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Abstract. Planning a satisfactory route for an autonomous vehicle over
a complex unstructured environment with respect to multiple objectives
is a time consuming task. However, there are abundant opportunities
to speed up the process by exploiting prior information, either from ap-
proximations of the current problem instance or from previously solved
instances of similar problems. We examine these two approaches for a set
of test instances in which the competing objectives are the time taken
and likelihood of detection, using real-world data sources (Digital Ter-
rain Elevation Data and Hyperspectral data) to estimate the objectives.
Five different instances of the problem are used, and initially we compare
three multi-objective optimisation evolutionary algorithms (MOEA) on
these instances, without involving prior information. Using the best-
performing MOEA, we then evaluate two approaches that exploit prior
information; a graph-based approximation method that pre-computes a
collection of generic ’coarse-grained’ routes between randomly selected
zones in the terrain, and a memory-based approach that uses the solu-
tions to previous instances. In both cases the prior information is queried
to find previously solved instances (or pseudo-instances, in the graph
based approach) that are similar to the instance in hand, and these are
then used to seed the optimisation. We find that the memory based ap-
proach is most effective, however this is only usable when prior instances
are available.

1 Introduction

Route-planning is one of the increasingly many application domains in which a
multi-objective optimisation (MOO) approach [1] has been found to have signif-
icant advantages over single-objective approaches [2]. In this paper, we further
explore multi-objective optimisation algorithms for route-planning of manned
and unmanned vehicles in a hostile and unstructured environment, and focus on
the question of accelerating the process by exploiting prior information. Speed of
optimization can be particularly vital in the application environments of interest
to us – broadly speaking, this is because there will often be a need to have a
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viable route plan within seconds of the decision being made to start to move
the vehicle to a given new location. Meanwhile, in the route planning domain,
as well as a large number of other interesting application domains, a range of
prior information is available and could be used in various ways to bootstrap the
optimisation process.

In the case of route planning, the broad geographic area and terrain charac-
teristics where routes are to be planned are known in advance. The solutions to
previously solved route planning instances within the same terrain may also be
known but it would be infeasible to pre-compute all instances from every pos-
sible start and end location (some geographic features in the environment may
move between instances). However, it is very appealing to utilise prior informa-
tion whenever possible. In this paper, we examine two approaches to integrating
prior information into a multi-objective optimisation algorithm; (i) solving ap-
proximations of the current problem instance, or (ii) information derived from
previously solved problems with sufficient similarity.

In the remainder, we briefly cover background material in Section 2 and then
introduce multi-objective route-planning. Section 3 then evaluates three MOEAs
on our five test instances, without exploiting prior information. In Sections 4
and 5 we then respectively explore two different approaches to include prior
information. Section 6 concludes and discusses future work.

2 Background

A multi-objective optimization (MOO) problem is posed as argminx∈X Gm(x),
where Gm(x) is a set of m objective functions and x is defined as a vector of
decision variables (or a solution) in the form x = (x1, x2.., xN ) from the set of
solutions X . The aim is to find the Pareto set which contains all the solutions
that are not dominated by any other solution. A solution x is said to be non-
dominated by y, if and only if, x is as good as y in all objectives and x is strictly
better then y in at least one objective.

The most effective MOO approaches to date are generally regarded to be
multi-objective evolutionary algorithms (MOEAs). Typically, MOEAs (as well
as most optimization algorithms) make little or no use of prior information that
may be available about the problem at hand. The concept of exploiting prior
information is pervasive in artificial intelligence, appearing in several different
guises (e.g. case based reasoning (CBR) [3], or, more recently, per-instance tun-
ing [4]), however it is infrequent in the optimization literature, perhaps because
appropriate approaches are highly domain-specific. Nevertheless some examples
include work in the Genetic Programming community [5,6] in which popula-
tions were seeded with solutions to previous instances, while an approach was
recently proposed in [7] which exploits extensive pre-computation of solutions
to potential instances that may be faced in a given domain. Meanwhile, [8] ex-
plores the re-use of the probability models built by an estimation of distribution
algorithm (EDA) on previous instances, while seeding with previous solutions is
occasionally explored, especially for dynamic optimization [9,10].
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We examine two approaches with which to integrate prior information in route
planning, in the scenario that instances will occur with previously unknown start
and end locations, but within a known geographic area (e.g. a 5km by 5km
square). The first approach is to prepare in advance Pareto optimal but coarse
grained route solutions for a large collection of potential start and end locations
within the region. For any such start/end pair, we abstract the search space as a
directed graph, and then use a multi-objective extension to traditional A* called
NAMOA* [11] to find Pareto optimal coarse-grained routes. which, in turn, seed
the population of a MOEA solving the instance at hand. The second approach
uses solutions to previously solved similar route planning instances to seed the
initial population for the new instance.

