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Abstract. This paper empirically investigates the behavior of three
variants of covariance matrix adaptation evolution strategies (CMA-
ES) for dynamic optimization. These three strategies include the eli-
tist (1+1)-CMA-ES, the non-elitist (μ, λ)-CMA-ES and sep-CMA-ES. To
better understand the influence of covariance matrix adaptation methods
and of the selection methods to the strategies in dynamic environments,
we use the state-of-art dynamic optimization benchmark problems to
evaluate the performance. We compare these CMA-ES variants with the
traditional (1+1)-ES with the one-fifth success rule. Our experimental
results show that the simple elitist strategies including the (1+1)-ES and
the (1+1)-CMA-ES generally outperform those non-elitist CMA-ES vari-
ants on one out of the six dynamic functions. We also investigate the per-
formance when the dynamic environments change with different severity
and when the problems are in higher dimensions. The elitist strategies
are robust to different severity of dynamic changes, but the performance
is worse when the problem dimensions are increased. In high dimensions,
the performance of the elitist and the non-elitist versions of CMA-ES are
marginally the same.

Keywords: Dynamic Optimization, Evolution Strategies, Covariance
Matrix Adaptation.

1 Introduction

In recent years, there has been a fair amount of research works that have con-
tributed to the state-of-art covariance matrix adaptation evolution strategies
(CMA-ES) [1,2,3,4] that is used to solve many black-box optimization problems.
CMA-ES usually optimizes the real-valued objective functions f : Rn → R in
the continuous domain. On ill-conditioned problems covariance matrix adapta-
tion can accelerate the rate of convergence of evolution strategies by orders of
magnitude. For example, a successful covariance matrix adaptation can enable
strategies to generate candidate solutions predominantly in the direction of nar-
row valleys. The CMA-ES is able to learn the appropriate covariance matrix
from the successful steps that the algorithm has taken. The covariance matrix
is updated such that variances in the directions of the search space that have
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previously been successful are increased while those in other directions are de-
creased. Even for a small population, the accumulation of information over a
number of successful steps can reliably adapt the covariance matrix.

However, the problem classes that have been considered in most of these works
are of a static nature. In contrast, many problems in engineering, computational
and biological domains are dynamic in that the objective functions are not con-
stant but vary with time. Examples of dynamic optimization problems arise in
the context of online job scheduling, where new jobs arrive in the course of op-
timization. A complete list of survey and works on the evolutionary algorithms
for dynamic optimization has been reviewed by [5,6].

There are a few works that focus on evolution strategies in dynamic optimiza-
tion. The early work [7] has empirically studied the family of evolution strategies
in dynamic rotating problems. It investigated the performance when evolution
strategies employed different forms of mutation step size adaptation. The ex-
perimental results show that a simple mutation step size adaptation achieves
the best results compared to other complicated adaptation mechanisms includ-
ing covariance matrix adaptation. It also suggested to use small populations in
evolution strategies because using large populations implies a higher degree of
dynamism and this is undesirable in dynamic optimization. Another work [8]
studies evolution strategies for the number of mutation step sizes required when
the optima move in one or all n coordinates with different severity. The results
showed that adapting all n mutation step sizes achieves a better performance
than adapting a single mutation step size. The work [9] compares different vari-
ants of mutative self-adaptation and shows that the lognormal self-adaptation
used in evolution strategies performs better than the variants of self-adaptation
commonly used in evolutionary programming. Obviously all these works demon-
strate the difficulty of understanding the behavior of evolution strategies and
their operators and parameters for dynamic environments.

In this paper, we will empirically investigate the state-of-art CMA-ES variants
in the literature and study their performance for dynamic optimization. In the
next two sections, we will briefly recall the CMA-ES variants and the dynamic
optimization benchmark problems. The empirical comparison is described in
Section 4 followed by the conclusion in the last section.

2 CMA-ES Variants

The standard (μ, λ)-CMA-ES: In the standard (μ, λ)-CMA-ES [1,2], in each
iteration g, λ number of candidate solutions are generated by sampling a multi-
variate normal distribution N (0,C) with mean 0 and n× n covariance matrix
C. The μ best solutions are selected to update the distribution parameters for
the next iteration step g + 1. The standard CMA-ES employs the concept of
cumulative step adaptation (CSA). There are two evolution paths pσ and pc

and they are two n-dimensional vectors that are used to accumulate the infor-
mation about the recent steps of the strategy. The learning of the accumulating
information is controlled by three independent learning rates cσ, c1 and cc that
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change the global step size σ and the covariance matrix C. The standard (μ, λ)-
CMA-ES in this paper is identical to that described by [2] and is summarized in
Table 1.

