead of vertex-based encoding for the well-known MAX CUT
problem. We propose a new genetic algorithm based on this new type of encod-
ing. We conducted experiments on benchmark graphs and could obtain perfor-
mance improvement on sparse graphs, which appear in real-world applications
such as social networks and systems biology, when the proposed methods are
compared with ones using vertex-based encoding.

Keywords: Basis change, encoding, representation, genetic algorithm, MAX
CUT, spanning tree, graph.

1 Introduction

In genetic algorithms (GAs), different encodings lead completely different search on
solution space, and as a result, encoding can affect performance largely. There have
been many studies of emphasizing the importance of encoding in GAs. Kim et al. [1]
improved the performance of genetic algorithms on various problems by rearranging
the related gene positions to be closely located. This gene rearrangement can be seen
as a simply type of transformed encoding. There have also been more generalized
studies of encoding transformation making the relation between genes be the most
independent by applying invertible linear transformation [2, 3]. These studies just
showed the importance of encoding transformation, but they failed to show the con-
crete transformation methods. As an extension of these studies, there has been a trial
to find better encoding using a meta-GA [4]. However it also failed to give a good
guideline about how we transform encoding in a given problem.

Most studies about graph problems such as graph partitioning and MAX CUT have
been vertex-centric when dealing with partitions and representing them [5-14]. Intui-
tive techniques based on vertices, which are easy to manage, have been mainly used
to solve the graph problems. However, when dealing with partitions, there have been

* Corresponding author.

 A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search 511

studies [15-19] using methods based on edge, which is a dual of vertex. In particular,
Armbruster et al. [20] and Yoon et al. [21] used an edge representation for solving
graph partitioning, which maps a solution to an edge set, not a vertex set. In their
representation, each location of an encoding is assigned to 1 if its corresponding edge
is on the cut and 0 otherwise. This representation is well adapted to their integer pro-
gramming formulation, but it is very crucial but difficult to check whether or not a
given encoding forms a valid graph partition.

In this paper, we propose a new genetic algorithm based on not vertex-based en-
coding but spanning tree-based encoding [22, 23] as a kind of edge-based encoding.
Contrary to general edge-based encoding, spanning tree-based encoding represents
only feasible partitions. As a target problem, we adopted the MAX CUT problem,
which is well known as a representative NP-hard problem, and examined the perfor-
mance of the proposed genetic algorithms experimentally. The proposed method is
expected to well perform on sparse graphs. In particular, if we consider that graphs
appearing in real-world applications such as social networks and systems biology are
sparse, the proposed method has great potential in real-world graph problems.

Section 2 discusses the MAX CUT problem and its previous work. Section 3 de-
scribes the proposed spanning tree-based encoding scheme. Section 4 presents expe-
rimental results on various graph sets, and Section 5 concludes the paper.

2 MAX CUT

It is important in combinatorial optimization to partition the vertices into two disjoint
subsets of nearly equal size such that the sum of edge weights with two edge end-
points in different sets (cut size) is maximized or minimized. Given an undirected
graph G = (V, E) with edge weights, the MAX CUT problem (Fig. 1) is that of find-
ing a subset S⊂V which maximizes the sum of edge weights in the cut (S, V - S).

Fig. 1. Example of MAX CUT

Every graph has a finite number of cuts, so one can find the minimum or maximum
weight cut in a graph by an exhaustive search that enumerates the sizes of all the cuts.
This is not a practical approach for large graphs which arises in real-world applica-
tions since the number of cuts in a graph grows exponentially with the number of
vertices. Although we can solve the min-cut problem without balance requirement in
polynomial time using the maxflow-mincut algorithm [24], we have no such fortune

512 K. Seo, S. Hyun, and Y.-H. Kim

when it comes to the MAX CUT problem. There is no known way to solve the prob-
lem optimally other than by exhaustive enumeration. The MAX CUT problem is one
of Karp's original NP-complete problems [25] and has been known to be NP-complete
even if the problem is unweighted [26].