We consider a route planning scenario where a route is required that min-
imises a set of competing objectives such as the fuel used, the time taken, the
distance travelled, or the likelihood of being detected by observers. We build on
the route planning problem defined in [2] and are informed by previous studies
of motion planning for autonomous vehicles [12,13]. Route planning is the con-
struction of a route that navigates between two geographic locations. The start
and end location are defined by a latitude, longitude and heading from true
north. For convenience, we encode a route in relative polar coordinates where
αi is the heading relative to the next way point and r is the distance to travel
in this direction. To evaluate a route, the objective functions used here are the
time taken and likelihood of detection, as defined in [2], and the route is divided
into 30 segments. The objective functions are calculated using Digital Terrain
Elevation Data (DTED) 1 and the NASA LandSat Multispectral data. The Mul-
tispectral data is combined with a classifier to infer the terrain type and hence
the maximum speed allowed on that portion of the route segment. To evaluate
the performance of different MOEAs, five instances, P1 to P5, were generated.
The definition of the routes and java code for the objective functions is available
at http://code.google.com/p/multi-objective-route-planning/.

3 Comparison of Multi Objective Optimisation
Algorithms

First, we compare three different MOEAs, MOEA/D, SMPSO, and NSGA-II, on
our five problem instances, without using prior information. Multi Objective Evo-
lutionaryAlgorithmsBased onDecomposition (MOEA/D)[14]was selected to rep-
resent the current state of the artMOEA. Speed-constrainedMulti-objective PSO
(SMPSO)[15] is used to provide a baseline algorithm fromtheParticle SwarmOpti-
misation (PSO) community, while the Non-dominated Sorting Genetic Algorithm
II (NSGAII)[16] is also tested as a commonly used effective benchmark MOEA.

The implementations of MOEA/D, SMPSO and NSGAII have been taken
from JMetal2 and the results presented are averaged over 50 independent runs

1 EarthExplorer (http://earthexplorer.usgs.gov)
2 http://jmetal.sourceforge.net/

(http://earthexplorer.usgs.gov)
http://jmetal.sourceforge.net/
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which were limited to 200,000 evaluations per run. NSGAII and SMPSO had
a population size of 100 and MOEA/D a population size of 600. Comparisons
are quantified using the Inverted Generational Distance (IGD), as defined in
[17]. The ’known’ Pareto optimal front is calculated by combining the solutions
generated from all experiments presented in addition to one million randomly
generated samples. Results are summarised in Table 1.

Table 1. The IGD values (M. = mean and Std = standard deviation) for
(M)=MOEA/D, (S)=SMPSO and (N)=NSGAII on Problems 1 to 5

Prob P1 P2 P3 P4 P5

Alg S N M S N M S N M S N M S N M

Mean 61.0 464.7 33.8 152.4 817.9 47.9 130.8 345.5 29.8 107.2 407.5 47.7 54.1 205.7 5.8
Std 12.0 150.9 28.2 41.6 193.4 36.1 25.5 141.2 19.2 33.6 76.3 25.5 9.8 56.9 14.8

The results in Table 1 follow preliminary experiments which hand-optimised
the parameters of each of the algorithms. For these five problem instances,
MOEA/D clearly produces solutions closest, in terms of IGD, to the reference
Pareto optimal front. Hence, MOEA/D is used in the remainder of this paper.

4 Graph-Based Approximation

In the route planning scenario of interest, before an instance of the problem arises,
we know the broad geographical region in which the start and end locationswill be.
We describe here a way to exploit that prior information, based on a priori finding
coarse-grained solutions to many potential instances, based on all possible pairs of
start and end locations over a 50m by 50mmesh. For each such pair, a solution tree
is generated by using the encoding outlined in Section 2, but with each bearing
(αi) restricted to a discrete set, e.g. [−30, 0,+30]. Once the maximum number
of segments has been reached, the current location is joined to the end location
using a single straight line segment. The Pareto set of solutions on this tree is
then extracted by using NAMOA* (of which more below). Given a new instance
of the route planning problem, we then find the pre-solved coarse-grained instance
whose start and end locations best match the new instance, and use the Pareto
set found by NAMOA* to seed the MOEA/D population.

Figure 1 (a) shows the final IGD value for the five different route planning
problems when MOEA/D is initialised randomly and with the non-dominated
solutions found by solving two configurations of the graph-based approximation.
The results clearly shown that initialising the MOEA/D population with solu-
tions generated from an initial graph-based approximation has an improvement
in the final IGD value. With 3 segments and 3 bearings (3,3) at each node, the
final IGD is statistically different (according to a two tailed, paired T test with
confidence level 0.99) for 1 of the problems (P4) and with 5 segments and 5
bearings (5,5), the final IGD value is statistically different for all 5 problems.