Table 1. Update equations in the standard (μ, λ)-CMA-ES with iteration index
g = 1, 2, 3, . . .. The symbol xi:λ represents the i-th best of the candidate solutions
x1, . . . ,xλ. The values of learning parameters c1, cc, cμ, cσ are set to the same values
as in [1,2].

Given g ∈ N ∪ {0} ,mg ∈ R
n, σg ∈ R,Cg ∈ R

n×n,pg
σ,p

g
c ∈ R

n and
pg=0
σ = pg=0

c = 0,Cg=0 = I

xi ∼ mg + σg ×N i(0,C
g) is normally distributed for i = 1, . . . , λ

mg+1 =
∑μ

i=1 wixi:λ where f(x1:λ) ≤ · · · ≤ f(xλ:λ)

pg+1
σ = (1− cσ)p

g
σ +

√
cσ(2− cσ)μwC

g− 1
2 mg+1−mg

σg

for Cg− 1
2 = BD− 1

2BT ,BDBT = C

hσ =

{
1 if ||pg+1

σ || <
√
1− (1− cσ)2(g+1)(1.4 + 2

n+1 )E||N (0, I)||
0 otherwise

pg+1
c = (1− cc)p

g
c + hσ

√
cc(2− cc)μw

mg+1−mg

σg

Cμ =
∑μ

i=1 wi
xi:λ−mg

σg
× (xi:λ−mg)T

σg

Cg+1 = (1− c1 − cμ)C
g + c1p

g+1
c pg+1

c
T
+ cμCμ

σg+1 = σg exp
(

cσ
dσ

( ||pg+1
σ ||

E||N (0,I)|| − 1
))

where E||N (0, I)||
is the expectation of the n-dimensional normal distributed vector.

The sep-CMA-ES: In the standard CMA-ES, the full learning task scales
roughly with n2 and can dominate most of the search cost. This is one of the
major limitations in the standard CMA-ES because of the high degree of freedom
n2+n

2 in the covariance matrix. One of the solutions to this is to reduce the degree

of freedom from n2+n
2 to n where only the diagonal of the covariance matrix is

adapted. The resulting algorithm is called “sep-CMA-ES” [3]. There are two
simple changes undertaken in sep-CMA-ES. First, the covariance matrix C is
constrained to be diagonal. Second, the learning rate cμ is increased. This means
that the mutation distribution is sampled independently in the given coordinate
system using n individual variances. For sep-CMA-ES, the changes to the update
equations in Table 1 are:

1. D =
√
diag(C) where diag(C) is a diagonal matrix with the same diagonal

elements as C. The matrix B remains I for all iterations.

2. csep-CMA-ES
μ = n+2

3 · cμ
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(1+1)-CMA-ES: The (1+1)-CMA-ES is a new variant that has been recently
proposed by [4] as an extension of (1+1)-ES with the one-fifth success rule [10]. It
differs from the standard CMA-ES variant in that: (1) it is an elitist algorithm,
and (2) not only the step size but also a covariance matrix associated to the
search distribution is adapted. The experimental results in [4] shows that it is
about 1.5 times faster than the standard CMA-ES on unimodal functions. We
follow the principles introduced in [4] and the (1+1)-CMA-ES is summarized in
Table 2. A candidate solution yg is sampled by perturbing the current solution
xg by adding a normal distributed vector with mean vector 0 and covariance
matrix Cg and scaled by the mutation step-size σg. This candidate solution is
accepted only if f(yg) < f(xg). The mutation step-size is adapted using the
averaged success rate psucc such that it is increased if the success rate is strictly
larger than the target probability ptargetsucc , and decreased if it is strictly smaller. If
f(yg) < f(xg), the covariance matrix is adapted by adding to a multiple of Cg

the rank-one update matrix pg+1pg+1T where pg+1T is the transpose of pg+1.
We will use the same default settings as in [4] for all strategy parameters.

Table 2. Update equations in the (1 + 1)-CMA-ES with iteration index g = 1, 2, 3, . . .