Since there is no algorithm that guarantees an optimal solution, a typical approach
to solve such a problem is to find a ρ-approximation algorithm that delivers a solution
at least ρ times the optimal value in polynomial time. Sahni and Gonzales [27] pre-
sented a 1/2-approximation algorithm for the MAX CUT problem. Their greedy ap-
proach iterates through the vertices and decides which placement (S or V - S) max-
imizes the cut of vertex vi with respect to vertices v1 to vi-1. Since [27], many re-
searchers have presented approximation algorithms for the MAX CUT problem [28-
31], but little progress has been made. For more than twenty years a factor of 0.5 has
been the best-known polynomial-time performance guarantee for the MAX CUT
problem. An algorithm by Goemans and Williamson (GW) [32] guarantees a factor of
0.878 of the optimum. The significant improvements are due to the technique of posi-
tive semidefinite programming and randomized rounding. However, solving semide-
finite programming is computationally expensive. Homer and Peinado [33] gave a
parallelized version of GW. In [33], GW was improved by combining with simulated
annealing (SA) [34]. Afterward, Kim et al. [35] successfully applied GAs to the MAX
CUT problem. In practical, when the GA is combined with lock-gain-based local
search [11], the hybrid GA could outperform GW (the best approximation algorithm)
combined with SA. It is known the GAs have good performance when applied to the
MAX CUT problem [35], we adopted the MAX CUT problem to test our new encod-
ing scheme in this paper.

The MAX CUT problem has many applications in various fields, It has been ob-
served that one of the phases (the layer assignment problem) in the design process for
VLSI chips and printed circuit boards (PCB) can be reduced to the MAX CUT prob-
lem [36, 37]. One of the most famous applications of the problem comes from a clas-
sical application to statistical physics [36]. It is concerned with the exact determina-
tion of a minimal energy configuration of a spin glass under no exterior field and
under a continuously varying exterior magnetic field. Poljak and Tuza [38] provided a
comprehensive survey of the MAX CUT problem.

3 Encoding and Evaluation

Each solution is represented by a chromosome, which is a binary string. In this sec-
tion, we consider two different types of binary encoding to represent solutions for the
MAX CUT problem.

3.1 Vertex-Based Encoding

When we use vertex-based encoding in GAs, the number of genes in the chromosome
equals n, which is the number of vertices in the graph. Each gene corresponds to a

 A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search 513

vertex in the graph. A gene has value 0 if the corresponding vertex is in S, and has
value 1 otherwise.

To evaluate the cut size of a solution, we should compute the number of cut edges,
which is an edge whose end-vertices are in different sides. For each edge, to deter-
mine if it is a cut edge, we just check that the values of genes corresponding to its
end-vertices are different, i.e., (0,1) or (1,0).

3.2 Spanning Tree-Based Encoding

If {V1, V2} is a partition of V, the set E(V1, V2) of all the edges of G crossing between
V1 and V2 is called a cut. Cut space consisting of all the cuts is proven to be vector
space [23]. It means that an arbitrary cut can be represented by a linear combination
of basis elements of cut space.

Fig. 2. Example of a graph (left) and its spanning tree (right)

In the case that the graph G is connected1, we can derive a basis of cut space from a
spanning tree of G. Finding basis of cut space based on spanning trees are known as
nontrivial ones. General graph traversal algorithms such as depth-first search (DFS)
and breadth-first search (BFS) can produce spanning trees of G. Let T be a spanning
tree of G. For each edge e of the n - 1 edges in T, the graph T - e has exactly two
components, and the set Ce of edges in G between the two components forms a cut.
These n - 1 cuts are linearly independent and hence form a basis of cut space.

Fig. 3. Edge of spanning tree, sub-sets and cuts

When we use a spanning tree-based encoding in GAs, the number of genes in the
chromosome equals n-1, the number of edges in T. Each gene corresponds to an edge
in T. To evaluate the cut size of a solution, we should compute the number of cut
edges. The set of cut edges is easily computed by summing Ce for each edge e in T
whose gene value is 1. Then the cut size becomes the cardinality of the set of cut
edges (see Fig. 3).

