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Abstract. This work analyzes population size and neighborhood re-
combination in the context of many-objective optimization. Large pop-
ulations might support better the evolutionary search to deal with the
increased complexity inherent to high dimensional spaces, whereas neigh-
borhood recombination can reduce dissimilarity between crossing indi-
viduals and would allow us to understand better the implications of a
large number of solutions that are Pareto-optimal from the perspective
of decision space and the operator of variation. Our aim is to under-
stand why and how they improve the effectiveness of a dominance-based
many-objective optimizer. To do that, we vary population size and an-
alyze in detail convergence, front distribution, the distance between in-
dividuals that undergo crossover, and the distribution of solutions in
objective space. We use DTLZ2 problem with m = 5 objectives in our
study, revealing important properties of large populations, recombina-
tion in general, and neighborhood recombination in particular, related
to convergence and distribution of solutions.

1 Introduction

Recently, there is a growing interest on applying multi-objective evolutionary al-
gorithms (MOEAs) to solve many-objective optimization problems [1], where the
number of objective functions to optimize simultaneously is considered to be more
than three. It is well known that conventional MOEAs [2,3] scale up poorly with
the number of objectives of the problem, which is often attributed to the large
number of non-dominated solutions and the lack of effective selection and diver-
sity estimation operators to discriminate appropriately among them, particularly
in dominance-based algorithms. Selection, indeed, is a fundamental part of the
algorithm and has been the subject of several studies, leading to the develop-
ment of evolutionary algorithms that improve the performance of conventional
MOEAs on many-objective problems [1]. However, finding trade-off solutions that
satisfy simultaneously the three properties of convergence to the Pareto front, well
spread, and well distributed along the front is especially difficult to achieve in
many-objective problems and most search strategies for many-objective optimiza-
tion proposed recently compromise one in favor of the other [1].
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In addition to selection, detailed studies on the characteristics ofmany-objective
landscapes, the effectiveness of operators of variation, and the effects of large popu-
lations are important to move forward in our understanding of evolutionary many-
objective optimization in order to develop effective and efficient algorithms. From
this standpoint, we have presented initial evidence that MOEAs can improve
their performance on many-objective problems by using large populations and
neighborhood recombination [4].

In this work, our aim is to understand why and how population size and
neighborhood recombination increase the effectiveness of the algorithm. To study
that, we choose NSGA-II [5] as our base algorithm and incorporate neighborhood
recombination into it. We vary population size and analyze in detail convergence,
front distribution, the distance between individuals that undergo crossover, and
the distribution of solutions in objective space. We use DTLZ2 problem [6] with
m = 5 objectives in our study.

The motivation to look into large populations is that they might support bet-
ter the evolutionary search to deal with the increased complexity inherent to
high dimensional spaces. On the other hand, the motivation to study recombi-
nation is to understand better the implications of a large number of solutions
that are Pareto-optimal from the perspective of decision space and the operator
that make moves on it. A large number of non-dominated solutions could cause a
large diversity of individuals in the instantaneous population and recombination
of very dissimilar individuals could be too disruptive. Neighborhood recombina-
tion aims to reduce dissimilarity between crossing individuals.

Our study reveals important properties of large populations, recombination in
general, and neighborhood recombination in particular, related to convergence
and distribution of solutions.

2 Method

In many-objective problems the number of non-dominated solutions grows sub-
stantially with the number of objectives of the problem [7,8]. A side effect of this
is that non-dominated solutions tend to cover a larger portion of objective and
variable space compared to problems with fewer objectives [9]. The implications
of a large number of non-dominated solutions have been studied in objective
space, where selection operates. However, little is known about the implications
in decision space, where recombination and mutation operate. It is expected that
the large number of non-dominated solutions in many objective problems induce
a large diversity of individuals in the instantaneous population. In which case
recombination of very dissimilar individuals could be too disruptive affecting its
effectiveness.

Neighborhood Recombination encourages mating between individuals located
close to each other, aiming to reduce dissimilarity between crossing individuals
and improve the effectiveness of recombination in high dimensional objective
spaces. We choose NSGA-II as our base algorithm and incorporate neighborhood
recombination into it. In this work, we leave untouched selection of NSGA-II,
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Fig. 1. Neighborhood Recombination

which uses a primary ranking based on dominance and a secondary ranking
based on crowding distance. This would allow us to show and explain the effects
of population size and recombination with a well known selection.

