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Abstract. Optimization of an engineering system or component makes
a series of changes in the initial random solution(s) iteratively to form
the final optimal shape. When multiple conflicting objectives are con-
sidered, recent studies on innovization revealed the fact that the set of
Pareto-optimal solutions portray certain common design principles. In
this paper, we consider a 14-variable bi-objective design optimization
of a MEMS device and identify a number of such common design prin-
ciples through a recently proposed automated innovization procedure.
Although these design principles are found to exist among near-Pareto-
optimal solutions, the main crux of this paper lies in a demonstration of
temporal evolution of these principles during the course of optimization.
The results reveal that certain important design principles start to evolve
early on, whereas some detailed design principles get constructed later
during optimization. Interestingly, there exists a simile between evolu-
tion of design principles with that of human evolution. Such information
about the hierarchy of key design principles should enable designers to
have a deeper understanding of their problems.

Keywords: multi-objective optimization, automated innovization,
MEMS design, evolution, design principles.

1 Introduction

Gathering better and richer knowledge about a problem always fascinated man.
In the context of engineering design, this amounts to discovering and under-
standing a number of aspects related to the design problem at hand. First and
foremost, the designer is interested in knowing what shape, parameters, materi-
als etc. would make a solution optimal with respect to one or many objectives
of design. Optimality is an important consideration, as the designers are aware
that an optimal design is always competitive and can never be bettered by any
other solution. With the classical mathematics-oriented [11] and non-traditional
optimization tools, such as evolutionary algorithms, simulated annealing, etc.
that are available today, finding a near-optimal solution to a complex engineer-
ing problem involving non-linear objectives and constraints, mixed nature of
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variables, computationally expensive evaluation procedures, and stochasticities
in evaluation process can all be achieved reasonably well.

Secondly, with the machine learning and data mining tools available today,
designers can hope to know more beyond just finding the optimal solutions of
a problem. They can provide a deeper understanding about the properties of
optimal solutions and gather valuable knowledge for their future use. A recent
study on innovization proposed the use of two or more conflicting objectives to
find a set of trade-off near Pareto-optimal solutions and then an analysis of the
solutions to unveil hidden properties common to them [1,2,7]. These properties
are referred to as design principles. They convey useful information about ‘what
makes a solution optimal?’.

Optimization is an iterative process in which the task is started with one or
more random solutions. Solutions are then modified by the algorithm’s operators
to hopefully find better solutions. The solution update procedure is continued it-
eratively till one or more satisfactory solutions are found. The process, if thought
carefully, is an evolutionary process, in which a set of random naive solutions
(most likely not resembling at all with the final optimal solutions) get modi-
fied to take shape of optimal solutions. Ignoring a number of complex effects
associated with natural evolution (such as environmental changes, sexual repro-
duction, dominance-diploidy etc.), the above-described optimization process can
be viewed similar to the human evolution, a process that started from the cre-
ation of prokaryotes cells (around 4,000 million years ago (Ma)) to eukaryotes
(around 2,100 Ma) to sponges (around 600 Ma) to vertebrates (around 500 Ma)
to tetrapods (around 390 Ma) to synapsida (around 256 Ma) to reptiles (around
250 Ma) to placental mammal (around 160 Ma) to primates (around 75 Ma) to
Hominidae (around 15 Ma) to Australopithecus Afarensis (around 3.6 Ma) to
Homo erectus (around 1.8 Ma) to Homo Sapiens (160 thousand years ago) and
to the ancestors of modern day Homo Sapiens (around 12,000 years ago) [9]. We
concentrate on the fact that several milestone developments made the evolution
of modern human possible and the information about these key developments
are important for the evolutionists to have a better understanding of how we
have come and where we may go from here. The development of back-bone (ver-
tebrate) as early as around 500 Ma was the first major event in the human
evolution. Thereafter, the development of legs around 390 Ma was another ma-
jor breakthrough that allowed the creatures to leave water and come to land.
Many other significant anthropological developments took place along the way,
which eventually helped create high-performing living creatures like humans.