1 In this paper, we assume that G is connected for convenience.

514 K. Seo, S. Hyun, and Y.-H. Kim

4 Simulation and Analysis

4.1 Experimental Environments

This section describes how we evaluated the proposed GA approach to develop span-
ning tree-based encoding for the MAX CUT problem. The GA parameters are shown
in Table 1. The one-point crossover and random mutation were used for genetic re-
combination, and tournament selection is also adopted. The proposed algorithm was
implemented using Open Beagle [39] with Boost Graph Library [40]. Three methods -
Kruskal-like, DFS, and BFS - are used to find spanning trees. Every GA run is re-
peated 30 times for each case.

Table 1. GA Parameters

Parameters Values

Max. # of generations 100

Population size 100

Crossover rate 0.9

Mutation rate 0.1

Tournament size 7

4.2 Experimental Results

The tabular results for various sets on a total of 31 graphs are provided in Table 2.
The different classes of graphs that we tested our algorithms on are described
below.

Gn.p: a random graph on n vertices with edge probability p. E.g., G1000.01
is a 1,000-vertex graph with p=0.01.

Un.d: a geometric random graph on n vertices and expected degree d. E.g.,
U500.10 is a 500-vertex geometric graph with "expected degree" 10.

bregn.b: a regular random graph on n vertices in which each vertex has de-
gree 3 and the optimal bisection size is b with high probability, i.e.,
probability approaches 1 as n approaches infinity.

cat.n: A caterpillar graph on n vertices, with each vertex having six legs.
rcat.n is a caterpillar graph with n vertices, where each vertex on the
spine has √݊ legs.

gridn.b: A grid graph on n vertices and whose optimal minimum cut size is
known to be b. w-gridn.b denotes the same grid but the boundaries are
wrapped around.

Please see the reference [41] for details on how this class of graphs is generated.

 A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search 515

Table 2. Comparison of encoding schemes for various graphs

Instances Vertex
/ Edge
ratio
(%)

Vertex
encoding

Edge encodings

Kruskal-like DFS BFS
Cut
size

Std
dev

Cut
size

Std
dev

Improve
ment(%)

Cut
size

Std
dev

Improve
ment(%)

Cut
size

Std
dev

Improve
ment(%)

G500.005 79.9% 375.0 3.7 391.3 3.0 4.35 392.1 3.2 4.55 388.9 3.8 3.71
G500.01 40.8% 700.1 4.5 706.1 4.6 0.87 708.1 5.7 1.15 707.0 4.4 1.00
G500.02 21.2% 1303.1 7.2 1293.3 7.4 -0.75 1294.7 7.9 -0.64 1295.7 7.5 -0.57
G500.04 9.7% 2747.9 10.0 2718.3 10.5 -1.08 2711.1 7.9 -1.34 2722.2 12.1 -0.94

G1000.005 40.0% 1373.4 8.4 1383.6 5.4 0.75 1383.5 6.9 0.74 1383.2 4.3 0.71
G1000.01 19.7% 2711.0 8.5 2699.2 7.7 -0.44 2695.9 9.7 -0.56 2702.0 7.8 -0.33
G1000.02 9.9% 5307.4 10.9 5271.3 13.6 -0.68 5265.6 15.0 -0.79 5280.5 15.2 -0.51
U500.05 38.9% 597.2 3.6 606.3 3.8 1.52 605.0 3.7 1.31 606.0 3.4 1.47
U500.10 20.3% 1276.1 4.8 1282.3 4.5 0.49 1279.3 4.0 0.25 1283.8 6.5 0.61
U500.20 11.0% 2410.2 5.7 2407.4 5.4 -0.11 2396.0 7.6 -0.59 2402.1 7.5 -0.34
U500.40 5.7% 4575.6 7.1 4563.2 8.2 -0.27 4547.1 6.6 -0.62 4557.5 7.2 -0.40
U1000.05 41.7% 1309.0 7.6 1324.9 4.6 1.21 1324.7 5.3 1.20 1323.1 5.0 1.08
U1000.20 10.7% 4877.9 10.4 4871.1 10.6 -0.14 4851.2 12.1 -0.55 4861.2 12.5 -0.34
U1000.40 5.5% 9292.5 12.2 9261.0 8.8 -0.34 9234.2 12.2 -0.63 9252.2 15.6 -0.43
breg500.12 66.5% 445.4 4.8 460.8 3.6 3.47 461.8 3.3 3.67 459.9 3.7 3.25
breg500.16 66.5% 444.5 3.4 462.5 4.7 4.04 462.3 3.8 4.01 460.0 3.5 3.49
breg500.20 66.5% 444.9 4.6 460.8 3.1 3.57 460.7 3.2 3.55 461.2 4.3 3.66