The main steps of Neighborhood Recombination are as follows. During the
calculation of dominance relationships, the proposed method calculates the dis-
tance between individuals in objective space and keeps a record of the |P | ×Rn

closest neighbors of each individual. Note that when the ranked population of
size |P |+ |Q| is truncated to form the new population of size |P |, some individu-
als would be deleted from the neighborhood of each individual. When individuals
are selected for recombination, the first parent pA is chosen from the parent pop-
ulation P using a binary tournament, while the second parent pB is chosen from
the neighborhood of pA using another binary tournament. Then, recombination
is performed between pA and pB. That is, between pA and one of its neigh-
bors in objective space. If all neighbors of individual pA were eliminated during
truncation, the second parent pB is selected from the population P similar to
pA. Fig.1 illustrates the neighborhood creation and mating for recombination.
In this work, we set the parameter that defines the size of the neighborhood of
each individual to Rn = 0.1 (10%|P |).

3 Test Problem and Analysis Indicators

3.1 Test Problem

We study the behavior of the algorithms using the continuous function DTLZ2
[5], setting the number of objectives to m = 5 and the total number of variables
to n = m+9. Problem DTLZ2 is designed in such a way that the Pareto-optimal
front corresponds to a non-convex surface in objective space, which lies in the
positive quadrants of the unit hyper-sphere, with Pareto-local fronts constructed
parallel to it. To achieve this, the n variables of a solution x = (x1, x2, · · · , xn)
are classified in two subsets. The first m− 1 variables x1, x2, · · · , xm−1, denoted
x1:m−1, determine the position of solutions within the Pareto-local/optimal
front, whereas the remaining n − m + 1 variables xm, xm+1, · · · , xn, denoted
xm:n, determine the distance of the Pareto-local front to the Pareto-optimal
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front. When xm = xm+1 = · · · = xn = 0.5, the solution is located in the Pareto-
optimal front. The m objective functions used in DTLZ2 are as follows

f1(x) = (1 + g(xm:n))
∏m−1

i=1 cos(π
2
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∏m−2

i=1 cos(π
2
xi)

)

sin(π
2
xm−1)

f3(x) = (1 + g(xm:n))

(
∏m−3

i=1 cos(π
2
xi)

)

sin(π
2
xm−2)

...
fm−1(x) = (1 + g(xm:n))cos(π

2
x1)sin(π

2
x2)

fm(x) = (1 + g(xm:n))sin(π
2
x1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

g(xm:n) =
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i=m

(xi − 0.5)2 (2)

3.2 Analysis Indicators

Proximity Indicator(Ip) [10]: Measures convergence of solutions by

Ip = median
x∈P

⎧
⎨

⎩

[
m∑

i=1

(fi(x))2
] 1

2

− 1

⎫
⎬

⎭
, (3)

where x denotes a solution in the population P . Smaller values of Ip indicate
that the population P is closer to the Pareto-optimal front and therefore mean
better convergence of solutions.

Mates Distance(Dc): Euclidian distances in variable space between pairs of
solutions that undergo crossover are computed separately for the subsets of vari-
ables x1:m−1 and xm:n that determine the position of solutions within the front
and their distance to the Pareto-optimal front, respectively. Here we report the
average distances Dc(x1:m−1) and Dc(xm:n) taken over all pairs of solutions that
undergo crossover at a given generation.

Distribution of Solution in Objective Space (ψk): In order to observe
where solutions of the parent population P are located in objective space, we
classify each solution according to the number k = 0, 1, · · · ,m−1 of its objective
values that are very small compared to the maximum objective value of the
solution. More formally, The class k a solution belongs to is determined by

k =
m∑

i=1

θi (4)

θi =

{
1 if fi(x) < fmax(x)/100
0 otherwise

(5)
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where fmax(x) = max{f1(x), f2(x), · · · , fm(x)}. Roughly, a solution belonging
to class k = 0 is considered to be in the central region of objective space, whereas
solutions belonging to class k ≥ 1 are gradually considered to be in the edges
of objective space and identify dominant resistant solutions. We report ψk, the
number of solutions in population P belonging to class k.

Front Distribution: Shows the number of solutions per front obtained after
applying non-dominated sorting to the combined population of parents P and
offspring Q. Here, we report results for fronts F1 ∼ F5.