In this paper, we consider a specific engineering design task for our study and
first find a set of trade-off, near-Pareto-optimal solutions using an EMO proce-
dure. These high-performing solutions can be viewed somewhat similar to the
human population of today who can be considered better and high-performing
compared to all of their ancestors since the beginning of life formation about
four billion years ago. Thereafter, we perform an automated innovization task
on these high-performing design solutions to reveal a set of design principles
common to them. These principles may be thought of as similar to the features
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that are common to the present human population, such as presence of a back-
bone, legs, skull etc. of certain type. As the history of human evolution reveals
a chronology of developments (such as being a vertebrate first, then developing
legs, and so on), in this paper, we are particularly interested in investigating the
evolutionary history of the key design principles. For this purpose, we suggest a
computational procedure and reveal interesting time-line of formation of design
ideas along an optimization process. Such information about a problem provides
valuable insight about the importance of various design principles and should
help designers to better understand their designs and eventually create better
designs.

1.1 Multi-objective Optimization and Automated Innovization

Multi-objective optimization considers multiple conflicting objectives and theo-
retically gives rise to a set of Pareto-optimal solutions, each of which is optimal
corresponding to a trade-off among the objectives. Since the outcome are multi-
ple solutions, multi-objective optimization is ideal for finding a set of alternate
solutions either for finally choosing a single preferred solution or to launch a fu-
ture analysis. Due to the population approach and ability to introduce artificial
niches within a population, evolutionary algorithms (EAs) are ideal for solv-
ing multi-objective optimization problems. For the purpose of future analysis of
Pareto-optimal solutions, as mentioned above, recent studies have proposed an
innovization task for discovering innovative solution principles [7]. Since Pareto-
optimal solutions are all optimal, they are likely to possess some common prop-
erties related to design variables, objectives and constraints that remain as ‘sig-
natures’ to Pareto-optimal solutions. A few recent studies have also attempted
to discover common design principles automatically using sophisticated machine
learning procedures [2,1], which we discuss here in brief.

Automated innovization, proposed in 2010 [2], uses a grid-based clustering
technique to identify correlations in any multi-dimensional space whose dimen-
sions are provided by the user. The procedure was later extended [1] so that
design principles hidden in all possible Euclidean spaces formed by the variables
and objectives (and any other user-defined functions) can be obtained simultane-
ously without any human interaction. This is achieved at the cost of restricting
the mathematical structure of the design principles to a multiplicative form given
by,

∏N
j=1 φj(x)

ajbj = c, where φj ’s are basis functions. A total of N basis func-
tions need to be provided by the user. A basis function can be any function of
the problem variables. The usual choices are the objectives and the variables
themselves. aj is a Boolean exponent determining the presence (=1) or absence
(=0) of j-th basis function and bj is a real-valued exponent. Automated innoviza-
tion is capable of extracting multiple design principles of multiplicative form by
optimizing aj ’s and bj ’s. It is argued that since many natural, physical, biologi-
cal and man-made processes are governed by formulae with the same structure
(power laws [10]), most correlations are expected to be mathematically captured
by it. By definition, the expression on the left side of above equation is a design
principle (DP) if it evaluates to approximately the same value for a majority
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of the Pareto-optimal solutions. Thus the c value on the right is a measure of
commonality and the extent of this commonality is obtained by clustering the
evaluated c values. For further details readers are referred to [1].

2 MEMS Design Study

MEMS (Microelectromechanical systems) are tiny mechanical devices that are
built upon semiconductor chips. They usually integrate across different phys-
ical domains a number of functions, including fluidics, optics, mechanics and
electronics and are used to make numerous devices such as pressure sensors,
gyroscopes, engines and accelerometers. The present design problem concerns a
comb-drive micro-resonator shown in Figure 1. There are 14 design variables as
shown in Figure 1, V is the voltage amplitude and Nc is number of rotor comb
fingers. The variable bounds are: 2μm ≤ Lb, Lt, Lsy, Lsa ≤ 400μm, 2μm ≤
wb, wt, wc ≤ 20μm, 10μm ≤ wsy , wsa, wcy ≤ 400μm, 4μm ≤ x0 ≤ 400μm,
7 Volts ≤ V ≤ 50 Volts and 3 ≤ Nc ≤ 66. The design is subject to 10 linear
constraints and 14 non-linear constraints. The objectives of design are (i) min-
imization of the power consumption (applied voltage), and (ii) minimization of
the total area of MEMS device. Further details about the problem can be found
in [8].