cat.352 100.0% 224.1 2.9 242.1 2.1 8.05 241.5 2.5 7.80 242.7 2.8 8.33
cat.702 100.0% 419.0 3.3 444.6 3.5 6.10 446.2 3.9 6.49 445.8 3.0 6.40
cat.1052 100.0% 606.8 5.0 644.9 5.6 6.28 644.9 5.6 6.28 644.9 5.7 6.28
cat.5252 100.0% 2804.5 10.0 2890.8 10.0 3.07 2885.3 10.7 2.88 2891.2 10.2 3.09
rcat.134 100.0% 99.4 1.5 106.1 1.5 6.74 106.1 1.5 6.74 106.1 1.6 6.74
rcat.554 100.0% 339.0 3.1 360.2 2.5 6.26 360.2 2.5 6.26 360.2 2.6 6.26
rcat.994 100.0% 577.9 5.2 611.3 4.7 5.78 611.3 4.7 5.78 611.3 4.8 5.78
rcat.5114 100.0% 2736.6 10.3 2817.4 10.0 2.95 2817.6 9.7 2.96 2816.1 9.5 2.91

grid100.10 55.2% 130.1 2.4 133.2 2.0 2.36 132.9 2.4 2.10 133.7 1.8 2.77
grid500.21 52.3% 556.9 4.3 569.4 4.3 2.24 571.7 6.0 2.66 570.2 5.5 2.38
grid1000.20 51.8% 1075.5 5.6 1094.6 7.2 1.77 1096.3 5.1 1.93 1095.9 7.7 1.89
w-grid100.20 49.5% 145.1 2.6 146.8 1.9 1.22 145.2 2.7 0.07 144.3 2.4 -0.55
w-grid500.42 49.9% 582.1 4.6 594.0 5.1 2.04 594.5 5.4 2.12 591.3 3.9 1.58
w-grid1000.40 50.0% 1113.8 9.0 1133.2 7.0 1.74 1130.2 5.1 1.47 1129.5 5.8 1.40

The ratio of vertices to edges in sparse graphs is greater than in dense graphs. For con-

nected graphs, if n is the number of vertices, then the number of edges is between n-1 and
n(n-1)/2. Therefore, the ratio of vertices to edges has a value between 2/(n-1) to n/(n-1).

For the case of sparse graphs in which the ratio of vertices to edges is more than
38.9%, the performance of spanning tree-based encoding is superior to the results of
vertex-based encoding. The improvement increases for greater ratios of vertices to
edges, in general. Examples include bregn.b, gridn.b, cat.n, rcat.n, and w-gridn.b. The
cat.n and rcat.n graph sets with 100% ratio of vertices to edges, show the average of
approximately 6% improvement using spanning tree-based encoding.

516 K. Seo, S. Hyun, and Y.-H. Kim

On the other hand, the performance of vertex-based encoding is better than that of
spanning tree-based encoding for dense graphs in which ratio of vertices to edges is
less than 20%. Some Gn.p and Un.d graph sets are examples of this category.