4 Simulation Results and Discussion

4.1 Preparation

In this work we use NSGA-II[6] as a base algorithm and include in its framework
Neighborhood Recombination. We observe the behavior of conventional NSGA-
II and NSGA-II with Neighborhood Recombination varying the population size
from |P | = 100 to 5000 individuals. As genetic operators we use SBX crossover
and Polynomial Mutation, setting their distribution exponents to ηc = 15 and
ηm = 20, respectively. The parameter for the operators are crossover rate pc =
1.0, crossover rate per variable pv = 0.5, and mutation rate pm = 1/n, where
n is the number of variables. The maximum number of generations is fixed to
T = 100. Here we report average results obtained running the algorithms 30
times.

4.2 Analysis Varying Population Size in NSGA-II

In this section we analysis the behavior of NSGA-II. Results are shown in Fig.2.
First, we look at the convergence of the algorithm. Fig.2(a) shows Ip of Pareto-
optimal solutions obtained in the final generation (T = 100) increasing the
population size from |P | = 100 to 5000. It can be seen that Ip gets smaller by
increasing population size |P |. That is, a larger population improves convergence
of the algorithm. In order to investigate these results with more detail, Fig.2(b)
shows the transition of Ip over the generations when the algorithm is set to
population sizes |P | = 100, 1000, 2000, 5000. In the case of |P | = 100, it can be
seen that Ip increases substantially. This indicates that the algorithm diverges
from the Pareto-optimal front, rather than converge to it, as evolution proceeds.
However, signs of convergence gradually appear by increasing population size
|P |. Eventually, for |P | = 5000 no divergence is observed and Ip reduces to 0.05
with very small dispersion. Here an important conclusion is that population size
is strongly correlated to the convergence ability of the algorithm.

Then, we analyze the front distribution over the generations. Results for
the first five fronts F1, · · · , F5 are shown in Fig.2(c)∼(e) for population sizes
|P | = 100, 1000, 5000, respectively. Note that the number of solutions in the first
front |F1|, obtained after applying non-dominated sorting to the combined pop-
ulation of parents and offspring of size 2|P |, is larger than the size of the parent
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Fig. 3. Results by NSGA-II with Neighborhood Recombination
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population|P | for most of the evolution. Especially when |P | = 100, the ratio
|F1|/|P | is the highest and |F1| exceeds |P | at a very early generation. When
the population increases to |P |=1000 and 5000, the ratio |F1|/|P | reduces and it
takes few more generations until |F1| exceeds the size of the parent population.
Looking closely at Fig.2 (e) that shows results for |P | = 5000, we can see that
the first 10 generations when |F1| < |P | is precisely the period where Ip reduces
significantly, as shown in Fig.2 (b) |P | = 5000. If |F1| < |P | then the population
is composed by solutions coming from two or more fronts, which means that
parent selection can discriminate based on dominance ranking and not only on
crowding distance as it is the case when |F1| > |P |. These results suggest that
a large enough random initial population is able to include lateral diversity
(solutions from different fronts), which allows dominance-based selection to pull
the population in the direction of the Pareto-optimal front.

Next, we look at Dc(x1:m−1) and Dc(xm:n), the average distances in decision
space between individuals that undergo crossover. Note from Fig.2(f) that Dc

(x1:m−1), computed on the subset of variables that determine the position within
the front, is large at generation 0 and it tends to increase as the evolution proceeds.
Note also that this trend becomes less pronounced as we increase the
population size |P |. This shows the diversity of solutions and it is evidence that re-
combination takes place among very dissimilar solutions, raising questions about
its effectiveness to help convergence. On the other hand, from Fig.2 (g) note that
Dc(xm:n), computed on the subset of variables that determine the distance to the
Pareto-optimal front, becomes smaller with the generations as we increase |P |.
This reduction of Dc(xm:n) is expected if the population converge towards the
Pareto-optimal front, which is located at xm = xm+1 = · · · = xn = 0.5.