Figure 1 (b) shows the number of route evaluations required to reach the
110% of the maximum final IGD value when using MOEA/D with a randomly
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Fig. 1. The IGD value on the last optimisation iteration and the number of evaluations
to reach 110% of the maximum IGD value (as defined by MOEA/D) for MOEA/D and
Graph-Based MOEA/D with (3,3) and (5,5) segments and bearings for Problems 1
to 5
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initialised population. The results show that the number of evaluations required
is statistically reduced on all route planning problems except for problem 2 (with 5
segments and 5 bearings). The results show that, on average, using a graph-based
approximation can reduce the number of routes evaluated by 5,318 for 3 segments
and 3 bearings and 8,582 routes for 5 segments and 5 bearings where NAMOA*
only evaluates, on average, 11 and 143 routes for each of these configurations.
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Fig. 2. The No. of Routes Evaluated for P1 with different graph configurations

Although, the exponential complexity of NAMOA* is clearly shown in Fig-
ure 2 (Note the log scale) where the number of routes evaluated significantly
increases (for a small reduction in the IGD). The number of routes evaluated
are calculated by totalling the number of edges evaluated during the operation
of the NAMOA* algorithm. One reason for this is that a suitable tree-pruning
heuristic is unavailable for the likelihood of detection and hence a lower bound
must be assumed (likelihood of detection is zero) therefore reducing the removal
of dominated branches (or partially explored routes) in the graph.

This section has shown that seeding MOEA/D with solutions generated from
an approximation of the problem, solved using NAMOA*, has a significant im-
pact on the IGD value but NAMOA* can only be run for very crude approxima-
tions of the problem before the number of evaluations required quickly becomes
infeasible. The next section evaluates a different seeding strategy that is based
on storing solutions between problem instances.

5 Memory-Based

In this section, a memory-based approach is examined, where previous solutions
are reused from previously solved instances of similar problems. The approach is
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only appropriate when the problems are not evolving rapidly and when informa-
tion from previously solved problems have some bearing on the current problem
being solved i.e. the shape and distribution of the routes. The non-dominated
solutions generated by MOEA/D are stored in a k-d tree [18] which is referenced
by the latitude and longitude of the start and end locations. All of the solutions
from previous problems are currently stored in the k-d tree but only a subset of
the K closest neighbours, up to half the total population, are used to initialise
the population of MOEA/D when solving a new instance.

To evaluate the approach, it is necessary to generate a sequence of problem
instances. A sequence of ten instances of route planning problems, Pi,j , where
i is the problem number and j is the index in the sequence, are generated by
randomly selecting a start and end location in the area of the route planning
problems P1 to P5. Once a route planning problem in the sequence has been
solved, the non-dominated solutions are added to the k-d tree and the next
route planning problem is tackled. At the beginning of the next route planning
problem, the closest neighbours to this route planning problem are extracted
from the k-d tree and the non-dominated solutions for these problems added to
the initial population of MOEA/D. The remaining population used in MOEA/D
is randomly initialised within the input parameter range.

Figure 3 (a) shows the final IGD value for MOEA/D and the Memory-Based
MOEA/D (neighbours=3) on P1 over the sequence of ten route planning in-
stances. The IGD value for each iteration is generated over 50 runs of MOEA/D
and the same sequence is used for each run. The IGD results show that ini-
tialising MOEA/D with solutions from previously similar instances results in a
statistically better (using a two tailed, paired with 0.99 probability) set of solu-
tions for five of the ten instances (4,6, 8,9 and 10). Figure 3 (b) shows the number
of evaluations required to reach 110% of the maximum final IGD value as found
by MOEA/D. The results show that for some instances the number of evalua-
tions is significantly lower (4,6,8,9 and 10) with on average a reduction in the
number of routes evaluated for these four instances is 13,369. The results show
that MOEA/D initialised using solutions from previously solved problems has
the potential, on some instances, to reduce the number of evaluations required
to produce a reasonable approximation of the Pareto optimal front.

For example, the reduction in the number of evaluations can be graphically
seen in Figure 4 (a) where the memory-based MOEA/D (shown in dashed) is
compared with a randomly initialised MOEA/D (shown in black). The reason
for this earlier reduction in IGD value can be seen by comparing the solutions
extracted from the memory at the start of the optimisation. The solutions ex-
tracted from the memory provide a reasonable approximation of the Pareto
optimal front in the first few iterations of the algorithm. A comparison of the
initial and optimised routes can be seen in Figure 4 (b) where the initial routes
provide a broad spectrum of possible routes with previously successful shapes
without having to exhaustively search all possible combinations as with the pre-
vious graph-based approach.
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Memory-Based MOEA/D for Problem Sequence 1
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6 Conclusions and Future Work

This paper has presented an examination of two approaches to using prior in-
formation, graph-based and memory-based, for MOEA/D when applied to a
route planning problem over an unstructured environment. The experimental
results have shown that both approaches enable MOEA/D to generate a set of
solutions closer to the known Pareto optimal front in fewer iterations than a
traditional random initialisation. Solving a graph-based approximation has been
shown to produce routes closer to the known Pareto optimal front for the five
route planning problems but is only feasible for small graphs because the number
of evaluations required increases exponentially. Using a memory-based approach
has also been shown to generate routes closer to the known Pareto optimal front
for a sequence of problem instances but this is highly dependent on whether a
sufficiently similar problem has been solved previously and whether the environ-
ment has evolved since solving that problem. The approaches examined in this
paper are applicable to a wide range of multi-objective optimisation applications.
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Future work will concentrate on how to apply these techniques to dynamic
environments where the problem is evolving either during or between route
planning problems and to analyse methods of storing and extracting subsets
of solutions based on the similarity of the instances.
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