Fig. 1. MEMS model adapted from [8]
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Fig. 2. Progress of EMO solutions to-
wards Pareto-optimal front

2.1 Generation of Pareto-optimal Front

This highly non-linear design optimization problem was previously solved using
NSGA-II [6] with an external archive for collecting the non-dominated solu-
tions [12]. In this study, the original implementation of NSGA-II is used instead.
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To have statistical invariance, 10 different runs are performed each with P = 500
population members for tmax = 500 generations. Each NSGA-II run uses the
same parameters: SBX (simulated binary crossover [5]) operator with pc = 0.9
and ηc = 15, and polynomial mutation operator [4] with pm = 0.033 and ηm =
20. All variables except Nc are real-valued. A binary string of length six bits is
used to represent Nc, for which pc and pm are 0.9 and 0.0125, respectively. The
non-dominated solutions from each run are accumulated and sorted using the
dominance criterion. This process gives rise to 1, 198 high-performing trade-off
solutions.

To ensure a proper convergence, a local search procedure (the nonlinear
gradient-based minimization algorithm fmincon from MATLAB) is applied to
the ε-constrained MEMS design problem [3] on each of 1, 198 solutions. However,
since gradient-based algorithms cannot efficiently handle discrete variables, for
every solution, we keep Nc fixed to its current value and the other 13 variables
are modified during the local search procedure. It is observed that the difference
between NSGA-II solutions and the local-searched solutions are quite small. The
improved non-dominated front is shown in Figure 2.

3 Results

The previous study [12] attempted to visually decipher design trends among
these solutions. In the following section, we apply the automated innovization
algorithm [2] to unveil design knowledge in a quantitative way.

3.1 Design Principles Using Automated Innovization

The 1, 198 non-dominated solutions obtained above are used for the innovization
study. All 14 design variables and the two objective functions are chosen as the
basis functions needed for the automated innovization study. The optimization
formulation of the automated innovization problem is solved using a single-
objective NSGA-II which uses the following settings: (i) population Size = 500,
(ii) number of generations = 500, (iii) niched tournament selection operator,
(iv) single-point binary crossover with pc = 0.85 and SBX with pc = 0.90,
and ηc = 10, (v) bitwise mutation with pm = 0.15 and polynomial mutation
with pm = 0.05 and ηm = 50. Table 1 lists all 15 design principles found by
the automated innovization study. The last column is a measure of the extent
of commonality among the 1, 198 non-dominated solutions. It is referred to as
the significance and is simply the percentage of the trade-off solutions whose
c values are clustered. Minimum allowable significance is a user parameter in
innovization and has been set to 70% in this case. A few interesting aspects of
the comb driven micro-resonator design problem obtained from the automated
innovization study are as follows:

1. Six design principles, namely DP1, DP2, DP4, DP7, DP8 and DP9 are all
more or less constant for at least 80% of the data. The third column shows
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Table 1. Automated innovization results for the MEMS design problem

Notation Design principle Cluster average (µlargest) Significance
DP1 w1.0000

c = c 2.000231E-06 98.50 %
DP2 w1.0000

sy = c 1.000441E-05 97.16 %
DP3 L1.0000

sa = c 1.169490E-05 88.23 %
DP4 w1.0000

t = c 2.001497E-06 87.65 %
DP5 L1.0000

t = c 6.873649E-06 87.40 %
DP6 L1.0000

sy = c 3.605399E-05 86.56 %
DP7 w1.0000

sa = c 1.000482E-05 86.06 %
DP8 w1.0000

b = c 2.000028E-06 84.72 %
DP9 w1.0000

cy = c 1.000088e-05 79.63 %
DP10 f1.0000

1 L0.6470
b = c 1.078929E-01 78.46 %

DP11 f1.0000
2 L−0.4888

b = c 3.671301E+02 74.12 %
DP12 f0.2546

1 f1.0000
2 L−0.3563

b = c 2.812855E+02 73.79 %
DP13 f1.0000

2 L−0.4800
b L−0.1160

c = c 1.258088E+03 72.70 %
DP14 f1.0000

1 L0.6490
b L0.1429

c = c 2.112050E-02 72.70 %
DP15 f0.7737

1 f1.0000
2 = c 7.301285E+01 70.45 %

that all these design principles tend to their lower bounds. It is interesting
to note that all the associated variables are widths, indicating that for this
MEMS component, the overall width should be as low as physically possible
(provided they satisfy the constraints) for (near) Pareto-optimality.

