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Abstract. Most of previous genetic algorithms for solving graph problems have 
used vertex-based encoding. In this paper, we introduce spanning tree-based 
encoding instead of vertex-based encoding for the well-known MAX CUT 
problem. We propose a new genetic algorithm based on this new type of encod-
ing. We conducted experiments on benchmark graphs and could obtain perfor-
mance improvement on sparse graphs, which appear in real-world applications 
such as social networks and systems biology, when the proposed methods are 
compared with ones using vertex-based encoding. 
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1 Introduction 

In genetic algorithms (GAs), different encodings lead completely different search on 
solution space, and as a result, encoding can affect performance largely. There have 
been many studies of emphasizing the importance of encoding in GAs. Kim et al. [1] 
improved the performance of genetic algorithms on various problems by rearranging 
the related gene positions to be closely located. This gene rearrangement can be seen 
as a simply type of transformed encoding. There have also been more generalized 
studies of encoding transformation making the relation between genes be the most 
independent by applying invertible linear transformation [2, 3]. These studies just 
showed the importance of encoding transformation, but they failed to show the con-
crete transformation methods. As an extension of these studies, there has been a trial 
to find better encoding using a meta-GA [4]. However it also failed to give a good 
guideline about how we transform encoding in a given problem. 

Most studies about graph problems such as graph partitioning and MAX CUT have 
been vertex-centric when dealing with partitions and representing them [5-14]. Intui-
tive techniques based on vertices, which are easy to manage, have been mainly used 
to solve the graph problems. However, when dealing with partitions, there have been 
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studies [15-19] using methods based on edge, which is a dual of vertex. In particular, 
Armbruster et al. [20] and Yoon et al. [21] used an edge representation for solving 
graph partitioning, which maps a solution to an edge set, not a vertex set. In their 
representation, each location of an encoding is assigned to 1 if its corresponding edge 
is on the cut and 0 otherwise. This representation is well adapted to their integer pro-
gramming formulation, but it is very crucial but difficult to check whether or not a 
given encoding forms a valid graph partition. 

In this paper, we propose a new genetic algorithm based on not vertex-based en-
coding but spanning tree-based encoding [22, 23] as a kind of edge-based encoding. 
Contrary to general edge-based encoding, spanning tree-based encoding represents 
only feasible partitions. As a target problem, we adopted the MAX CUT problem, 
which is well known as a representative NP-hard problem, and examined the perfor-
mance of the proposed genetic algorithms experimentally. The proposed method is 
expected to well perform on sparse graphs. In particular, if we consider that graphs 
appearing in real-world applications such as social networks and systems biology are 
sparse, the proposed method has great potential in real-world graph problems. 

Section 2 discusses the MAX CUT problem and its previous work. Section 3 de-
scribes the proposed spanning tree-based encoding scheme. Section 4 presents expe-
rimental results on various graph sets, and Section 5 concludes the paper. 

2 MAX CUT 

It is important in combinatorial optimization to partition the vertices into two disjoint 
subsets of nearly equal size such that the sum of edge weights with two edge end-
points in different sets (cut size) is maximized or minimized. Given an undirected 
graph G = (V, E) with edge weights, the MAX CUT problem (Fig. 1) is that of find-
ing a subset S⊂V which maximizes the sum of edge weights in the cut (S, V - S). 

 

Fig. 1. Example of MAX CUT 

Every graph has a finite number of cuts, so one can find the minimum or maximum 
weight cut in a graph by an exhaustive search that enumerates the sizes of all the cuts. 
This is not a practical approach for large graphs which arises in real-world applica-
tions since the number of cuts in a graph grows exponentially with the number of 
vertices. Although we can solve the min-cut problem without balance requirement in 
polynomial time using the maxflow-mincut algorithm [24], we have no such fortune 
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when it comes to the MAX CUT problem. There is no known way to solve the prob-
lem optimally other than by exhaustive enumeration. The MAX CUT problem is one 
of Karp's original NP-complete problems [25] and has been known to be NP-complete 
even if the problem is unweighted [26]. 