The efficiencies for graphs around with ratios of 20% are irregular. For example,
the performance of spanning tree-based encoding is superior in U500.10, which has a
20.3% ratio, but the performance of vertex-based encoding is better in G500.02,
which has a 21.2% ratio. Geometric random graphs are closer to real-world problems
than random graphs, considering that the randomness of geometric random graphs is
less than that of random graphs and the vertices connected with edges in geometric
random graphs are locally clustered.

Therefore the superiority of spanning tree-based encoding will be expected for real-
world problems which consist of sparse graphs having more than a 20% ratio of vertices
to edges. In the paper, three methods - Kruskal-like, DFS, and BFS - are used to obtain
spanning trees and the results differ slightly for each method, but they are not very dif-
ferent. The topic of what kind of algorithms for finding a spanning tree is efficient and
how these algorithms influence the performance appears to be one of interests.

5 Conclusions

We proposed a new encoding method and investigated its performance comparing to
a widely-used method for the MAX CUT problem. This study is the first trial of ap-
plying spanning tree-based encoding to optimization method for graph problems. To
demonstrate the effectiveness of our proposed approach, experiments on three span-
ning tree-based encodings were conducted for benchmark graphs and could obtain
performance improvement on sparse graphs.

We also found that the change of encoding method can make differences for opti-
mization performance. In other words, edge-based encoding is advantageous for
sparse graphs and vertex-based encoding is profitable for dense graphs.

The proposed approach can be applied to other graph partitioning problems, e.g.,
ratio-cut graph partitioning, which are similar to the MAX CUT problem. In particu-
lar, the proposed spanning tree-based encoding scheme has a merit on partitioning of
sparse graphs, which appear widely in real-world applications. Further study will aim
at the extension and refinement of the encoding schemes and their application to vari-
ous graph sets.

Acknowledgments. This work was supported by National Research Foundation of Korea
Grant funded by the Korea government (NRF-2011-0009958 and NRF-2009-0071419).

References

1. Kim, Y.-H., Kwon, Y.-K., Moon, B.-R.: Problem-independent Schema Synthesis for Ge-
netic Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-
M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Pot-
ter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.)
GECCO 2003. LNCS, vol. 2723, pp. 1112–1122. Springer, Heidelberg (2003)

 A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search 517

2. Kim, Y.-H.: Linear transformation in pseudo-Boolean functions. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1117–1118 (2008)

3. Kim, Y.-H., Yoon, Y.: Effect of changing the basis in genetic algorithms using binary en-
coding. KSII Transactions on Internet and Information Systems 2(4), 184–193 (2008)

4. Kim, Y.-H., Yoon, Y.: Representation and recombination over nonsingular binary matric-
es. In: Proceedings of the World Summit on Genetic and Evolutionary Computation, pp.
855–858 (2009)

5. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey. Integration,
the VLSI Journal 19(1-2), 1–81 (1995)

6. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. In-
formation Processing Letters 42(3), 153–159 (1992)

7. Clark, L.H., Shahrokhi, F., Székely, L.A.: A linear time algorithm for graph partition prob-
lems. Information Processing Letters 42(1), 19–24 (1992)

8. Feige, U., Karpinski, M., Langberg, M.: A note on approximating Max-Bisection on regu-
lar graphs. Information Processing Letters 79(4), 181–188 (2001)

9. Fjällström, P.O.: Algorithms for graph partitioning: a survey. Linkoping Electronic Ar-
ticles in Computer and Information Science 3 (1998)

10. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 11(9),
1074–1085 (1992)

11. Kim, Y.-H., Moon, B.-R.: Lock-gain based graph partitioning. Journal of Heuristics 10(1),
37–57 (2004)

12. Kučera, L.: Expected complexity of graph partitioning problems. Discrete Applied Ma-
thematics 57(2-3), 193–212 (1995)

13. Powers, D.L.: Graph partitioning by eigenvectors. Linear Algebra and its Applica-
tions 101, 121–133 (1988)

14. Yan, J.-T., Hsiao, P.-Y.: A fuzzy clustering algorithm for graph bisection. Information
Processing Letters 52(5), 259–263 (1994)