2. Each of DP3, DP5 and DP6 are also approximately constant on the front.
However they surprisingly take a value intermediate in their variable ranges.
This indicate that the corresponding length variables are very important and
will determine Pareto-optimality for this problem.

3. The flexure beam length Lb is important in an indirect way. DP10 signifies
that it is inversely proportional to the voltage f1. The instantaneous voltage
applied across the comb drive is associated with the force created to move
the shuttle mass and the flexure beams are designed to compensate this
movement. It becomes clear that more the force (which in turn is due to
higher voltage), the stiffer the structure should be and hence a shorter beam
length (Lb) is required.

The design principles and their implications mentioned above are interesting
and provide a designer interesting insights about the particular MEMS design.
However, in the following section, we discuss a further post-optimality analysis
procedure that is more revealing and also has a deeper connection to the time-
line developments of human evolution.

3.2 Evolution of Design Principles

Consider the various anthropological features that homo-sapiens acquired during
the process of human evolution. There is sufficient documented evidence which
tells us that these features evolved gradually over millions of years, rather than
appearing out as a single event, driven by the natural mechanisms of reproduc-
tion, genetic mutation and natural selection. Despite the simplicity in our design
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environment (being static, deterministic, asexual, non-cooperative, etc.), the de-
sign principles obtained in Table 1 can be thought as somewhat analogous to
these features, since they are common to most of the solutions (at least 70%),
just like the anthropological features that distinguish humans from other liv-
ing beings. We are interested here in investigating if there exists a gradual and
chronological evolution of the above design principles over iterations just like the
chronology of anthropological feature development over millions of years. If such
a gradual development of key design features is observed, the information would
be valuable to the designers for a better understanding and further their future
use. Similarity between natural and artificial evolutions can help both fields with
cross-breeding of their key concepts.

We propose the following procedure for recording the evolutionary time-line
of design principles. The non-dominated solutions from each of the 10 runs at
each generation t is stored. Next, each of the 13 identified design principles
(DPi, i = 1, . . . , 13) is checked for their appearance in the combined data in
each generation. The significance of DPi (SDPi

t ) at generation t is calculated as
the proportion of points satisfying the DP to the total non-dominated points at
the final generation. Thereafter, a plot of the significance value of each DP with
generation will reveal the relative appearance of the DP during the optimization
process. Here, we provide the algorithm in step by step format with the following
input: (i) design principles (DPi, i = 1, 2, . . .) obtained after the automated
innovization task, (ii) cluster information associated with each DPi, and (iii)
generation-wise population members for each run:

Step 0: Set t← 0.
Step 1: Collect non-dominated solution set Pt at generation t from all runs.

Thereafter, remove the dominated points from Pt.
Step 2: Evaluate DPi at all solutions in Pt to compute the c values and collect

them in set Ct.
Step 3: Every element cj ∈ Ct is checked for its existence in any of the K

clusters of DPi using the criterion, cj ∈ cluster k ⇔ μk − d σk ≤ cj ≤
μk + d σk, where μk and σk are the mean and standard deviation of c-values
of the k-th cluster, respectively. The number of elements Et in Ct that do
belong any one of the K clusters is recorded. d = 4 is used here and also
recommended.

Step 4: Calculate the significance of DPi in the current generation t as follows:
SDPi
t = (Et/|Ptmax |)×100%, where |.| represents the set size. For the MEMS

design case, we have |Ptmax | = 1, 198.
Step 5: If t = tmax Stop else t ← t + 1 and Goto Step 1. Here tmax is the

number of generations used for solving the original multi-objective problem.

We apply the above procedure to the MEMS design problem for the first 13 of the
15 design principles obtained by automated innovization. DP14 is a combination
of DP10 and DP13. DP15 does not involve any decision variables. Hence, we do
not consider them for the evolution analysis. Figure 3 shows SDPi

t for each of the
13 DPs at various generations. The evolution history shown in the figure reveals
the time at which each of DPs started to evolve during the optimization process.
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Fig. 3. Evolution of 13 design principles show a gradual development. Similarity with
events in human evolution is also shown for a comparison.