Since there is no algorithm that guarantees an optimal solution, a typical approach 
to solve such a problem is to find a ρ-approximation algorithm that delivers a solution 
at least ρ times the optimal value in polynomial time. Sahni and Gonzales [27] pre-
sented a 1/2-approximation algorithm for the MAX CUT problem. Their greedy ap-
proach iterates through the vertices and decides which placement (S or V - S) max-
imizes the cut of vertex vi with respect to vertices v1 to vi-1. Since [27], many re-
searchers have presented approximation algorithms for the MAX CUT problem [28-
31], but little progress has been made. For more than twenty years a factor of 0.5 has 
been the best-known polynomial-time performance guarantee for the MAX CUT 
problem. An algorithm by Goemans and Williamson (GW) [32] guarantees a factor of 
0.878 of the optimum. The significant improvements are due to the technique of posi-
tive semidefinite programming and randomized rounding. However, solving semide-
finite programming is computationally expensive. Homer and Peinado [33] gave a 
parallelized version of GW. In [33], GW was improved by combining with simulated 
annealing (SA) [34]. Afterward, Kim et al. [35] successfully applied GAs to the MAX 
CUT problem. In practical, when the GA is combined with lock-gain-based local 
search [11], the hybrid GA could outperform GW (the best approximation algorithm) 
combined with SA. It is known the GAs have good performance when applied to the 
MAX CUT problem [35], we adopted the MAX CUT problem to test our new encod-
ing scheme in this paper. 

The MAX CUT problem has many applications in various fields, It has been ob-
served that one of the phases (the layer assignment problem) in the design process for 
VLSI chips and printed circuit boards (PCB) can be reduced to the MAX CUT prob-
lem [36, 37]. One of the most famous applications of the problem comes from a clas-
sical application to statistical physics [36]. It is concerned with the exact determina-
tion of a minimal energy configuration of a spin glass under no exterior field and 
under a continuously varying exterior magnetic field. Poljak and Tuza [38] provided a 
comprehensive survey of the MAX CUT problem. 

3 Encoding and Evaluation 

Each solution is represented by a chromosome, which is a binary string. In this sec-
tion, we consider two different types of binary encoding to represent solutions for the 
MAX CUT problem. 

3.1 Vertex-Based Encoding  

When we use vertex-based encoding in GAs, the number of genes in the chromosome 
equals n, which is the number of vertices in the graph. Each gene corresponds to a 
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vertex in the graph. A gene has value 0 if the corresponding vertex is in S, and has 
value 1 otherwise. 

To evaluate the cut size of a solution, we should compute the number of cut edges, 
which is an edge whose end-vertices are in different sides. For each edge, to deter-
mine if it is a cut edge, we just check that the values of genes corresponding to its 
end-vertices are different, i.e., (0,1) or (1,0). 

3.2 Spanning Tree-Based Encoding 

If {V1, V2} is a partition of V, the set E(V1, V2) of all the edges of G crossing between 
V1 and V2 is called a cut. Cut space consisting of all the cuts is proven to be vector 
space [23]. It means that an arbitrary cut can be represented by a linear combination 
of basis elements of cut space. 

 

Fig. 2. Example of a graph (left) and its spanning tree (right) 

In the case that the graph G is connected1, we can derive a basis of cut space from a 
spanning tree of G. Finding basis of cut space based on spanning trees are known as 
nontrivial ones. General graph traversal algorithms such as depth-first search (DFS) 
and breadth-first search (BFS) can produce spanning trees of G. Let T be a spanning 
tree of G. For each edge e of the n - 1 edges in T, the graph T - e has exactly two 
components, and the set Ce of edges in G between the two components forms a cut. 
These n - 1 cuts are linearly independent and hence form a basis of cut space. 

 

Fig. 3. Edge of spanning tree, sub-sets and cuts 

When we use a spanning tree-based encoding in GAs, the number of genes in the 
chromosome equals n-1, the number of edges in T. Each gene corresponds to an edge 
in T. To evaluate the cut size of a solution, we should compute the number of cut 
edges. The set of cut edges is easily computed by summing Ce for each edge e in T 
whose gene value is 1. Then the cut size becomes the cardinality of the set of cut 
edges (see Fig. 3). 
                                                           
1  In this paper, we assume that G is connected for convenience. 
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4 Simulation and Analysis 

4.1 Experimental Environments 

This section describes how we evaluated the proposed GA approach to develop span-
ning tree-based encoding for the MAX CUT problem. The GA parameters are shown 
in Table 1. The one-point crossover and random mutation were used for genetic re-
combination, and tournament selection is also adopted. The proposed algorithm was 
implemented using Open Beagle [39] with Boost Graph Library [40]. Three methods - 
Kruskal-like, DFS, and BFS - are used to find spanning trees. Every GA run is re-
peated 30 times for each case. 