Given g ∈ N ∪ {0} ,xg ∈ R
n, σg ∈ R,Cg ∈ R

n×n, pgsucc ∈ R,pg=0 = 0,Cg=0 = I
and pg=0

succ = ptargetsucc = 2
11 , cp = 1

12 , cc =
2

N+2 , cμ = 2
N2+6 , pthresh = 0.44

Ag = chol(Cg) where chol(·) is the Cholesky decompositions such that C = AAT

zg ∼ N (0, I)

yg ∼ xg + σgAgzg

pg+1
succ

= (1 − cp)p
g
succ

+ cp1{f(yg)≤f(xg)}

σg+1 = σg exp
(

pg+1
succ−ptarget

succ

n·(1−ptarget
succ )

)

pg+1 =

{
(1− cc)p

g + 1{pg+1
succ<pthresh}

√
cc(2− cc)A

gzg if f(yg) ≤ f(xg)

pg otherwise

Cg+1 =

⎧
⎪⎨

⎪⎩

(
1− cμ + cμ1{pg+1

succ>pthresh}cc(2 − cc)
)
Cg

+ cμp
g+1pg+1T if f(yg) ≤ f(xg)

Cg otherwise

xg+1 =

{
yg if f(yg) ≤ f(xg)
xg otherwise

3 Dynamic Optimization Benchmark

In dynamic optimization, the objective function changes during the course of
optimization. At any given time t ∈ T, one needs to find the solutions x∗ such
that ∀x,x∗ ∈ R

n, f(x∗, t) ≤ f(x, t) where f : Rn × T → R is the objective func-
tion of a minimization problem and n is the problem dimension. For dynamic
optimization problems, the fitness functions, design variables and environmen-
tal conditions change from time to time. The simplest way to solve dynamic
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optimization problems is to consider each change as an arrival of a new static
optimization problem if the time and computational resources are sufficient.
However, time and resources given are always limited and the explicit restart
approach may not be feasible.

In this paper, we use the generalized dynamic benchmark generator (GDBG)1.
[11] to evaluate the performance of the CMA-ES variants. This benchmark is a
problem generator that can construct dynamic environments in the continuous
space. It differs from the benchmarks in the literature that it uses the rota-
tion method instead of shifting the positions of the peaks. Using the rotation
method can prevent the unequal challenge per change for the algorithms when
the positions of the peaks bounce back from the boundary of the search space.

Types of Environment Changes: We focus on the non-dimensional changes
in GDBG. In non-dimensional changes, the values of variables within the problem
constraints are changed. One of the examples is to increase or decrease the
number of peaks during the course of optimization. Formally, we can describe
dynamic changes as: φ(t + 1) = φ(t) ⊕ Δφ where φ(t) is the system control
parameters and Δφ is a deviation from the current system control parameters.
At time t, the new environment at time t+1 can be expressed as: f(x, φ, t+1) =
f(x, φ(t)⊕Δφ, t). There are six types of the non-dimensional changes, including
the small step change, the large step change, the random change, the chaotic
change, the recurrent change, and the recurrent change with noisy. We name
them C1 to C6 for our easy reference:

– C1 Small step change: Δφ = α · ||φ|| · r · φseverity

– C2 Large step change: Δφ = ||φ|| · (α · sgn(r) + (αmax − α) · r) · φseverity

– C3 Random step change: Δφ = N (0, 1) · φseverity

– C4 Chaotic change: φ(t+ 1) = A · φ(t) · (1− φ(t)
||φ||)

– C5 Recurrent change: φ(t + 1) = φmin + ||φ|| · (sin(
2πt
P +ϕ)+1)
2

– C6 Recurrent change step with noise:

φ(t+ 1) = φmin + ||φ|| ·
(
sin(2πtP + ϕ) + 1

)

2
+N (0, 1) · φnoisyseverity

where ||φ|| is the range of φ, φseverity ∈ (0, 1) is the change severity of φ, φmin

is the minimum value of φ, φnoisyseverity ∈ (0, 1) is the noisy severity in the
recurrent change change with noise. The parameters α ∈ (0, 1) and αmax ∈ (0, 1)
are constant values in C1 Small step change and C2 Large step change. A logistics
function is used in the C4 Chaotic change, where A is a positive constant between
(1.0, 4.0), if φ is a vector, the initial values of the items in φ should be different
within ||φ|| in C4 chaotic change. P is the period in the C5 Recurrent step change
and the C6 Recurrent step change with noise, ϕ is the initial phase, r is a random

1 Due to pages constraints, we outline the key equations of GDBG. For complete
details, please read [11].
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number drawn uniformly from −1 and 1. The function sgn(x) returns 1 when x
is greater than 0, returns −1 when x is less than 0, otherwise returns 0. Finally,
N (0, 1) returns a normal distributed one dimensional random number with mean
zero and standard derivation one.