We show the evolution when there is around 10% existence of the particular DP
in the combined population. Clearly, a gradual evolution pattern of DPs can
be seen: (DP2, DP13, DP11, DP12, DP1, DP5, DP4, DP3, DP7, DP10, DP8,
DP9, DP6). This information of some DPs which form later due to existence of
some other DPs which formed early on during the optimization process provide
valuable knowledge to the designers.

For the first 10 generations, no feasible solution was found. Thereafter, when
some feasible solutions were created, it took another 160 generations for the first
design principle DP2 to emerge among the non-dominated solutions. At around
171 generations, about 10% of the non-dominated points of all 10 runs have the
DP2 property: wsy is constant. This variable denotes the thickness of the web of
the I-shaped element. The fact that this property has started to evolve first means
that this design principle is a fundamental requirement for a design to take shape
of an optimal solution. This is equivalent to the development of the ‘backbone’ as
early as around 530 million years ago for the eventual evolution of a human.
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After the emergence of DP2, the next few generations created DP13 which is a
relationship between the area of MEMS device, Lb and Lc. The principle states
that for a MEMS with smaller area, smaller values of Lb and Lc are needed.
Third and fourth DPs (DP11, DP12) emerge after a while. These DPs enables
a more direct relationship between the area and Lb to be created in the form
of DP11 and DP12. As an analogy, the emergence of DP11 and DP12 may be
compared with further anthropological developments, such as formation of legs,
that made a significant leap towards human evolution. In this sense, fixation of
wsy , Lb and Lc early on during the optimization process remain as fundamental
developments towards becoming optimal.

Thereafter, after a gap of 15 generations, a new DP emerges. This is DP1
denoting that the variable wc must be constant. The variable wc is the thick-
ness of the comb tooth. When the MEMS with a previously evolved feature
(DP12) fixed a direct relationship between Lb and the area, the thickness of
each comb was the next parameter to get fixed. DP1 dictates that the optimal
design requires a fixed tooth size. From this generation onwards, detail design
principles involving a few other variables (Lt from DP5, wt from DP4, Lsa from
DP3, wsa from DP7, wb from DP8, wcy from DP9) evolved. As the solutions
approach the Pareto-optimal front, DP15 relating two objective values starts to
get formed and around 235 generation a direct relationship (DP10) between the
first objective (applied voltage) and Lb forms.

Finally, DP6 that requires the variable Lsy to be constant evolves at around
280 generations. This variable relates to the width of the web of the I-shaped
element. When more characteristic variables get settled with evolution, this was
the final fixation needed for the solutions to become close being Pareto-optimal.

It is interesting to note from Figure 2 that evolution of all DPs take place when
the non-dominated points are close to the Pareto-optimal front. This observation
is similar to the fact that most of the major anthropological developments in
human evolution took place in a relatively short time span since the creation
of life forms. The chronology of evolution of design principles discovered above
from multiple EMO runs clearly puts forward a hierarchy of importance of them
and highlights their inter-relationships. Such important information are difficult
to obtain in any other ways.

4 Conclusions

In this paper, we have extended the use of automated innovization principles
to make a deeper understanding of an engineering design problem. The key de-
sign principles found by the innovization procedure have been investigated for
their chronological evolution during the optimization process. A computational
procedure has been suggested for this purpose. It is observed that certain de-
sign principles get created early on during the optimization process, while some
other detail design principles form later. We have argued that the evolution of
design principles during the course of optimization has, barring some details,
a remarkable similarity to the time-line history of significant anthropological
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developments for human evolution over many millions of years. The connec-
tion is interesting and puts natural and artificial design of systems on a similar
platform, thereby allowing cross-breeding of ideas between two areas. The evo-
lutionary information thus obtained may provide a clear hierarchy of important
design features needed to constitute an optimal design. Such knowledge is vital
for designers in having a clear understanding of key features and their inter-
relationships and also to make use of them in their future design scenarios.

Acknowledgments. Authors wish to thank Dr. Zhun Fan for introducing them
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