Finally, we analyze the distributions of solutions in objective space ψk(k =
0, 1, · · · , 4) shown in Fig.2(h)∼(j) for population sizes |P | = 100, 1000, 5000,
respectively. Note that in the case of |P | = 100, 1000, the number of solutions ψ0

are initially around 75% of the population size |P |, but after few generations it
reduces to around 30% of |P |, showing that the number of solutions ψk, k ≥ 1,
close to the axis of the objectives functions increase significantly as evolution
proceeds. On the other hand, when a population size |P | = 5000 is used, in few
generations the number of solutions ψ0 reduce from around 75% of |P | to 50%
of |P |, but then it rises and remains around 60% of |P | until the last generation.
This shows that larger populations are not easily pulled towards the extreme
regions of objective space, caused by selection based on crowding distance that
is at work for most generations since the size of the first front surpasses the
population size (|F1| > |P |).

4.3 Analysis of Neighborhood Recombination

In this section we analyze the behavior of NSGA-II with Neighborhood Recom-
bination. Results are shown in Fig.3. Similar to the previous section, first we
look at convergence. From Fig.3(a) note that the inclusion of neighborhood re-
combination reduces Ip drastically compared to NSGA-II for any population
size, as shown in Fig.2(a). From Fig.3(b) it is important to note that, contrary
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to NSGA-II, no divergence of solutions is observed over the generations when
neighborhood recombination is used, even for very small populations.

Next, we look at the front distribution shown in Fig.3(c)∼(e). Note that a
similar trend to NSGA-II can be observed. However, when neighborhood recom-
bination is used |F1| gradually increases with the number of generations, while
in NSGA-II |F1| remained high but relatively constant.

Then, we analyze the distances among solutions that undergo crossover shown
in Fig.3(f),(g). Looking at Fig.3(f), note that Dc(x1:m−1) reduces substantially
compared to NSGA-II. This is an effect of recombining individuals with one of
its neighbors. By selecting a partner close in objective space we are increasing
the likelihood of selecting one that is also close in variable space, unless the func-
tions are highly non-linear. Most importantly, a short Dc(x1:m−1) indicates that
recombination takes place in less dissimilar individuals, which increases signifi-
cantly the effectiveness of recombination for any population size as corroborated
by the reduction of Ip shown above. Fig.3(g) shows that Dc(xm:n) shortens as
the algorithm approaches better fronts, resembling the reduction of Ip.

Finally, looking at distribution of solutions ψk in objective space shown in
Fig.3(h)∼(j), comparing with NSGA-II it can be seen that the number of solu-
tions ψ0 increases when neighborhood recombination is used, whereas the num-
ber of solutions ψk, k ≥ 1, reduces. This shows that there are more solutions
in the central region and fewer in the edges of objective space, even for very
small populations. That is, a more effective recombination helps convergence
and resists the pull of selection towards extreme regions of objective space.

5 Conclusions

In this work, we have studied the effects of population size and neighborhood
recombination on the search ability of a dominance-based MOEA applied to
many-objective optimization. We chose NSGA-II as our base algorithm and in-
cluded in it an operator that keeps track of neighbors and recombine individuals
that are close to each other in objective space. We varied population size and
analyzed in detail convergence, front distribution, the distance between individ-
uals that undergo crossover, and the distribution of solutions in objective space
using problem DTLZ2 with m = 5 objectives.

Our results showed that population size is strongly correlated to the conver-
gence ability of the algorithm. A large enough random initial population is able
to include lateral diversity (solutions belonging to different fronts), which allows
dominance-based selection to pull the population in the direction of the Pareto-
optimal front. We also showed that small populations are easily pulled towards
extreme regions of objective space by selection based on crowding distance and
that larger populations gradually become more resistant to this effect.

We argued and presented evidence that recombination in many-objective op-
timization takes place on highly dissimilar individuals if no restriction is put
to partner selection. Also, we verified that neighborhood recombination takes
place in less dissimilar individuals and showed that this increases significantly
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the effectiveness of recombination for any population size, helping convergence
and resisting the pull of selection towards extreme regions of objective space.

In this work we have focused mostly on population size and recombination.
Selection is a fundamental part of the algorithm and there is ongoing work ana-
lyzing the effects of population size and recombination using improved selection
mechanisms for many-objective optimization. However, due to space limitations,
we shall report our finding elsewhere.

In the future, we would like to extend our analysis to other problems, increase
the number of objectives and variables, and look at other ways to perform effec-
tive recombination in many-objective spaces. Also, determining an appropriate
population size according to the number of objectives is an important area of
research.
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