Rotation DBG F1: There are two instances in the GBDB benchmark: Rota-
tion DBG and Composition DBG. In the Rotation DBG, the fitness landscape
consists of multiple peaks that can be controlled by tuning the system control
parameters. The height, the width and the position of each peak are changed
in the six change types described above. If the dynamic problem is f(x, φ, t),
then the set of system control parameters is φ = (H,W,X), where H,W and X
are the peak height, the peak width and the peak position respectively. Formally,
the function f(x, φ, t) is

f(x, φ, t) = min

{

Hi(t)+Wi(t)

(

exp

(
√
√
√
√

n∑

j=1

(xj −Xi
j(t))

2

n

)

− 1

)}m

i=1

where m is the number of peaks, n is the problem dimension. The height and the
widthof thepeaks are changed:H(t+1)=DynamicChanges

(
H(t),φhseverity , ||φh||

)

andW(t+1) = DynamicChanges
(
W(t), φhseverity , ||φh||

)
where the change sever-

ity of the height and the width are φhseverity and φwseverity respectively. The ranges
of the height and the width are denoted by ||φh|| and ||φw|.

Composition DBG F2 to F6: Another instance of the GDBG benchmark is
the Composition DBG. The basic idea is to construct more challenging bench-
mark functions with randomly located global and local optima. By shifting,
rotating and composing the global optima of the standard functions, more chal-
lenging test functions that possesses many desirable properties can be obtained.
Formally, the Composition DBG can be described as follows:

F (x, φ, t) =
m∑

i=1

{

w
′
i ·

(

f
′
i

(
(x−Oi(t) +Oiold) ·Mi

λi

)

+Hi(t)

)}

where the system control parameter φ = (O,M,H), F (x) is the composition
function, fi(x) is the i-th basic function used to construct the composition func-
tion, m is the number of the basic functions, Mi is the orthogonal rotation ma-
trix for each fi(x), Oi and Oiold are the shifted and the old optimum position
respectively for each basic function fi(x).

4 Experimental Study

Setup: In our setup, we use the same set of problems in [11]. A total of six
dynamic problems F1 to F6 are tested2 . All six problems are multi-modal, scal-
able, rotated and have a large number of local optima. Unless stated otherwise,

2 For details of functions please reference to [11].
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a change will occur only after 1e2 · n number of functions evaluations are used.
50 independent runs are executed per each problem and per each change. All
problems have the global optimum within the given bounds and there is no need
to perform search outside of the given bounds for these problems. All algorithms
will be terminated when the number of changes reaches 60. To evaluate the per-
formance of the algorithms for maximization problems, we record the relative

function error value Elast(t) = f(xbest(t))
f(x∗(t)) after each change. The vector xbest(t)

is the best solutions found by the algorithm at time t and the vector x∗(t) is the
location of the global optimum at time t. In our experiments, all three variants
of CMA-ES and the (1+1)-ES with the one-fifth success rule are compared on all
six benchmark problems. All strategy parameters of evolution strategies are set
to the default values in their original works [10,1,2,3,4]. No parameters tuning
has been conducted.