Table 1. GA Parameters 

Parameters Values 

Max. # of generations 100 

Population size 100 

Crossover rate 0.9 

Mutation rate 0.1 

Tournament size 7 

4.2 Experimental Results 

The tabular results for various sets on a total of 31 graphs are provided in Table 2. 
The different classes of graphs that we tested our algorithms on are described  
below. 

Gn.p: a random graph on n vertices with edge probability p. E.g., G1000.01 
is a 1,000-vertex graph with p=0.01. 

Un.d: a geometric random graph on n vertices and expected degree d. E.g., 
U500.10 is a 500-vertex geometric graph with "expected degree" 10. 

bregn.b: a regular random graph on n vertices in which each vertex has de-
gree 3 and the optimal bisection size is b with high probability, i.e., 
probability approaches 1 as n approaches infinity. 

cat.n: A caterpillar graph on n vertices, with each vertex having six legs. 
rcat.n is a caterpillar graph with n vertices, where each vertex on the 
spine has √݊ legs. 

gridn.b: A grid graph on n vertices and whose optimal minimum cut size is 
known to be b. w-gridn.b denotes the same grid but the boundaries are 
wrapped around. 

Please see the reference [41] for details on how this class of graphs is generated. 
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Table 2. Comparison of encoding schemes for various graphs 

Instances Vertex
/ Edge
ratio 
(%) 

Vertex 
encoding 

Edge encodings 

 

Kruskal-like DFS BFS 
Cut 
size 

Std 
dev 

Cut
size

Std
dev

Improve
ment(%)

Cut
size

Std
dev

Improve
ment(%)

Cut
size

Std 
dev 

Improve 
ment(%) 

G500.005 79.9% 375.0 3.7 391.3 3.0 4.35  392.1 3.2 4.55  388.9 3.8 3.71  
G500.01 40.8% 700.1 4.5 706.1 4.6 0.87  708.1 5.7 1.15  707.0 4.4 1.00  
G500.02 21.2% 1303.1 7.2 1293.3 7.4 -0.75  1294.7 7.9 -0.64  1295.7 7.5 -0.57  
G500.04 9.7% 2747.9 10.0 2718.3 10.5 -1.08  2711.1 7.9 -1.34  2722.2 12.1 -0.94  

G1000.005 40.0% 1373.4 8.4 1383.6 5.4 0.75  1383.5 6.9 0.74  1383.2 4.3 0.71  
G1000.01 19.7% 2711.0 8.5 2699.2 7.7 -0.44  2695.9 9.7 -0.56  2702.0 7.8 -0.33  
G1000.02 9.9% 5307.4 10.9 5271.3 13.6 -0.68  5265.6 15.0 -0.79  5280.5 15.2 -0.51  
U500.05 38.9% 597.2 3.6 606.3 3.8 1.52  605.0 3.7 1.31  606.0 3.4 1.47  
U500.10 20.3% 1276.1 4.8 1282.3 4.5 0.49  1279.3 4.0 0.25  1283.8 6.5 0.61  
U500.20 11.0% 2410.2 5.7 2407.4 5.4 -0.11  2396.0 7.6 -0.59  2402.1 7.5 -0.34  
U500.40 5.7% 4575.6 7.1 4563.2 8.2 -0.27  4547.1 6.6 -0.62  4557.5 7.2 -0.40  
U1000.05 41.7% 1309.0 7.6 1324.9 4.6 1.21  1324.7 5.3 1.20  1323.1 5.0 1.08  
U1000.20 10.7% 4877.9 10.4 4871.1 10.6 -0.14  4851.2 12.1 -0.55  4861.2 12.5 -0.34  
U1000.40 5.5% 9292.5 12.2 9261.0 8.8 -0.34  9234.2 12.2 -0.63  9252.2 15.6 -0.43  
breg500.12 66.5% 445.4 4.8 460.8 3.6 3.47  461.8 3.3 3.67  459.9 3.7 3.25  
breg500.16 66.5% 444.5 3.4 462.5 4.7 4.04  462.3 3.8 4.01  460.0 3.5 3.49  
breg500.20 66.5% 444.9 4.6 460.8 3.1 3.57  460.7 3.2 3.55  461.2 4.3 3.66  