15. Antonio, S.M., Abraham, D., Juan, J.P., Raúl, C.: High-performance VNS for the max-cut
problem using commodity graphics hardware. In: Proceedings of the 18th Mini Euro Con-
ference on VNS (2005)

16. Cong, J., Labio, W.J., Shivakumar, N.: Multiway VLSI circuit partitioning based on dual
net representation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 15(4), 396–409 (1996)

17. Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM Journal on Matrix
Analysis and Applications 19(3), 701–719 (1998)

18. Michel, J., Pellegrini, F., Roman, J.: Unstructured Graph Partitioning for Sparse Linear
System Solving. In: Lüling, R., Bilardi, G., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR
1997. LNCS, vol. 1253, pp. 273–286. Springer, Heidelberg (1997)

19. Venkatakrishnan, V.: Parallel computation of Ax and ATx. International Journal of High
Speed Computing 6, 325–342 (1994)

20. Armbruster, M., Fügenschuh, M., Helmberg, C., Jetchev, N., Martin, A.: Hybrid Genetic
Algorithm Within Branch-and-Cut for the Minimum Graph Bisection Problem. In: Got-
tlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 1–12. Springer, Heidel-
berg (2006)

21. Yoon, Y., Kim, Y.-H., Moon, B.-R.: A note on edge-based graph partitioning and its linear
algebraic structure. Journal of Mathematical Modelling and Algorithms 10(3), 269–276
(2011)

22. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press (1994)

518 K. Seo, S. Hyun, and Y.-H. Kim

23. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2005)

24. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)
25. Karp, R.M.: Reducibility Among Combinatorial Problems, pp. 85–103. Plenum Press,

New York (1972)
26. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph prob-

lems. Theoretical Computer Science 1(3), 237–267 (1976)
27. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM 23(3),

555–565 (1976)
28. Vitányi, P.M.B.: How well can a graph be n-colored? Discrete Mathematics 34(1), 69–80

(1981)
29. Poljak, S., Tuza, Z.: A polynomial algorithm for constructing a large bipartite subgraph,

with an application to a satisfiability problem. Canadian Journal of Mathematics 34,
519–524 (1982)

30. Haglin, D.J., Venkatesan, S.M.: Approximation and intractability results for the maximum
cut problem and its variants. IEEE Trans. on Computer 40, 110–113 (1991)

31. Hofmeister, T., Lefmann, H.: A combinatorial design approach to maxcut. In: Proceedings
of the 13th Symposium on Theoretical Aspects of Computer Science (1995)

32. Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the Associa-
tion for Computing Machinery 42(6), 1115–1145 (1995)

33. Homer, S., Peinado, M.: Design and Performance of Parallel and Distributed Approxima-
tion Algorithms for Maxcut. Journal of Parallel and Distributed Computing 46, 48–61
(1997)

34. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

35. Kim, S.-H., Kim, Y.-H., Moon, B.-R.: A hybrid genetic algorithm for the MAX CUT
problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
416–423 (2001)

36. Barahona, F., Grotschel, M., Junger, M., Reinelt, G.: An application of combinatorial op-
timization to statistical physics and circuit layout design. Operational Research 36,
493–513 (1984)

37. Pinter, R.Y.: Optimal layer assignment for interconnect. Journal of VLSI Computing Sys-
tems 1, 123–137 (1984)

38. Poljak, S., Tuza, Z.: Maximum cuts and largest bipartite subgraphs, vol. 20. American Ma-
thematical Society (1993)

39. Boost Library, http://boost.org
40. Open Beagle, http://beagle.gel.ulaval.ca
41. Bui, T.N., Moon, B.R.: Genetic algorithm and graph partitioning. IEEE Transactions on

Computers 45(7), 841–855 (1996)

	A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search
	Introduction
	MAX CUT
	Encoding and Evaluation
	Vertex-Based Encoding
	Spanning Tree-Based Encoding

	Simulation and Analysis
	Experimental Environments
	Experimental Results

	Conclusions
	References