Results. The experimental results are shown in Figure 1. The graphs show
the relative function error values against the change types. The whiskers in the
graphs mark the 10th and 90th percentiles. We first take a look at the first
problem F1 Rotation Peak Problem. The performances of the (1+1)-ES and
the (1+1)-CMA-ES generally outperform the standard CMA-ES and the sep-
CMA-ES. The results are consistent for all 6 types of dynamic changes. An
elitist evolution strategies using a small population size leads to the best results
compared to all other strategies that are non-elitist and are in large population
sizes. Both the (1+1)-ES and the (1+1)-CMA-ES are statistically indistinguish-
able for all 6 types of dynamic changes. Comparing the standard CMA-ES with
the sep-CMA-ES, their performance are also statistically equivalent. None of our
statistical tests are able to show any significance in these two strategies. Obvi-
ously the simple adaptation technique like the one-fifth success rule can adapt
quickly to the dynamically changing environments. The more complicated mech-
anisms that produce very good results in static optimization, are not adapting
very well for dynamic optimization. If we look into the graph for F2, the results
are consistent with those in F1. The (1+1)-ES and the (1+1)-CMA-ES achieve
the best performance. From functions F3 to F6, the performance of all strategies
becomes worser since the fitness landscapes are more rugged than the functions
F1 and F2. However, the performance differences between the elitist and non-
elitist versions become smaller. In some of the cases in functions F3 and F5, all
four variants are statistically equivalent. In functions F4 and F6, there are a few
cases where the CMA-ES and the sep-CMA-ES outperform the (1+1) variants.
Overall all strategies in most of the cases are indistinguishable in functions F4

and F6.
We next investigate how these strategies are robust to dynamic changes with

different severity and to the problem dimensions. Figure 2 shows the median
numbers of relative function errors against the severity when the underlying
function is F1 and the change type is C3. The severity φseverity is normalized

such that severity is equal to
φseverity

|φ| where |φ| is the range of the system control

parameters. When we increase the severity, the performance generally becomes
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Fig. 1. The median performance of the CMA-ES variants and the (1+1)-ES with the
one-fifth success rule on F1 to F6 over the trials of 50. The dynamic change types are C1

Small step change, C2 Large step change, C3 Random step change, C4 Chaotic change,
C5 Recurrent change and C6 Recurrent change step with noise. For each change type,
from left to right, the bars represent the (1+1)-ES with the one-fifth success rule ( − ),

(1+1)-CMA-ES ( − ), the standard CMA-ES ( − ) and the sep-CMA-ES ( − ).
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Fig. 2. The median performance of the CMA-ES variants and the (1+1)-ES with the
one-fifth success rule on F1 when the change type is C3 random step change. The left
graph shows the performance against the severity of the dynamic changes while the
right graph shows the performance against the problem dimensions.

worser. The elitist (1+1)-ES and the (1+1)-CMA-ES are generally better than
the non-elitist strategies in dynamic changes with different severity. Lastly we
investigate the performance of the strategies when the dimensions are increased.
The right graph in Figure 2 shows the median numbers against the problem di-
mensions. The performance of elitist strategies becomes worser when the problem
dimensions are scaled up. We believe this is due to the small population sizes
of these point-based (1+1) strategies. In contrast to the elitist strategies, the
non-elitist version of the CMA-ES that are population-based improves gradually
in higher dimensions. The performance gap between the elitist and non-elitist
CMA-ES is getting smaller. Obviously when we increase the problem dimension,
the dynamic problems become more challenging and using the population-based
strategies are necessary in order to achieve a reasonable performance.

5 Conclusion

In this paper, we investigate the state-of-art CMA-ES variants for dynamic opti-
mization and they include the elitist (1+1)-CMA-ES, the standard (μ, λ)-CMA-
ES and the sep-(μ, λ)-CMA-ES. We first briefly review the CMA-ES variants in
the context of static optimization and then we discuss the latest dynamic opti-
mization benchmark problems that are used in our simulations. On one out of
the six dynamic functions, the elitist (1+1)-ES with the one-fifth rule and the
(1+1)-CMA-ES achieve the best performance. In most of our simulations, these
two elitist strategies are statistically equivalent. The non-elitist strategies, includ-
ing the standard (μ, λ)-CMA-ES and the sep-CMA-ES, are outperformed by the
elitist variants. The results are consistent for dynamic changeswith different sever-
ity. However, the performance of the elitist strategies, which are pointed-based
search algorithms, becomes worser for higher dimensional problems. Using the
population-based strategies like the standard (μ, λ)-CMA-ES and the sep-CMA-
ES can achieve the equivalent performance as what the elitist (1+1) variants do.
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In the future work, it would be interesting to introduce additional diversity
into the CMA-ES variants. Concentrating the search near the the current op-
tima in a dynamic environment could make the strategies missing the important
changes in different region of the search space. Adding predictions mechanism
and diversity control methods can be a promising way for CMA-ES to optimize
the dynamic functions.
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