cat.352 100.0% 224.1 2.9 242.1 2.1 8.05  241.5 2.5 7.80  242.7 2.8 8.33  
cat.702 100.0% 419.0 3.3 444.6 3.5 6.10  446.2 3.9 6.49  445.8 3.0 6.40  
cat.1052 100.0% 606.8 5.0 644.9 5.6 6.28  644.9 5.6 6.28  644.9 5.7 6.28  
cat.5252 100.0% 2804.5 10.0 2890.8 10.0 3.07  2885.3 10.7 2.88  2891.2 10.2 3.09  
rcat.134 100.0% 99.4 1.5 106.1 1.5 6.74  106.1 1.5 6.74  106.1 1.6 6.74  
rcat.554 100.0% 339.0 3.1 360.2 2.5 6.26  360.2 2.5 6.26  360.2 2.6 6.26  
rcat.994 100.0% 577.9 5.2 611.3 4.7 5.78  611.3 4.7 5.78  611.3 4.8 5.78  
rcat.5114 100.0% 2736.6 10.3 2817.4 10.0 2.95  2817.6 9.7 2.96  2816.1 9.5 2.91  

grid100.10 55.2% 130.1 2.4 133.2 2.0 2.36  132.9 2.4 2.10  133.7 1.8 2.77  
grid500.21 52.3% 556.9 4.3 569.4 4.3 2.24  571.7 6.0 2.66  570.2 5.5 2.38  
grid1000.20 51.8% 1075.5 5.6 1094.6 7.2 1.77  1096.3 5.1 1.93  1095.9 7.7 1.89  
w-grid100.20 49.5% 145.1 2.6 146.8 1.9 1.22  145.2 2.7 0.07  144.3 2.4 -0.55  
w-grid500.42 49.9% 582.1 4.6 594.0 5.1 2.04  594.5 5.4 2.12  591.3 3.9 1.58  
w-grid1000.40 50.0% 1113.8 9.0 1133.2 7.0 1.74  1130.2 5.1 1.47  1129.5 5.8 1.40  

 
The ratio of vertices to edges in sparse graphs is greater than in dense graphs. For con-

nected graphs, if n is the number of vertices, then the number of edges is between n-1 and 
n(n-1)/2. Therefore, the ratio of vertices to edges has a value between 2/(n-1) to n/(n-1). 

For the case of sparse graphs in which the ratio of vertices to edges is more than 
38.9%, the performance of spanning tree-based encoding is superior to the results of 
vertex-based encoding. The improvement increases for greater ratios of vertices to 
edges, in general. Examples include bregn.b, gridn.b, cat.n, rcat.n, and w-gridn.b. The 
cat.n and rcat.n graph sets with 100% ratio of vertices to edges, show the average of 
approximately 6% improvement using spanning tree-based encoding. 
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On the other hand, the performance of vertex-based encoding is better than that of 
spanning tree-based encoding for dense graphs in which ratio of vertices to edges is 
less than 20%. Some Gn.p and Un.d graph sets are examples of this category. 

The efficiencies for graphs around with ratios of 20% are irregular. For example, 
the performance of spanning tree-based encoding is superior in U500.10, which has a 
20.3% ratio, but the performance of vertex-based encoding is better in G500.02, 
which has a 21.2% ratio. Geometric random graphs are closer to real-world problems 
than random graphs, considering that the randomness of geometric random graphs is 
less than that of random graphs and the vertices connected with edges in geometric 
random graphs are locally clustered. 

Therefore the superiority of spanning tree-based encoding will be expected for real-
world problems which consist of sparse graphs having more than a 20% ratio of vertices 
to edges. In the paper, three methods - Kruskal-like, DFS, and BFS - are used to obtain 
spanning trees and the results differ slightly for each method, but they are not very dif-
ferent. The topic of what kind of algorithms for finding a spanning tree is efficient and 
how these algorithms influence the performance appears to be one of interests. 

5 Conclusions 

We proposed a new encoding method and investigated its performance comparing to 
a widely-used method for the MAX CUT problem. This study is the first trial of ap-
plying spanning tree-based encoding to optimization method for graph problems. To 
demonstrate the effectiveness of our proposed approach, experiments on three span-
ning tree-based encodings were conducted for benchmark graphs and could obtain 
performance improvement on sparse graphs. 

We also found that the change of encoding method can make differences for opti-
mization performance. In other words, edge-based encoding is advantageous for 
sparse graphs and vertex-based encoding is profitable for dense graphs. 

The proposed approach can be applied to other graph partitioning problems, e.g., 
ratio-cut graph partitioning, which are similar to the MAX CUT problem. In particu-
lar, the proposed spanning tree-based encoding scheme has a merit on partitioning of 
sparse graphs, which appear widely in real-world applications. Further study will aim 
at the extension and refinement of the encoding schemes and their application to vari-
ous graph sets. 
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